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INTERPOLATION IN NORMAL EXTENSIONS

OF THE BROUWER LOGIC

Abstract

The Craig interpolation property and interpolation property for deducibility are

considered for special kind of normal extensions of the Brouwer logic.
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1. Introduction

In this paper we continue research on modal logics with and without the
interpolation property within the family of normal extensions of Brouwer
logic. The Brouwer logic is defined as follows: KTB := K⊕ T ⊕B where:

T := �p→ p

B := p→ �♦p

By a normal extension we mean a logic which is closed under the rules of
modus ponens (MP), substitution and the Gödel rule of necessitation (RN).
The Brouwer logic KTB is called to be non-transitive as it is characterized
by the class of reflexive and symmetric (admitting non-transitive) frames.

In the paper [9] a class of logics without interpolation is described. The
described logics are weakly transitive. In this paper we present some re-
sults for non-transitive logics determined by reflexive and symmetric Kripke
frames being chains of points. So, we shall study the Brouwerian modal
logic KTB.Alt(3) := KTB⊕ alt3 where

alt3 := �p ∨�(p→ q) ∨�((p ∧ q)→ r) ∨�((p ∧ q ∧ r)→ s).
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Let us emphasize that the logic KTB.Alt(3) is complete with respect
to the class of reflexive and symmetric Kripke frames (possibly infinite)
being chains of points.

Theorem 1. [Byrd and Ullrich, 1977; Byrd, 1978] Every normal modal
logic which is a proper extension of KTB.Alt(3) has the finite model prop-
erty and is finitely axiomatizable (and hence - decidable).

It is easily seen by the above theorem that the cardinality of the class
NEXT (KTB.Alt(3)) is only countably infinite.

We may also consider logics determined by reflexive and symmetric
Kripke frames with a larger degree of branching. The axiom (alt3) is a
special case of more general axiom (altn), n ≥ 3:

altn := �p1 ∨�(p1 → p2) ∨ ... ∨�((p1 ∧ ... ∧ pn)→ pn+1).

In contrast to NEXT (KTB.Alt(3)), the family of logics
NEXT (KTB.Alt(4)) := KTB⊕ alt4 is uncountably infinite, see [10].

2. Preliminaries

Let us recall some definitions. The symbol V ar(α) means the set of all
propositional variables of the formula α.

Definition 1. A logic L has the Craig interpolation property (CIP) if for
every implication α → β in L, there exists a formula γ (interpolant for
α→ β in L) such that

α→ γ ∈ L and γ → β ∈ L

and V ar(γ) ⊆ V ar(α) ∩ V ar(β).

The weaker notion of interpolation for deducibility is defined as follows:

Definition 2. A logic L has interpolation for deducibility (IPD) if for any
α and β the condition α ⊢L β implies that there exists a formula γ such
that

α ⊢L γ and γ ⊢L β

V ar(γ) ⊆ V ar(α) ∩ V ar(β).

It is a logical folklore that (CIP) together with (MP) and deduction
theorem implies (IPD). It is also known that K, T, K4 and S4 have (CIP),
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see Gabbay [6]. Also the logics from NEXT (S4) are well characterized as
regards interpolation (see [14], also [4], p.462-463). It is also known that S5
has (CIP). The last fact can be proven by applying a very general method
of construction of inseparable tableaux (see i.e. [4], p. 446-449). The same
method can be applied in the case of KTB. Therefore, without getting
into details, we get:

Theorem 2. The logic KTB has (CIP).

The method of construction of inseparable tableaux is not applicable in
the case ofKTB.Alt(3) and its normal extensions. The following questions
arise:

Question 1. Does the logic KTB.Alt(3) has (CIP) or (IDP)?

Question 2. Which logic from the family NEXT (KTB.Alt(3)) has (CIP)
or (IDP)?

We shall answer question 1 in section 3, whereas question 2 in section 4.
In the second case, our approach is purely semantic. We shall consider log-
ics determined by class of Kripke frames K. Formally, the logic determined
by K is defined as follows:

L(K) := {α ∈ Form : F |= α for each F ∈ K} .

Note that the class K may consist of one frame only.
The properties (CIP) and (IPD) have an appropriate algebraic charac-

terization, (see [14], [5]). The symbol V (L) denotes the variety of algebras
characterizing the logic L.

Theorem 3. For any logic L ∈ NEXT (K) the following are equivalent:

• L possesses (CIP),

• V (L) has the superamalgamation property.

Theorem 4. For any logic L ∈ NEXT (K) the following are equivalent:

• L possesses (IPD),

• V (L) has the amalgamation property.

By theory of duality between finite Kripke frames and finite modal
algebras, the superamalgamation property and amalgamation property is
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transformed into appropriate properties (APK) and (SAPK) for class K of
Kripke frames. We recall the notion of p-morphism first.

Definition 3. Let F1 := 〈W1, R1〉 and F2 := 〈W2, R2〉 be Kripke frames.
A map f : W1 → W2 is a p-morphism from F1 to F2, if it satisfies the
following conditions:

(p1) f maps W1 onto W2,

(p2) for all x, y ∈W1, xR1y implies f(x)R2f(y),

(p3) for each x ∈W1 and for each a ∈W2, if f(x)R2a then

there exists y ∈W1 such that xR1y and f(y) = a.

It is said that the frame F1 is reducible to F2 or that the frame F2 is a

p-morphic reduct of F1.

A reduction f of F1 to F2 is called a reduction of a model M1 = 〈F1, V1〉
to a model M2 = 〈F2, V2〉 if, for every variable p and every point x in F :

(M1, x) |= p iff (M2, f(x)) |= p.

Second, we give the definitions of (APK) and (SAPK) for frames.

Definition 4. For any F0, F1 and F2 in class K and for any p-morphism
f1 : F1 → F0 and f2 : F2 → F0 there exist F in K and p-morphisms
g1 : F→ F1 and g2 : F→ F2 such that f1 ◦ g1 = f2 ◦ g2 (see Figure 1).

Superamalgamation property for frames except (APK) requires the ad-
ditional condition (SAPK):

∀x∈F1
∀y∈F2

[f1(x) = f2(y) ⇒ ∃z∈Fg1(z) = x ∧ g2(z) = y].
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Figure 1.
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3. Interpolation of KTB.Alt(3)

In this section we shall prove that the logic KTB.Alt(3) does not have
(CIP). We define the suitable formula α→ β as follows:

α := ♦(p ∧ q) ∧ ♦(p ∧ ¬q),

β := [♦(¬p ∧ r) ∧ ♦(¬p ∧ ¬r)]→ ⊥.

One may see that V ar(α) ∩ V ar(β) = {p}. First, we prove that

Lemma 1. The formula α→ β is a theorem of KTB.Alt(3).

Proof: Suppose, on the contrary, that α → β 6∈ KTB.Alt(3). There
is some reflexive, symmetric and linear Kripke frame F = 〈W,R〉, a point
x0 ∈W and a valuation V , such that x0 6|=V α→ β. Then

x0 |=V α (3.1)

x0 6|=V β. (3.2)

From (3.1) and (3.2) we get:

x0 |=V ♦(p ∧ q) ∧ ♦(p ∧ ¬q), (3.3)

x0 |=V ♦(¬p ∧ r) ∧ ♦(¬p ∧ ¬r). (3.4)

Ten we get:

x0 |=V ♦(p ∧ q), (3.5)

x0 |=V ♦(p ∧ ¬q), (3.6)

x0 |=V ♦(¬p ∧ r), (3.7)

x0 |=V ♦(¬p ∧ ¬r). (3.8)

From (3.5)-(3.8) we conclude that there are four points xi ∈ W , i :=
1, ..., 4 such that x0Rxi, and:

x1 |=V p ∧ q, x2 |=V p ∧ ¬q, x3 |=V ¬p ∧ r, x4 |=V ¬p ∧ ¬r,

and we conclude that xi 6= xj if i 6= j for i, j := 1, ..., 4. Since the relation
R is reflexive then we allow that xi = x0 for some i. We have constructed
a model in which one point x0 sees at least three others (excluding itself).
Hence we get a contradiction with the axiom (alt3).

Second, we prove that there is no interpolant for α→ β.
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Lemma 2. For the defined above formula α → β there is no formula γ
such that V ar(γ) ⊂ V ar(α) ∩ V ar(β) = {p}, α → γ ∈ KTB.Alt(3) and
γ → β ∈ KTB.Alt(3).

Proof: Suppose, on the contrary, that there is a formula γ, written in one
variable p, such that α → γ and γ → β are theorems KTB.Alt(3). Then
in each reflexive, symmetric and linear Kripke frame F = 〈W,R〉, at any
point x ∈W and for all valuations Vj we get:

x |=Vj
α→ γ, and x |=Vj

γ → β .

Let F = 〈Z, R〉, where Z - set of integers, and R is defined in the
following way: nRm iff |n−m| ≤ 1.

Let us consider all valuations V such that 0 |=V α. Then four possible
situations may hold.

1. V (p) ⊃ {−1, 0, 1} or

2. V (p) ⊃ {−1, 0} and 1 6∈ V (p) or

3. V (p) ⊃ {0, 1} and −1 6∈ V (p) or

4. V (p) ⊃ {−1, 1} and 0 6∈ V (p).

In all these situations the formula γ must be true at the point 0. We
conclude that 0 |=V γ if V fulfils one of the conditions (1)-(4). Since
0 |=V γ → β then for these valuations V we also get 0 |=V β.

Let us consider the case (4). Without loosing generality we may take
V1 such that V1(p) = {−1, 1} and V1(α) = {0}, and V1(γ) ⊃ {0}.

On the other side if β is false for some valuation then γ is false either.
β may be falsified at the point 0, for example, for the following valuation
V2: V2(p) = {−2, 1}. Then V2(γ) 6⊃ {0}.

We restrict ourselves to formulas of one variable p. In this way we have
defined two different models M1 := 〈Z, R, V1〉 and M2 := 〈Z, R, V2〉.

There are two different p-morphisms for these models: f1(k) = |k| for
all k ∈ Z and f2(−k− 1) = f2(k) = k for k ≥ 0. We see that in the images
f1(M1) and f2(M2) the valuations V1 and V2 of variable p will be change
as follows: V ∗

1 (p) = {1} and V ∗

2 (p) = {1} what means that, in fact, they
are identical.

Since p-morphism for models preserves the truth of formulas then we
get V ∗

1 (γ) ⊃ {0} as well as V
∗

2 (γ) 6⊃ {0}. This is a contradiction. Then the
interpolant γ for α→ β does not exist.
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From Lemmas 1 and 2 we get

Theorem 5. The logic KTB.Alt(3) does not have (CIP).

One may ask a question if the above counterexample can be applied
to show that KTB.Alt(3) does not have (IPD). We shall leave this as an
open question.

4. Interpolation of tabular logics from

NEXT (KTB.Alt(3))

It occurred that there is an important connection between (CIP) and
Halldén completeness of modal logics. So, we recall definition of the second
notion.

Definition 5. A logic L is Halldén complete if

ϕ ∨ ψ ∈ L implies ϕ ∈ L or ψ ∈ L

for all ϕ and ψ containing no common variables.

Also, we need to recall the definition of the Post completeness for logic.

Definition 6. A logic L is said to be Post complete if it is consistent and
has no proper consistent extension.

One may notice that each logic from NEXT (KTB) has only one Post
complete extension; namely it is the trivial logic Triv = K4⊕�p↔ p.

An important connection between (CIP) and Halldén completeness is
given by G. F. Schumm in [16] in the following lemma:

Lemma 3. If L has only one Post-complete extension and is Halldén-incom-
plete, then interpolation fails in L.

The above lemma concerns non-normal modal logics. They are logics
axiomatized without the rule (RN). Semantically, they are determined by
Kripke frames with distinguished points (the so-called unnormal worlds).
However we shall consider special kind of Kripke frames in which the choice
of distinguished points is completely unimportant. Our key tool to recog-
nize logics with interpolation is a recognition of Halldén complete modal
logics and the following lemma due to van Benthem and Humberstone
from [1].
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Lemma 4. If a modal logic L is determined by one Kripke frame, which is
homogeneous, then L is Halldén complete.

Definition 7. A Kripke frame F := 〈W,R〉 is homogeneous if for any
x, y ∈W there exists an automorphism f of 〈W,R〉 with f(x) = y.

In the paper [11] it is proven that

Theorem 6. Let F := 〈W,R〉 be KTB-Kripke frame, which is finite and
connected. Logic L(F) is Halldén complete iff the frame F is homogeneous.

Defining Halldén complete logics, we are bounded by another theorem
due to Lemmon [13]. For non-normal modal logics, the theorem is an equiv-
alence. For normal extensions it has the form of implication only. Following
Lemmon we say, that two logics L1, L2 ∈ NEXT (L) are incomparable, if
L1 6⊂ L2 and L2 6⊂ L1.

Theorem 7. Let L1, L2 ∈ NEXT (L) be two incomparable logics. Then
the logic L0 = L1 ∩ L2 is Halldén incomplete.

From Theorems 6 and 7 we conclude:

Corollary 1. A Kripke complete and tabular logic from NEXT (KTB),
which is Halldén complete must be determined by one connected and homo-
geneous Kripke frame.

In paper [11] we have described a class of Halldén complete logics within
the family of NEXT (KTB.Alt(3)). They are determined by so-called
circular frames. Formally, we define:

Definition 8. A circular frame Cn := 〈Wn, Rn〉, n ≥ 3 is defined as
follows:

Wn := {x1, x2, ..., xn},

Rn := {(xi, xj), i, j = 1, 2, ..., n, |i− j|[mod (n− 1)] ≤ 1}.

We also need a definition of a chain frame.

Definition 9. A chain frame Chn := 〈Wn, Rn〉, n ≥ 2 is defined as follows:

Wn := {x1, x2, ..., xn},

Rn := {(xi, xj), i, j = 1, 2, ..., n, |i− j| ≤ 1}.

We also add to the class of chain frames the one point frame ◦.

It is easy to notice that circular frames are the only non-trivial homo-
geneous Kripke frames characterizing logics from NEXT (KTB.Alt(3)).



Interpolation in Normal Extensions of the Brouwer Logic 179

So, we will study logics L(Cn), n ≥ 3 as well as two trivial cases L(◦)
and L(◦ − −◦) which are logics determined by one reflexive point or two
reflexive points being in symmetric relation, appropriately.

Theorem 8. The logics L(◦) and L(◦—◦) have (CIP).

Proof. We shall consider amalgamation and superamalgamation prop-
erties for frames.
Case 1. Logic L(◦). The one-element class of frames {◦} after closing under
p-morphisms does not change. So, we take as F0, F1, F2 and F, the same
frame ◦. All the needed p-morphisms are identities. Obviously, (SAPK)
also holds.
Case 2. Logic L(◦ − −◦). The one-element class of frames {◦ − −◦} after
closing under p-morphisms enlarges to {◦ − −◦, ◦}. Suppose we choose
as F0 the frame ◦, and as F1 and F2 twice the frame ◦ − −◦. Then the
p-morphisms f1 and f2 will glue ◦ − −◦ onto ◦. The needed frame F is
◦ − −◦ and the p-morphisms onto F1 and F2 are identities. Also (SAPK)
holds. For other choices the proofs are similarly trivial.

All the possible reductions for circular frames are described in [12].
Each circular frame C2n−1, n ≥ 2 is reducible to some chain frame Chn.
The p-morphism may be described as gluing ‘in half’ the circle, see [12],
Lemma 15. Further, each chain frame Ch2n−1 is reducible to the chain
frame Chn, again by gluing ‘in half’. A chain frame with an even number
of points Ch2n is reducible to both frames: Chn and Chn+1, see [12], Lemmas
13–14. We may conclude, by superposition of p-morphisms, that eventually
each circle frame is reducible to ◦ − −◦.

Lemma 5. The logic L(C3) does not have (IPD).

Proof. The one-element class of frames {C3} after closing under p-
morphisms enlarges to {C3, ◦−−◦, ◦}. We show that the condition (APK)
does not hold. We choose as follows: F1 := C3, and F2 := C3, and F0 :=
◦ − −◦. We have to call the elements of the considered frames. Hence:
F1 := 〈{a, b, c};R〉, F2 := 〈{a′, b′, c′};R〉, and F0 := 〈{α, β};R〉. In all
cases R is reflexive and symmetric (what, in fact, involves here being an
equivalence relation). As a frame F we have to choose C3. Let F :=
〈{x, y, z}, R〉. See Figure 2. The p-morphisms f1 and f2 are defined as
follows: f1(a) = f1(c) = β, f1(b) = α and f2(a

′) = f2(b
′) = α, f2(c

′) = β.
There exists only one p-morphism F → F1 up to renaming variables.

We define g1, for example, as follows g1(x) = a, g1(y) = b, g1(z) = c.
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Then x
g1
−→ a

f1
−→ β. Because only for c′ we have c′

f2
−→ β then we must

define g2(x) = c′ and we get (f1 ◦ g1)(x) = (f2 ◦ g2)(x).

So we try to define g2 for z. We have that z
g1
−→ c

f1
−→ β. Because only

for one element c′ we get f2(c
′) = β, then we have to define g2(z) = c′. But

then g2 is not a p-morphism. We get a contradiction.
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f1(a) = f1(c) = β, f1(b) = α

f2(a
′) = f2(b

′) = α, f2(c
′) = β

Let g1(x) = a, g1(y) = b, g1(z) = c

Then x
g1
−→ a

f1
−→ β

f2
←− c′

g2
←− x

Then z
g1
−→ c

f1
−→ β

f2
←− c′

g2
←− z

Hence g2 is not a p-morphism

Figure 2.

We shall similarly prove that

Lemma 6. No logic L(C2n−1) with n ≥ 3, has (IPD).

Proof. Instead of making the full proof, we provide it for n = 7, to
avoid a mess with indices.

First, we describe the class of possible reductions of C7. It is not
reducible to any other circle frame, but is reducible to Ch4 and then to
Ch2 := ◦ − −◦ and finally to ◦. So we chose the needed frames as follows:
F1 := C7, F2 := C7 and F0 := Ch4. Let F1 := 〈{x1, ..., x7};R〉, F2 :=
〈{x′1, ..., x

′

7};R〉 and F0 := 〈{a, b, c, d};R〉. The relation R is reflexive and
symmetric.
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We define the p-morphisms f1 : F1 → F0 and f2 : F2 → F0 as follows:

f1(x1) = d, f2(x
′

1) = f2(x
′

2) = d

f1(x2) = f1(x7) = c, f2(x
′

3) = f2(x
′

7) = c

f1(x3) = f1(x6) = b, f2(x
′

4) = f2(x
′

6) = b

f1(x4) = f1(x5) = a, f2(x
′

5) = a

Then as the frame F we have to take C7 and the p-morphism g1 : F→ F1

is a unique one up to renaming variables. Let F := 〈{y1, ..., y7};R〉 and
g1(yi) = xi for i := 1, ..., 7.

Then we get: y4
g1
−→ x4

f1
−→ a, x′5

f2
−→ a hence for g2 we must take:

g2(y4) = x′5 and we have (g1 ◦ f1)(y4) = (g2 ◦ f2)(y4). The we try to define

in the appropriate way g2 for y5. We have: y5
g1
−→ x5

f1
−→ a, also only for

x′5 we have x′5
f2
−→ a. So we must take g2(y5) = x′5. But then g2 is not a

p-morphism.
A quite analogous proof may be provided for other odd numbers, with

an analogous choice of frames F1 := C2n−1, F2 := C2n−1, F0 := Chn, with
n ≥ 3.

Lemma 7. No logic L(C2n) with n ≥ 2 has (IPD).

Proof. Instead of making the full proof, we provide it for n = 4, again
to avoid a mess with indexes. The one-element class of frames {C4} after
closing under p-morphisms enlarges to {C4,Ch3, ◦ − −◦, ◦}. We define a
counterexample for (APK). We choose as follows: F1 := C4, and F2 :=
Ch3, and F0 := ◦ − −◦. We call the elements of the considered frames.
Hence: F1 := 〈{a, b, c, d};R〉, F2 := 〈{a′, b′, c′};R〉, and F0 := 〈{α, β};R〉.
In all considered cases R is reflexive and symmetric. As a frame F we
have to choose C4. Let F := 〈{x, y, z, w};R〉. The p-morphisms f1 and
f2 are defined as follows: f1(a) = f1(d) = β, f1(b) = f1(c) = α and
f2(a

′) = f2(c
′) = α, f2(b

′) = β. There exists only one p-morphism F→ F1

up to renaming variables. We define g1, for example, as follows g1(x) =

a, g1(y) = b, g1(z) = c and g1(w) = d. We obtain x
g1
−→ a

f1
−→ β. Since

b′
f2
−→ β then we must define g2(x) = b′ and we get (f1◦g1)(x) = (f2◦g2)(x).

Then we consider another element w.

We have that w
g1
−→ d

f1
−→ β. Because only for one element b′ we

get f2(b
′) = β, then we have to define g2(w) = b′. But then g2 is not a

p-morphism. We get a contradiction. See Figure 3.
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A quite analogous proof may be provided for other even numbers, with
an analogous choice of frames F1 := C2n, F2 := Chn, F0 := Ch2, with n ≥ 3.

As a conclusion we obtain:

Corollary 2. No tabular logic from NEXT (KTB.Alt(3)) distinct from
L(◦) or L(◦ − −◦) has (IPD) (and (CIP)).
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g1(x) = a, g1(y) = b, g1(z) = c, g1(w) = d

Then x
g1
−→ a

f1
−→ β

f2
←− b′

g2
←− x

Then w
g1
−→ d

f1
−→ β

f2
←− b′

g2
←− w

Figure 3.

5. Problems

In the paper we prove many negative results on interpolation in the family
NEXT (KTB.Alt(3)). Our future work will concern interpolation within
NEXT (KTB.Alt(n)), for n ≥ 4. For each n ≥ 1, the logic KTB.Alt(n)
is complete with respect to the class of reflexive and symmetric Kripke
frames F such that each point in F sees at most n others (including itself).
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Looking for tabular logics with interpolation among
NEXT (KTB.Alt(n)) we have to consider homogeneous Kripke frames,
that are here, for example, Platonic and Archimedean solids. But not only.
The problem is very interesting; in fact describing p-morphisms in such
cases in not a trivial job. In some simple cases it seems to be easier. First,
we would like to prove that:

Conjecture 1. The logic determined by a reflexive and symmetric Kripke
frame having the structure of a Boolean cube has (IDP).

The logic determined by such a cube belongs to KTB.Alt(4). In the
area of logics determined by Kripke frames with a larger degree of branch-
ing, we also would like to show that

Conjecture 2. The logic determined by a reflexive and symmetric Kripke
frame having the structure of 2n-element Boolean cube, n ≥ 3, has (IDP).

Acknowledgement. The author is grateful to Piotr Wojtylak, who im-
proved the formula and the proofs in Section 3.
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