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Abstract

In the paper a decision procedure for S5 is presented which uses a cut-free sequent
calculus with additional rules allowing a reduction to normal modal forms. It
utilizes the fact that in S5 every formula is equivalent to some 1-degree formula,
i.e. a modally-flat formula with modal functors having only boolean formulas in
its scope. In contrast to many sequent calculi (SC) for S5 the presented system
does not introduce any extra devices. Thus it is a standard version of SC but
with some additional simple rewrite rules. The procedure combines the process
of saturation of sequents with reduction of their elements to some normal modal
form.
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1. Introduction

It is a well known fact that S5, despite numerous nice syntactic, semantic
and algebraic properties, causes troubles in the framework of sequent cal-
culus (SC). The first standard SC for S5, due to Ohnishi and Matsumoto
[21, 22], was not cut-free, in contrast to SC devised for other popular modal
logics like T or S4. In fact, they provided some solutions to this drawback
(see section 4.) but the problem of finding fully satisfactory SC for S5
was in a sense open. Some proposals based on the standard form of SC
were offered by Mints [19], Fitting [9], Takano [33] and Bratiner [5]; they
will be compared in the last section. There were also many nonstandard
sequent calculi offering some solution to the problem. One can mention
here for example: Kanger’s indexed sequent calculus [14], Sato’s approach
[29], Belnap’s display calculus [4] (see an exposition in Wansing [35]), Ne-
gri’s labelled sequent calculus [20], Indrzejczak’s double sequent calculus
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[13] or several approaches based on the idea of embedding sequents into
sequents, like nested sequent calculus (Stouppa [31, 32] or Briinnler [6])
or tree-hypersequent calculus of Poggiolesi [25]. In particular, the prob-
lem was extensively examined on the ground of hypersequent calculi (HC),
a generalised form of ordinary sequent calculi invented independently by
Pottinger [26] and Avron [1]. They provided different solutions to the prob-
lem of cut-free formalization of S5 although in the same framework (Avron
in [2]). In addition, other logicians, including Restall [28], Poggiolesi [23],
Lahav [17], Kurokawa [16], Bednarska and Indrzejczak [3] provided different
cut-free hypersequent calculi for S5.

On the other hand, different approaches to the problem of decision
procedure for S5 were proposed on the ground of tableau methods (Kripke
[15], Zeman [36], Fitting [9], Goré [11]), refutation metods (Skura [30]),
resolution (Farinas del Cerro and Herzig [8]) or application of normal forms.
Tableau-based approaches are quite close to approaches based on (cut-free)
SC and may be essentially treated as belonging to the same group. The
remaining solutions are often based on the fact that in S5 every formula is
equivalent to some 1-degree formula, i.e. a modally-flat formula with modal
functors having only boolean formulas in its scope. The latter approach is
usually based on the application of some preprocessing step transforming
any formula into some normal form. It was first proposed by Carnap [7]
(also Wajsberg [34]); an exposition of such a procedure may be found in
Hughes and Cresswell [12].

In what follows we provide an SC which is an extension of Ohnishi and
Matsumoto system for S5 with some additional simple rules. A decision
procedure which is defined on this basis utilizes the fact that the (addi-
tional) rules of the system allows us to reduce every formula to its 1-degree
counterpart. However, there is no preprocessing step of transformation
a formula into some normal form. Instead, the whole procedure, and a com-
pleteness proof induced by it, is in the spirit of SC and tableau (downward)
saturation procedures, with additional transformation steps involved.

2. S5 — basic facts

Let us recall the basic facts concerning modal logic S5 in standard char-
acterization, i.e., as an axiomatic system adequate with respect to suitable
classes of relational (Kripke) frames. We will use standard monomodal lan-
guage with countable set PV of propositional variables, [J — unary modal
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necessity operator, and ordinary boolean constants. One can axiomatize
S5 by adding to some system for classical propositional logic the following
schemata:

K O(e = ) = (Op — Oy)
T Op — ¢

4 Qe — O0p

5 ~Up = O-0Op

Instead of 5 one can use:
B —p = 0O-0Op

The system is closed under MP (modus ponens) and the rule of necessita-
tion (of every thesis).

The simplest semantical characterization of S5 may be obtained by
means of Kripke frames with no accessibility relation. A model for S5 is
thus any pair M = W, V), W # 0 and V : PV — P (W). Satisfaction in
a world of a model is inductively defined in the following way:

M, w = ¢ iff we V(p), for any ¢ € PV
M, w =~ iff M, w e
MwEeAYiIff MwEpand Mw = ¢
M, w =@ Vil MwkE=@or Mw k=1
Mw =@ — o iff Mw b~ por MwEY
M, w = Op iff M, v = ¢ for any v € Wap

A formula is S5-valid iff it is true in every world of every model.

Although cut is not eliminable from ordinary SC for S5 (see section 4.)
we can enrich the set of rules in such a way that we can dispense with cut
and prove completeness of this enriched system (without cut). Moreover,
we obtain a simple decision procedure for S5. The idea is based on the
fact that every modal formula in S5 is equivalent to modal formula of
1-degree. In such a formula no OJ is in the scope of another [J. This was
first examined by Wajsberg [34] and Carnap [7]. One can find an exposition
of such a decision procedure running by reduction to modal normal form
in Hughes and Cresswell [12]. Here we will apply SC resources and instead
of preliminary transformation of any formula to its modal equivalent of
1-degree we will obtain rather a class of sequents in a special form but the
key step of reduction to 1-degree modal formula is similar.
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3. The calculus

We will provide a calculus which is based on the formalization of S5 due to
Ohnishi and Matsumoto but contains also a set of additional rules which
will be stated with the help of the following conventions:

@ is an M-formula if it is of the form [y or —[J.

' ={0p:peT}

O[] means that there is (i such that ¢ is a subformula (not neces-
sarily proper) of 1.

e S ¢ means that ¢ is either in the antecedent or in the succedent of
a sequent S.

Sequents are built from finite sets of formulas. Axioms are of the form
I' = A with I' " A nonempty. There are no structural rules, only the
following logical rules:

(=) A =) Bt

(A=) fﬁi@’,r%i (=0) = ?jA;@A,w
(=V) FFE—AA”(’% (V=) %Fijw,Fi’g:sA
oo iz A (=) D2l g To 4l
O=) e (=0 TS oA T
oy $0eDy O $E57

(0 -) % @vn 25 [(g[lv)w(fxv)]x”
(T-7) % (E=v) %

x At least one of the disjuncts is M-formula.
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The last nine rules on the list will be called rewrite rules. Since their
schemata are expressed by means of the last convention we have in fact two
rules in each case: one for a transformation of a displayed formula in the
antecedent, and the other for the same transformation but in the succedent.
Note also that the last four and (O-—) allow for making transformations on
subformulas of modal formulas. All of them serve for retaining a necessary
minimum of a procedure of reduction to normal form. A side condition for
(Ov) follows from the restricted distributivity of O and V.

Two remarks concerning the selection and the shape of our rules may
be of interest. Note that the calculus is redundant. One may easily notice
that the effect of the application of (JO) and (J-0) in the antecedent is
covered by (O =), however these special applications need no repetition
of principal formula in the premiss, so it is simpler to formulate them as
general rules of elimination for duplicated modalities.

A proof is defined in a standard way as a binary tree of sequents.
A proof-tree is defined similarly but we admit that some leaves are not
axiomatic.

Notice that in our system we obtain a simple cut-free proof of B:

)P Up=p

Up=p

Op, —-p =

—p = —Lp

-p = U-Up
= —p — O-0p

Still we cannot prove cut elimination theorem constructively for such
a system but only define a suitable proof-search procedure which shows
that it is an adequate cut-free system for S5.

A sequent S is reducible to a set of sequents Si,...S,,n > 1 iff there
exists a proof-tree with S as a root and Sy, ...,.5, as all leaves.

We may translate sequents in a standard way into formulas of S5 by
treating antecedents as conjunctions, succedents as disjunctions and = as
—. A rule is validity-preserving (in S5) iff under translation the conclusion
is valid whenever all premises are valid. A rule is invertible iff validity of
translated conclusion implies validity of translation of each premise.

THEOREM 1 (Soundness). IfT = A, then = AI' = VA
PRrROOF: follows from the fact that all rules are validity-preserving. O

(==)

(=)
(O-00)

==)
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LEMMA 1 (Invertibility). All rules except (= O) are invertible.

Note that we could delete in the schema of (= O) sets II, ¥ in the con-
clusion and obtain invertible version of this rule but then we need explicit
rules of weakening which are not invertible either.

In order to state our procedure we need to introduce more terminology
and prove some preliminary results.

We will say that ¢ is 0-formula if it is boolean, i.e. does not contain
0. If it is an M-formula [0y or —[Jv, then it is of the 1-degree, or simply
1-formula if ¢ is O-formula. It is of the nth degree (n > 1), or simply
n-formula if its every subformula which is M-formula is of the degree at
most n — 1.

M-formula is M-normal formula if it is 1-formula or if it is n-formula of
the form O(¢1 A -+ Ag), k > 1, where each 1); is either M-formula (of at
most n—1 degree) or M-clause. The latter are of the form ¢ V- --V);, i > 1
where each disjunct is a literal or M-formula (of at most n — 1 degree).

Note that we do not require that in 1-formulas its boolean subformula
must be in conjunctive normal form. Moreover, we freely use associativity
and commutativity hence in practice we generalize the notion of conjunc-
tion and disjunction to arbitrary finite number of elements including one.

S is an M-sequent iff it contains at least one M-formula. M-sequent
is n-sequent (n > 1) if each M-formula in it is of at most degree n;
in particular, 1-sequent is a sequent with all M-formulas of degree 1. Any
M-sequent will be called reduced iff in addition to M-formulas it contains
only atomic formulas (if any). Finally by an atomic sequent we mean
a sequent of the form I' = A with I' U A containing only atomic formulas.

LEMMA 2. Fach S, is reducible to S,[)' with (Y’ being M-normal
formula of the same degree as (.

PRroOOF: The proof goes like in classical case by repeated application of
rewrite rules to 1. O

LEMMA 3. FEach n-sequent (n > 1) is reducible to a set of n — 1-sequents.

ProoF: Consider arbitrary n-formula and reduce it first to M-normal form
by lemma 2. Thus we have a sequent S, v with some [y being M-normal.
We will show by induction on the length of 1 that it is reducible. There
are three cases.
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(a) 9 is a k-element conjunction (k > 1) of the form x1 A -+ A k.
Apply (OA) to get Ox1 AD(x2 A--- A xx) and then either (A =) or (= A)
depending on the position of this formula in a sequent. This way we obtain
either a one branch proof-tree with a leaf S, Oy, ...,0(x2 A+ --Axk) (with
both modal formulas in the antecedent) or a proof-tree with two leaves
for each of these two formulas in the succedent of S. By the induction
hypothesis each of Oy; and O(x2 A -+ A xk) is reducible to n — 1 degree.

(b) ¢ is an i-element M-clause (¢ > 1) of the form x; V.-V x; and
there must be at least one disjunct which is M-formula, let it be x;. We
apply (V) to get Ox1 VO(x2 V -+ V x;) and then either (V =) or (= V)
depending on the position of [ in a sequent. In a similar way as in the
preceding case we obtain a proof-tree where each of Oy and O(x2V+--Vx;)
is by the induction hypothesis reducible to n — 1 degree.

(¢) ¥ is M-formula which is directly reducible to degree n — 1 by the
application of (OO) or (J-0) with (- =) or (= —). Incidentally this is
the base step of our induction.

The procedure is repeated with respect to remaining M-formulas of
degree n (if any) until all leaves contain only M-formulas of at most n — 1-
degree. O]

As a corollary we obtain:
LEMMA 4. Each n-sequent (n > 1) is reducible to a set of 1-sequents.

Now we will sketch a decision procedure in an indeterministic manner.
In particular we do not specify if we build a proof-tree in a depth-first or
breadth-first manner, or do not establish the order of operations. It goes
in stages:

1. Start with S and, if it contains at least one compound O-formula ap-
ply only boolean rules, otherwise go to stage 2. Continue with boolean rules
until each nonaxiomatic leaf is an atomic sequent or reduced M-sequent of
the form I', OIT = X, A, where I and A are empty or atomic and I[TUY is
nonempty. There are three possible outcomes: (a) all leaves are axiomatic —
ES; (b) at least one leaf is nonaxiomatic and atomic — we define one-world
model falsifying S (c) all nonaxiomatic leaves are reduced M-sequents — we
go to stage 2, or — if all such leaves are already 1-modal — to stage 3.

2. To each reduced M-sequent apply lemmata 2-4 until either you
get axiomatic sequents in all leaves or at least one nonaxiomatic leaf with
reduced 1-sequent, i.e. of the form I',JIT = X, A, where I" and A are
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empty or atomic and nonempty II U X contain only 0-formulas. Note that
in this stage there is no possibility of reduction to atomic nonaxiomatic
leaves; I' and A are fixed and the set of M-formulas may only increase.

3. To each 1-modal sequent I', I = O, A apply:

3.0. If OII is nonempty apply (0 =) to all elements of CIT obtaining
T, IL,00 = OX,A and then repeat stage 1. If all leaves are axiomatic
or [1¥ is empty then we stop with a proof or one-world falsifying model.
Otherwise OX = {01, ...,0p,} and we continue with:

3.. (for i = 1,2,...,n) apply successively (= 0) to Oyp;, then (O =)
to all elements of OIT and then repeat stage 1. Again we stop if all leaves
are axiomatic or continue with Oy .

Each time in every nonaxiomatic leaf the number of boxed formulae in
the succedent is diminished by 1. This way after the last round (i.e. applied
to Oy, ), if we got some nonaxiomatic leaves they have only atoms on both
sides and OIT in the antecedent. Note that in every substage 3.0 (0 =) is
applied to all elements of [JII and, since elements of II are 0-formulas, by
repetition of stage 1 we finally obtain all atoms generated from II. Hence
we can treat all such leaves as atomic even if (II is nonempty.

Two examples may help to grasp the idea of how the procedure works.
First, an example of a proof:

U=p, Ug = O-p, 00p

(?ng O-p,0q = O—-p v OOp
o) O-p,0¢ = O(-p v Op)
(h =) D3p.Or= O(=p Vv Op) Op=0-p.0p
o O0-p AOg = O(=p V Op) Op = O-p, O0p ((;x )v)
O(0-pAqg) = O(—p Vv O O U=-p v OO
(o) P he) = 0wV Do = Opvih )

00@-pAgq)=0O(-pvOp)  Op=O(-pVDOp)
O0(@O-pAq) vVOp = O(-pVOp)
OB@-pAq) Vp) = O(=pVOp)
Since a root-sequent is a reduced M-sequent we start with performance

of stage 2. Also stage 3 is not needed since both branches finish with axioms
already at stage 2.

(V=

~—

(@Ov)

In the second example we demonstrate a disproof realised in a depth-
first manner, always exploring the leftmost branch first. Since a root-
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sequent is already reduced M-sequent we start with stage 2 and finish with
axiomatic sequent on the leftmost leaf.

O(p — q) = 0,00 — q)

—0O(p — ¢),0(p — q) = Og
O0-0(p —¢),0p —q) =0  Op— q),0-0O-g=0Og

O-0(p — ¢) vV O-0-¢,0(p — q) = Oq

O-0(p — ¢) v O-0-¢ = -0O(p — ¢),0q
O-0(p — ¢) vO-O-qg = O0-0O(p — q),0q
O-0(p — ¢) vO-O-¢ = 0O0-O(p — q) Vg
O-0(p — ¢) VO-0-¢ = O(-0(p — q) V q)
O-0O(p — ¢) v O-O-q = O0(p — q) — q)
O(-0(p — q) V-0-q) = O00(p — q) — q)
DO(p — q) — ~O-q) = 0(O(p — q) — q)

Now we continue with the right branch and obtain the following tree:

(==)
(O-0)

(V=)

Op—q,¢=p Dp—q,9=
(=~ O —q),p—q¢,9=
(O =) O —q),p = q=—q
(=0 O — q) = ~q
(=) O(p — q) = O-q¢,q,p Sy

O =) O — q),p — q=0-q,q

(=0) O(p — q) = U=q,q

(=) O(p — q) = O=q,0g,p Sy
O(p — q),p — ¢ = 0O-q,0q
O(p — q) = U~q,Uq
O(p — q), "U~q = Uq
O — ¢),0-0-¢g = Uq

(==)

@O =)

(==)
(O-0)

where S7 denotes ¢,0(p — ¢q) = O—q,q and Sy denotes ¢,d(p — ¢q) =
O—q,0q. A tree shows how after performing stage 2 we realize also stages
3.0 (below the first branching), 3.1 (above the first branching) and 3.2
(above the second branching) interleaved with repetitions of stage 1. Both
leaves on the left are not axiomatic and the only boxed formula in their
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antecedents was already dealt with by means of (O =) in this substage,
hence we can stop and build a 3-world falsifying model for a root-sequent.

The procedure yields decidability of S5 and completeness of this SC.
The former is a consequence of subformula-property of all rules.

Let us sketch a completeness proof. We assume that ¥ I' = A and
show that there is a model falsifying this sequent.

Let us consider a completed tree for I' = A with at least one open
branch B. We assume that all stages were realised in the process of
construction of this branch. Otherwise, (if it finished with nonaxiomatic
atomic sequent in stage 1) we are done classically — with one-world model.
We divide this branch into n + 1 segments. The first segment starts
with reduced 1-sequent I'',IT = A’ T, ..., Oy, obtained as an input
of stage 2 and ends with the first application of (= ) (counting up-
wards). Thus the last element of this segment is also a reduced 1-sequent
I, 000 = A”,Ogs,...,0p, being an input of stage 3.0. (it is possible
that there are no modal formulas in the succedent and we finish in stage
3.0 — again one-world model is enough). The next segment starts with
O = ¢1,0¢,,...,0p, and ends with the second application of (= 0O).
Similarly for the other segments with the last one ending with nonaxiomatic
leaf having no modal formulas in the succedent.

This way we divide our open branch into segments corresponding to
succesive applications of (= [). For each segment ¢ we define an ordered
pair (I';, A;) such that I'; and A; are unions of all formulas occuring respec-
tively in the antecedents, and in the succedents of all sequents from segment
i. One may easily check that each (T';,A;) is consistent, i.e. T; NA; = 0,
and downward saturated in the following sense:

1. if =p € Ty, then ¢ € A;
if ~p € Ay, then p €T
if oAy ey, then p €Ty and ¢ € T
if(p/\we A, thencpEAi OI"(/JEA,L‘
lfgo\/?ﬁEF“ thencpel“i orp el
if oV e Ay, then p € A; and ¢ € A
if o > ey, then p e A;or €T
lng—)’(/)EA“ thengoEFi and ¥ € A;

@ NS otk N

This is secured by successive realizations of stage 1 inside each segment.
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Now we can define a falsifying model 9tz containing n+1 worlds corre-
sponding to segments of 3. Thus the first segment ending with the lowest
application of (= O) corresponds to wy, whereas each segment between ith
and 7 + 1 application of (= O) corresponds to the world w; of a falsifying
model. Valuation is defined for each atom p: V(p) = {w; : p € T';}.

One may easily prove:

LEMMA 5 (Truth-lemma). For each (I';, A;):

o if p €Ty, then Mp,w; F p;

o if p € A;, then Mp, w;, ¥ p.

For boolean formulas it follows from downward saturation. For 1-modal
formula [y in I'; we must show that 1) is in every 'y, 0 < k < n and this is
guaranteed by the first phase of stages 3.0 — 3.n. For 1-modal formula Cy
in A; we must show that there is some Ay such that ¢ € Ag. This is also
secured by construction of the procedure since each Ly, has a segment 4
with ¢; € A;. Hence My is S5-model falsifying IV, O = A’ Oy, ..., Oy,
in wp since IV UOI C Ty and A’ U {Opy,...,0p,} € Ap. Consequently,
also I' = A is falsified by wy since all rules applied in stage 1 and 2 were
invertible. Thus we obtain:

THEOREM 2 (Completeness). If =T'= A, then FT' = A

4. Comparison

It may be instructive to compare our solution with some other cut-free SC
for S5 based on ordinary Gentzen calculus. They may be roughly divided
into such systems for which cut elimination (of some sort) was proved but
which are not necessarily good for proof search, and such systems which
yield a decision procedure but it is difficult to prove for them cut elimination
constructively.

Ohnishi and Matsumoto provided the first SC for S5. They have used
as a basis Gentzen’s LK which operates on sequents built from finite lists
of formulas so they have used additionaly structural rules of weakening,
contraction and permutation. For [J they introduced the following rules:

p,'= A Or'= 0OA, ¢
=) o= a =) arsoA, e

instead of our contraction- and weakening-absorbing rules. The following
proof of B shows that cut is indispensable in this formalization of S5.
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Up = Up
(= 0) = —Up,Up p=p (
= U-0p,Up Up=p
= O=UOp,p
O S
= —p — U=0p

O=)

Actually there are two solutions in Ohnishi and Matsumoto [21, 22] to
the problem. One is based on the same idea of using only modal 1-formulas.
There is no procedure for reducing S5 M-formulas to their equivalents of
1-degree but it is shown that cut is eliminable in the calculus restricted to
1-formulas. The second solution is by translation based on the following:

THEOREM 3. tg5 ¢ iff bFga OO0

Since S4 has cut-free SC we obtain indirectly a decision procedure for
S5. Note that in fact it may be simplified since we know that in S4 F Uy
iff F ¢. So in order to provide a proof for ¢ in S5 it is enough to find
a cut-free proof of (0-y = in SC for S4. Here is a cut-free proof of B:

p=Dp
P, p =

p,~p = U-0p
p = —p— U=0p

Up = —p — O-Up
Op = O(—p — O-0p)

—0(—=p — O-0Op),0p =
O-0(-p — O-0p),0p =
DﬂD(—\p — D—\Dp) = -lp

O-0(—-p — O0-0Op) = O-0Op
O0-0(—p — O-0Op), —p = O-Op

O0-0(-p — O0-0Op) = —p — O-Op
DﬁD(ﬁp — DﬁD])) = D(ﬁp — DﬁDp)
=0(=p — O0-0p), O0-0(—p — O-0Op) =
O0-0(—p — O0-0Op), 0-0(—p — O-0p) =

O-0(-p — O-0p) =

(= =)
(= W)

(=)

O=)

(=0

(—=)

O=)

(=)

(=0)

(W =)
(=—)
(=0)
(~=)
O =)
(C=)
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Takano [33] proposed a system of Ohnishi and Matsumoto with analytic
form of cut, where cut-formula must be a subformula of other formulas in
both premises. He proved constructively that every proof in Ohnishi and
Matsumoto system may be transformed into a proof with only analytic cut
applications. In consequence we obtain subformula-property of the system.
Notice that a proof of B in Ohnishi and Matsumoto system satisfies this
restriction since cut is analytic there.

Fitting on the ground of tableau calculus provided even simpler solution
which may be transferred to SC. In [9] he introduced a destructive tableau
system for S5 with extra rule for addition of [J to formulas on the branch.
It is a consequence of his completeness proof that it is sufficient to apply
such a rule only once, at the very beginning. This observation is then
exploited in [10] for two variants of this system differing in the definition
of modalised formula. In both cases there is no extra rule for addition of
[J but only a requirement that when building a tableau for ¢ we start with
Oe (assumed to be false). Fitting’s solution may be easily simulated in
SC. One may use the following contraction-absorbing versions of Ohnishi
and Matsumoto rules:

o, 0p, ' A O'= OA, O, ¢
=) Toa="7" =) s oA op

or just use Ohnishi and Matsumoto system with contraction applied
before application of modal rules only when necessary. For such a system
we can prove the following weak adequacy result:

THEOREM 4. F ¢ iff F= O

A different solution is in Brauner [5] who provided a cut-free SC with
simple modal rules on the basis of translation from SC for monadic first-
order classical logic. His modal rules are the following:

o, I'= A I's A
=) dor==a =) /A s

Clearly, his (= 0O) cannot be applied with no side conditions. Fol-
lowing Prawitz’ [27] natural deduction system he stated them in terms of
dependancy of occurrences of formulas in a proof. (= ) may be correctly
applied if no occurrences of formulas in I'; A depend on the occurrence of
© in this proof. We direct a reader to Brauner [5] for explication of the
notion of dependency in his system. In contrast to other proposals here we
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obtain a direct constructive proof of cut elimination. On the other hand,
such a system does not allow for defining a proof-search yielding a deci-
sion procedure since the control of dependency is possible rather for ready
proof-trees.

It seems that the ideal system would allow both for constructive proof
of cut elimination and for defining a suitable terminating proof-procedure
which yields decidability. However, so far it appears possible only for non-
standard sequent calculi like labelled calculi (see e.g. Negri [20]) or hyper-
sequent calculi for S5 which offer substantially enriched formal apparatus.
In fact, recently Lellman and Patinson [18] provided impossibility results
which imply that it is not possible to obtain a standard SC for S5 that
admits standard techniques of proving cut elimination. It seems that an-
alytic proof-search procedures may be the only possible solution for cut
elimination problem in this framework.
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