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1. INTRODUCTION 
 

Although observations of mycophagy (or fungivory) have been known from 

ancient times, studies of the phenomenon date back to the late 19th century, when 

naturalists have started observations of mammal mycophagy, spore dispersion of 

mycorrhizal fungi and its influence on forest life (Maser et al. 1978b; Maser, Maser 

1988a; Luoma et al. 2003). Mammalian mycophagy on mycorrhizal hypogeous fungi 

and its significance for forest ecosystems is a subject of many documented studies 

throughout Europe, the Americas and Australia (Maser et al. 1978a; Claridge et al. 

1999). Due to the variety of relationships between the organisms involved, this topic 

might be analysed from many points of view, from forest ecology to animal physiology 

(Johnson 1996; Claridge, Lindermayer 1998). First studies on this matter were 

conducted in Great Britain and subsequently in the United States. On this basis 

scientists formulated a hypothesis that fungal spores pass through the animal’s digestive 

tract unchanged. At the beginning of the 20th century, there have already been 

conducted studies on rodent behaviour. It has been speculated that mushrooms, 

especially hypogeous fungi, are an important element in rodent diet (Luoma et al. 

2003). 

In Poland research on mammalian mycophagy on hypogeous fungi has been 

popularised during participation of Polish scientists in the International Biological 

Programme (IBP). The Programme promoting international scientific cooperation, had a 

enormous impact on development and stimulation of ecological research in Poland. IBP 

was carried since 1964 to 1973, but some studies were conducted as early as 1959. The 

studies conducted within the IBP were focused on productivity of terrestrial 

communities in particular and on relationships and interactions between organisms 

(Andrzejewska 2004). A part of IBP were the zoological studies of Drożdż (1966, 

1968), who examined food habits of the bank voles Myodes (Clethrionomys) glareolus 

and yellow-necked mice Apodemus flavicollis in Ojców National Park. Drożdż found 

fungal spores in stomachs of bank voles, which led him to the hypothesis that fungi can 

be an important component of animal diet. Taxonomical studies of the gathered material 

conducted in cooperation with mycologists led to identification of several species of 

hypogeous fungi, inter alia the spores of the valued Tuber aestivum, this way 

confirming its occurrence in Poland. 
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In later years, mammalian mycophagy was studied in regards to wild boars Sus 

scrofa in Kurpiowska Forest by Genov (1981, 1982), who found spores of Elaphomyces 

both in stomachs and faeces of studied animals. Ławrynowicz et al. (2006) also 

searched for hypogeous fungi in places rooted by wild boars in Kurpiowska Forest. 

They confirmed that Elaphomyces occurs in rooted places and brought forth the 

hypothesis, that wild boars while actively searching for hypogeous fungi enable the 

development of sporocarps by rooting the ground and allowing water access to the soil 

where the mycelium is present. The study has led to the conclusion, that relationships 

between animals and fungi exceed trophy and dispersion aspects, and are far more 

important for the ecosystem as a whole. 

By feeding on hypogeous fruit bodies animals take part in spore dispersion in 

one or more of the following ways (Cork, Kenagy 1989; Johnson 1996; Trappe, 

Claridge 2005; Trappe et al. 2009): 

1) by releasing spores into the air through digging up and opening the 

sporocarp; 

2) by consumption and spreading spores in their faeces; 

3) by carrying the spores on the body surface after encountering a over-ripped 

fruit body. 

Many animals can be described as mycophagous and use fungi as a food source 

to various degrees. Describing these degrees, Claridge, Trappe (2005), distinguished 

four types of mycophages: 

1) obligatory mycophages - feeding wholly or in majority on fungi; 

2) preferable mycophages - actively searching out fruit bodies and only 

seasonally feeding on a different food source; 

3) opportunistic mycophages - feeding on mushrooms when this food source 

is available; 

4) accidental mycophages - feeding on fungi while searching for a different 

food source. 

Among mammals most common are opportunistic or accidental mycophagy 

with rare cases of preferential mycophagy. Most species of mycophagous mammals 

originate from the families Sciuridae (squirrels), Cricetidae (hamsters and voles) and 

Geomyidae (gophers). Larger mammalian mycophages originate from families Cervidae 

(deers) and Suidae (boars and pigs). Further examples are the families Zapodinae 

(jumping mice), Phascolomidae (wambats), Macropodidae (kangaroos and walabies) 
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and Leporidae (hares) (Whitaker 1962; Fogel, Trappe 1978; Maser et al. 1978a; Maser 

et al. 1988; Taylor 1992; Taylor et al. 2009). Fungal spores are also found in stomach 

contents and faeces of predatory mammals, due to their consumption of mycophagous 

prey. This phenomenon is called a secondary mycophagy, and can also contribute do 

spore dispersion. Secondary mycophages can be found amongst small mammals like the 

Soricidae (shrews) (Whitaker 1962; Fogel, Trappe 1978; Maser et al. 1978a; Rhodes 

1986; Kataržytė, Kutorga 2011), and larger predators like bobcats (Nussbaum Maser 

1975). Mycophagy was also observed among primates (Harrison 1984; Hanson et al. 

2003; Hilario, Ferrari 2011; Sawada et al. 2014). 

The aim of this study is to examine the significance of hypogeous fungi in 

diet of rodents in the forest ecosystem of Central Poland. The study will verify the 

hypothesis that hypogeous fungi are an important component of rodent diet and that 

mycophagy plays a significant role in the forest ecosystem. For this purpose, the Author 

examined the occurrence of spores in faecal samples from two species of rodents: bank 

vole Myodes glareolus and yellow-necked mouse Apodemus flavicollis. Both species 

are widely spread in the Palaearctic and abundant in forest ecosystems and are reported 

as preferential or opportunistic mycophages (Kataržytė, Kutorga 2011; Schickmann et 

al. 2012). In particular the following issues were of a special concern: 

1) the diversity of fungal genera in faecal samples. 

2) difference in spore occurrence in samples obtained in three seasons: spring, 

summer and autumn; 

3) differences in spore occurrence in relation to study area, animal species and 

animal’s sex and age; 

This is the first study of this kind conducted in central Poland and is based on 

original field research and microscope analysis of samples gathered in the field. 
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2. STUDY AREA 
 

2.1. Overall description 

 

The study presented in this dissertation was carried out by live trapping two 

common rodent species: bank vole M. glareolus and yellow-necked mouse 

A. flavicollis. Two study plots were situated in two nature reserves: Spała (5131’37” N 

2008’42” E) and Konewka (5104’08” N 2009’26” E), located in Pilica Forest, in 

Łódzkie Voivodship in central Poland. The study was conducted between July 2013 and 

May 2015. 

Administratively, the study area is located in the Spała Forest Inspectorate, 

subordinate to the Regional Forestry Director in Łódź. Geographicaly, it is located in 

the Piotrkowska Plain, South Masovian Uplands in the central Poland Lowlands, a part 

of the North European Plain (Kondracki 1978). The study area is located within 

protected areas: the Spalski Landscape Park, a NATURA 2000 Refuge. 

Spalski Landscape Park (SLP) (see map 1) is a part of the “Spalsko-Rogowskie 

Forests” Promotional Complex. The Park was created in 1995 (Dz. Urz. Woj. 

Piotrkowskiego 1995.15.113). Its area is 12 875 ha with 57,4% covered by forests and 

35,6% by grasslands and rural areas. Water bodies occupy 2,7% of the area. The buffer 

zone is 23 192 ha, with 63,2% covered by forests, 32,3% by rural areas, and the 

remaining 4,5% are invested areas and water bodies (Burzyński et al. 1998). South part 

of the SLP is a NATURA 2000 Refuge PLH100003 “Lasy Spalskie”. Its area is 2016,4 

ha. Through the SLP and the NATURA Refuge runs the Pilica river, which also runs 

through the centre of the Spała nature reserve (Kurowski et al. 2013). The river is a 

unregulated, flowing in its natural riverbed with multiple oxbows, islands, and shoals. 

Its banks are sandy and accessible. The mean annual flow of Pilica in Tomaszów 

Mazowiecki is ca. 25 m3/s. The second major water body near the study plots is the 

river Gać, a left bank tributary of Pilica, flowing through the forests of Konewka and 

disgorging itself into Pilica in Spała (Baliński 1996). 

The Spała nature reserve (hereafter referred to as “Spała”) was established in 

1958 (M.P. 1958.81.467; Dz. Urz. Woj. Łódzkiego 2001.206.2976; Dz. Urz. Woj. 

Łódzkiego 2014.124) and its area is 106,75 ha. The vegetation of the reserve consists of 

a subcontinental oak-hornbeam forest Tilio-Carpinetum, ash-alder riparian forest 
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Fraxino-Alnetum and, in a smaller extend, willow-poplar riparian forest Salici-

Populetum. Within the tree stand, one can find 250-year old oaks Quercus spp. and 

Scots pines Pinus sylvestris ranging from 170 to 200 years old. The oldest oaks are up 

to 30 m high with trunk up to 5 meters in perimeter. Apart from oak and Scots pine in 

Pilica Forest there are: linden Tilia cordata, maple Acer platanoides, sycamore A. 

pseudoplatanus, hornbeam Carpinus betulus, beech Fagus sylvatica, fir Abies alba and 

spruce Picea abies. Many old trees, low density of the stand and high number of fallen 

and dead trees give the reserve the characteristics of a primeval forest (Baliński 1996). 

In the lower forest layers occur: Corydalis solida, Anemone nemorosa, Anemone 

ranunculoides, Asarum europaeum, Pulmonaria obscura, invasive Cardamine 

impatiens, Jacobaea paludosa, Ficaria verna, Gagea lutea, Stellaria nemorum, S. 

holostea, Melandrium rubrum, Hierochloë odorata (Wnuk, Olaczek 1999; Olaczek 

2013) and Hepatica nobilis (Kiedrzyński 2008). The study plot in Spała (maps 2, 3) was 

set on the south bank of Pilica river, about 1 km from human settlements, and along the 

dirt road through the forest from Spała to Inowłódz. 20 live traps were placed in a less 

dense plot on the right side of the road, in a forest consisting mainly of oak, birch and 

hornbeam and with a clearing in the center. 10 traps were placed on the left side in a 

dense Scots pine forest tree nursery. 

The Konewka nature reserve (hereafter referred to as “Konewka”) is located 

1 km north-east from Konewka village. The reserve occupies 99,31 ha and was created 

in 1987 (M. P. 1978.33.126; Dz. Urz. Woj. Łódzkiego 2001.206. 2976; Dz. Urz. Woj. 

Łódzkiego 2010.194.1566). It is a 170-270 year old oak forest with Scots pine. It is 

classified as a thermophilic oak forest Potentillo albae-Quercetum and subcontinental 

oak-hornbeam forest Tilio-Carpinetum. The former typically has a low density and a 

poorly developed understory (Baliński 1996). Among herbs appear: Potentilla alba, 

Ranunculus polyanthemos, Serratula tinctoria, Campanula persicifolia, Hypericum 

montanum and Vaccinium myrtillus (Wnuk and Olaczek 1999; Olaczek 2013), 

Aquilegia vulgaris, Convallaria majalis, Melittis melissophyllum, Lilium martagon, 

Frangula alnus, Primula veris, Viburnum opulus, Pseudoscleropodium purum and 

Carex montana (Kiedrzyński 2008). The study plot was located at the outskirts of 

Konewka (maps 4, 5), along the fence surrounding the Bunker Museum in Konewka 

village, with 20 live traps placed in a dense tree stand, mostly oak and birch. 
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Map 1. Map of the study area, with Spalski Landscape Park (yellow full colour), nature reserves (orange 

full colour) and NATURA 2000 areas (red shaded colour). Map sampled from Geoserwis GDOŚ 
website (geoserwis.gdos.gov.pl). 
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2.    3.  
Map 2. Map of the Spała reserve (red outline) (Rąkowski 2006). 
Map 3. Map of the Spała reserve (orange full colour) with the study plot (yellow dot) (sampled from 

Geoserwis GDOŚ website geoserwis.gdos.gov.pl) 
 

4.    5.  
Map 4. Map of Konewka reserve (red outline) (Rąkowski 2006). 
Map 5. Map presenting Konewka reserve (orange full colour) and the study plot (yellow dot) (sampled 

from Geoserwis GDOŚ website geoserwis.gdos.gov.pl). 
 

2.2. Mycological background 

 

Hypogeous fungi are prominent in most forest ecosystems (Molina et al. 2001). 

This ecological group is extremely difficult to find and study. Their mycelium can be 

widely spread underground in ectomycorrhizal association with trees. Fruit bodies are 

produced only in specific locations where biotic and abiotic conditions are met. 

Furthermore, the fungi can produce fruit bodies through decades, but they do not 
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produce them annually and some species only fruit every couple of years (Ławrynowicz 

1988). The mycological background for the study area is based on the documentation 

and literature provided by mycological, floristic, and vegetation studies in the 

Landscape Park and both nature reserves. 

The most frequently mentioned among those found in Spała and Konewka 

were the ascomycetes: Elaphomyces asperulus, E. muricatus, E. granulatus, Hydnotrya 

tulasnei and Genea hispidula (Ławrynowicz 1973, 1979, 1984, 1989, 1990), and in 

Konewka Pachyphloeus melanoxanthus, a species associated with Potentillo albae-

Quercetum community (Ławrynowicz, Grzesiak 2009). Worth mentioning are also 

species that can potentially occur in the Tilio-Carpinetum community: Choiromyces 

venosus, two species of Tuber, T. puberulum and T. borchii, and glomeromycetes 

Endogone/Glomus macrocarpa (Ławrynowicz 1973, 1979, 1984). 

In comparison to ascomycetes information on hypogeous basidiomycetes of the 

selected area is scarce. A preliminary checklist of Polish Basidiomycota is currently in 

preparation (Mleczko, Ławrynowicz unpublished data). Considering aforementioned 

unpublished data and the Checklist of Polish Larger Basidiomycetes (Wojewoda 2003) 

it is possible that fungi from genera Rhizopogon (R. nigriscens, R. obtextus, R. 

roseolus), Hymenogaster (H. tener), and Melanogaster (M. ambiguous, M. 

broomeianus, M. variegatus) also occur in the studied reserves. 

 

2.3. Weather conditions during sample gathering 

 

The climate of the area is more humid and colder than on the surrounding 

lowlands, due to a significant elevation of the South Masovian Uplands (Kondracki 

1978). The annual sum of rainfall in the study area is 644 mm and the mean annual 

temperature is 7,6C. The important factor responsible for the mild climate of this 

terrain are the large forest areas, mostly pine forests on permeable grounds (Baliński 

1996). 

The weather conditions during the trappings represent three studied seasons – 

spring, summer and autumn. The conditions taken into consideration were average, 

maximum and minimum temperature, relative humidity, rainfall, average and maximum 

wind speed, fog and storms. Data on weather condition were collected from Tutiempo 

web-base (en.tutiempo.net) for the nearest surveyed location – Sulejów (Table 1). 
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During the two years of the study, the weather conditions in given seasons 

were quite stable. In May, the average temperature ranged from 13,2 to 12,6 oC, the 

maximum temperature ranged from 18,9 to 17,9 oC and the minimum temperature    

7,8-7,5 oC. Respectively, the temperatures in July were: 19,3 – 20,0 oC, 25,7 – 26,3 oC 

and 12,5 – 14,4 oC, and in October: 9,8 – 9,5 oC, 15,1 – 15,0 , 4,6 – 5,2 oC. 

 
Table 1. Mean weather conditions: temperature (in OC) – average (T) maximum (TM) and minimum 

(Tm), relative humidity (H – in %), rainfall (PP in mm), average and maximum wind speed (V 
and VM in km/h), number of rainy days (RA), number of days with storms (TS) and number of 
days with fog (FG) (data collected from en.tutiempo.net for Sulejów). 

 
Date T TM Tm H PP V VM RA TS FG 

07.2013 19,3 25,7 12,5 69,7 1,1 10,5 19,2 9 3 0 

10.2013 9,8 15,1 4,6 82,1 0,3 10,8 18,5 11 0 13 

05.2014 13,2 18,9 7,8 75,9 5,2 11,8 21,0 19 7 5 

07.2014 20,0 26,3 14,4 74,9 4,5 9,4 18,3 16 14 1 

10.2014 9,5 15,0 5,2 86,8 1,2 89,5 15,9 10 0 13 

05.2015 12,6 17,9 7,5 71,0 1,2 10,4 17,2 6 0 1 

 

Between the years, the seasons varied in rainfall and storms, with seasons in 

2014 having more rainy and stormy days (May – 19 and 7 respectively, July – 16 and 

14, October – 10 rainy days and no storms) than in 2013 (July – 9 and 3, October 11 

rainy days and no storms) and 2015 (May – 6 rainy days and no storms). 

 

2.4. Soil analysis 

 

The geology of the SLP is diverse with Mesozoic structures next to Pleistocene 

accumulations and late Pleistocene and Holocene erosive forms. The outer layers of the 

Pilica river valley consist of middle-Jurassic lime-ferric sandstone in Inowłódz and 

upper-Jurassic limestone west of Inowłódz. The surface layer is covered by forms of 

glacier accumulation, constituting the highest hills. The landscape is flat with local 

elevations, mostly reaching 210-220 m a.s.l. The dominant feature of the landscape is 

a sandy outwash plain with large forest patches. The main watercourse of this region is 

river Pilica, with an artificial water reservoir Zalew Sulejowski located between 

Sulejów and Smardzewice. The Pilica floodplain is in many places sandy and dry, and 

its upper floodplain consists of sands and gravel. These make the terrain suited for 

forestry. The river valley has sandy alluvial soils, bog soils and patches of black soil. 
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Above the valley, there are lessivés, crypto-podzols and endoeutric cambisols (Baliński 

1996). 

A soil analysis was conducted in the study area (Mleczko, Ławrynowicz 

unpublished data). The material for the analysis was gathered in 2014 from 10 study 

plots in Spała and Konewka. The soils in the study area are acidic with mean pH in H2O 

being 4,75 and 5,40 in Spała and Konewka respectively. The content of calcium in mg 

per 100 g of soil was significantly higher in Konewka than in Spała. The mean values 

for results of soil analysis are presented in Table 2 and the results are detailed in 

Appendix 2, Table 1. 

 
Table 2. Mean values from soil analysis in the study area: pH in H2O, pH in KCl, percentage of organic 

compounds (N, C and organic matter) and K2O, P2O5, CaO, K, Na, Ca and Mg in mg per 100 g 
of soil. 

 

study 
plots 

pH in 
H2O 

pH in 
KCl 

org. 
N 

org. 
C 

org. 
mat 

K2O P2O5 CaO K Na Ca Mg 

Spała 4,75 3,82 0,35 5,99 10,25 6,54 8,00 33,18 3,04 1,67 23,70 1,88 

Konewka 5,40 14,34 0,21 3,62 6,28 13,87 15,24 73,92 9,34 2,48 52,80 3,20 
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3. MATERIALS AND METHODS 
 

3.1. Subject of the study 

 

As it was stated before, hypogeous fungi are a ecological, heterogeneous group 

which congregates various genera from Ascomycota (Elaphomycetales Pezizales), 

hypogeous ‘gasteromycetes’ from Basidiomycota (Rhizopogon, Hymenogaster, 

Gautieria, Melanogaster), and a few Glomeromycota (Glomus spp.). Some authors also 

include the genus Scleroderma, due to its morphological convergence with other 

hypogeous mushrooms (Castellano et al. 1989, Trappe et al. 2009). Though 

taxonomically distant from one another, groups of hypogeous fungi show features of 

convergent evolution in habitat adaptations, because they occupy a specific ecological 

niche, as mycorrhizal partners for plants, especially forest trees (Maser et al. 1978b; 

Ławrynowicz 1984; Maser, Maser 1988a; Luoma et al. 2003; Kirk et al. 2008; 

Hilszczańska et al. 2014). In fact, fungi with the hypogeous fruiting habit tend to 

dominate in mycorrhizal networks (Izzo et al. 2005). Most genera of hypogeous fungi 

can be directly related to epigeous genera, so the distinction between the two is not 

based on taxonomy. Hypogeous fungi include species which produce sporocarps 

underground, although some sporocarps can be found very close to the soil surface, 

partially submerged in the ground or in the leaf-litter (Ławrynowicz 1988; Pegler et al. 

1993). Unlike epigeous mushrooms their spores cannot be released into the air and their 

main way of dispersion is by animals, particularly by insects and mammals. In case of 

hypogeous Ascomycota, the asci have no opening mechanisms and remain closed until 

natural decay or digestion by animals (Fogel, Peck 1975; Fogel, Trappe 1978; Maser et 

al. 1978a; Maser et al. 1985). 

Hypogeous fruit bodies have mostly an unified structure. They form globose, 

subglobose or irregular sporocarps, with an inner spore-producing part called gleba, and 

a peridium consisting of an outer layer called cortex, and an inner peridium (Maser et al. 

1978a ; Ławrynowicz 1988, Pegler et al. 1993). The peridium is the most nutrient-rich 

part of the sporocarp. As the sporocarp matures, the powdery mass of spores called 

gleba fills the whole fruit body. Ripe carpophores produce characteristic aromas, typical 

for given species and detectable by animals which feed on them (Trappe, Maser 1976; 

Maser et al. 1978a; Maser et al. 1978b; Taylor 1992; Johnson 1996; Maser et all 2008). 
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Hypogeous fungi tend to occur in large numbers in places called “oasis” or 

“nests”, where many different species form mycorrhizae with trees. Fungi fruit 

throughout the year, depending on the species and environmental conditions, and some 

species can even fruit in early spring under melting snow, but most species fruit only in 

a specific part of the year (Fogel 1976, 1981; Maser, Maser 1988a; Trappe et al. 2009). 

Seasonal abundance of hypogeous fungi follow changes in temperature and 

precipitation (Fogel 1976, Ure, Maser 1982; Luoma et al. 2003). Although annual 

abundance of sporocarps differ from season to season, as a group, they provide a stable 

food source for animals throughout the year (Maser, Maser 1988a). 

The structure of the spores enables them to pass through the animal’s digestive 

tract with no alterations, and viable for further development outside the animal body 

(Trappe, Maser 1976; Maser et al. 1978b; Cork, Kenagy 1989; Claridge, Lindenmayer 

1998; Claridge et al. 1999; Trappe, Claridge 2005; Trappe et al. 2009). Inside the 

animal, spores are exposed to body temperature, enzyme treatment and microorganisms, 

all of which might increase their ability to germinate and form mycorrhiza (Fogel, 

Trappe 1978). Additionally, animal pellets contain nutritional material and nitrogen-

fixing bacteria, further enhancing fungal development (Li et al. 1986). 

 

3.2. Studied animals 

 

The bank vole M. glareolus (Schreber, 1780) (Wilson, Reeder 2005) is the 

most commonly spread rodent species in Poland. Its body length is 66-115 mm, tail: 35-

63 mm and the weigh of the animal is 10,1-38,9 g (voles captured during this study 

ranged in weigh from 13,0 g to 30,5 g). Eyes are big, ears round, visibly protruding. The 

scull is massive, snout is round and short. Fur is red on the back, grey on the sides to 

white on the belly side (Pucek 1984). 

The bank vole is a forest dwelling rodent, which occupies mixed and deciduous 

forests, parks, wooded river valleys and scrub-fields. It prefers dry and warm habitats. 

The individual territory ranges from 0,13 to 1,39 ha (Pucek 1984). The species is 

flexible in terms of habitat, adjusting to changing conditions (Ivanter 1975). 

Bank voles climb well but live mostly close to the ground. They build round 

nests in old, rotten tree stamps (Pucek 1984), between roots and dig shallow, 

underground corridors which lead into the nest. The corridors are usually 5-10 cm deep 

and up to 10 m long. They go along tree roots, under a layer of moss, forest bed or snow 
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just next to the ground, or in existing crevices in a more rocky terrain (Ivanter 1975). A 

separate corridor branches out from the main corridor, leading to a hidden chamber 

where voles bring up their young. The chambers are usually 15-20 cm deep, but can 

reach even to 60 cm deep (Sokolov 1981). Whether the animals are active during the 

day depends on the temperature. In dry and warm periods, voles are active all day and 

night, in winter, the night activity is shortened, and in summer, the animals are less 

active during hot days, but more active during the night (Ivanter 1975). 

The bank vole’s diet is highly diverse and changes depending on food 

availability (Górecki, Gębczyńska 1962; Gębczyńska 1976; Hanssen 1985a; Maser, 

Maser 1988b). Voles feed mostly on seeds and fruits, but also on green parts of plants 

and on other animals: insects and other invertebrates (Pucek 1984). They generally do 

not eat grass, with their main food being forbs and forb-like green vegetation (Hanssen 

1985a). Plant material contributes to 19-92% of the whole food intake, and animal food 

can contribute to 9-23% of the whole food intake, mostly in summer and winter 

(Sokolov 1981). Seeds are consumed often and in large quantities, and fungi are eaten 

when seeds are unavailable. Voles also have a high water consumption rate 

(Hanssen 1985a). 

During spring, bank voles consume mostly green parts of vegetation (68% of 

the whole intake), seeds (Gębczyńska 1976), and insects (Holišová, Obrtel 1979). 

Similar patterns occur in summer, although the amount of seeds increases (from 5 to 

11%). The amount of invertebrates consumed is also higher, with females consuming 

more animal food than males. In autumn green plant food makes up 38% of the whole 

intake, tree and herb seeds 40% and animal food 15%. The proportion holds through 

winter: green food - 38%, seeds - 56% and animal food - 6%. Bank voles also show 

a preference when eating green vegetation, depending on the developmental stage of 

a given plant (Gębczyńska 1976). 

Bank voles are considered preferential mycophages (Rhodes 1986). They 

consume fungi, both with above- and under-ground fruit bodies (Drożdż 1966). During 

summer and autumn, fungi can contribute up to 20% - 30% of the whole food intake 

(Ivanter 1975), however, it is difficult to estimate the percentage of the overall 

production of fungi in the given ecosystem that is available to these rodents and is 

consumed by them (Drożdż 1966). Depending on the environment, fungi may dominate 

the diet. This is most common in case of coniferous forests (Hanssen 1985a). In 

deciduous forests, vole diet is dominated by forbs, tree leaves and tree seeds 
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(Holišová, Obrtel 1979). In managed forests, voles eat less seeds and fungi are 

consumed more frequently (Holišová 1971). Fungal material generally dominates when 

the abundance of grass, forbs, seeds, and insects is low (Drożdż 1966; Holišová 1971; 

Hansson, Larsson 1978; Hanssen 1985a; Ure, Maser 1982).  

The yellow-necked mouse A. flavicollis (Melchior, 1834) is also associated 

with deciduous forests and found throughout Poland. It is bigger than the bank vole and 

of slightly different behaviour. It is 69-121 mm long, weighs 17-43 g (animals captured 

in this study weighted 12,0-46,5 g) and its tail measures 57-130 mm. The fur on the 

back is red-brown, belly distinctly white, with yellow spots on the breast area, 

sometimes creating a yellow collar. It inhabits old deciduous and mixed forests, 

blackberry and hazel thickets at clear-cuts. It prefers shaded and humid habitats (Pucek 

1984). 

The yellow-necked mouse is a good climber, active jumper and a good 

swimmer. It is mostly nocturnal and crediurnal (Nowak, Paradiso 1983). It builds its 

nests underground, under and between tree roots, in rocky crevices and in hollow trees. 

The species feeds on seeds, green parts of plants and animal food, mainly 

arthropods. (Nowak, Paradiso 1983; Pucek 1984,). Unlike the bank vole, the yellow-

necked mouse is less polyphagous, and eats mostly high-energy food (tree seeds and 

invertebrates) with less amount of fungal material in its diet 

(Górecki, Gębczyńska 1962; Drożdż 1966, 1968). Yellow-necked mice are more 

grainivores and seeds dominate in their diet throughout the year (Hansson 1985b). In 

spring yellow-necked mice consume high amounts of seeds, insects and green parts of 

plant. The quantities of seeds and insects then increase in summer, with plant material 

playing a marginal role in animal’s diet (Górecki, Gębczyńska 1962). In autumn and 

winter, mice feed on tree seeds (Górecki, Gębczyńska 1962; Drożdż 1966, 1968). 

The yellow-necked mouse is more aggressive and active than the bank vole. 

The mice are more often caught in live traps, as they penetrate them faster than the 

voles. Furthermore the vole will not return to a den which was taken over by the mouse, 

even when the mouse left (Sokolov 1981).  

 

3.3. Sample gathering and preparation for analysis 

 

The traps in both locations were set up approximately 5-10 meters apart, 

mostly in shaded and well covered spots. Every spot was assigned a number, 1-30 for 
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Spała and 1-20 for Konewka. Trappings were conducted in a sequence of a 4 to 5 days 

and nights in May (26-30 V 2014, 18-21 V 2015), July (5-11 VII 2013, 21-25 VII 2014) 

and October (14-18 X 2013, 13-16 X 2014). The traps were checked 3 times a day 

approximately every 6 hours: at sun rise, midday and late evening. The traps were left 

open through the night. A mixture of seeds, oat, sunflower and sesame was used as bait. 

Rodents were determined to the species level. After the capture, animals were 

weighed and their sex and age group (juvenile or adult) were determined for later 

comparisons. Also, the trap’s number was noted. The animals were marked with a red 

dot on the abdomen. For a dye, a water solution of red henna was used, due to its bright 

colour, long lasting and no toxic effects for the animals. After marking, the animal was 

released. A faecal sample was then taken from the live trap and placed in a 1,5 ml 

Eppendorf tube with 1 ml of 90% ethanol for preservation. The samples were labelled 

with a number of the animal caught in this particular trapping. 

In the laboratory, faecal samples were prepared for microscopic analysis. The 

preparation method was based on methods presented by Claridge, Lindermayer (1998), 

Colgan, Claridge (2002), Bertolino et al. (2004) and Kataržytė, Kutorga (2011). 

Each sample consisted of overall material gathered from one animal captured 

in a live trap. Samples were cleared of food remnants, dried and weighted with 

RADWAG WPE 30S weight (temperature range 50-140 oC, dt=2 oC, humidity 0,2-

100%, dw=0,1%). Next, each sample was crushed in a mortar and put in a 1,5 ml 

Eppendorf tube with 1 ml 90% ethanol. The tubes were then centrifuged using the 

Hettich Zentrufugen EBA 21 at speed of 15000 rounds per minute for 2,5 minutes. 

Approximately 0,1 ml of slurry was placed on the microscopic glass, along with a drop 

of Meltzer reagent, covered and placed under a microscope. Samples were examined 

using NIKON E200 light microscope under x600 magnification. Spores of hypogeous 

fungi which were found in samples were determined to genus level using identification 

keys: Błaszkowski (2012), Castellano et al. (1989), Hawker (1954), 

Ławrynowicz (1979, 1988), Pegler et al. (1993). Determination to a species level was 

preformed if the morphological characteristics enabled a certain identification. 

Spores observed under the microscope were photographed for documentation, 

using NIKON D90 Digital Camera. 

Spores were identified based on four traits: shape, size, colour and 

ornamentation. Size was measured by width and length of the spore. 
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After successful spore identification, a drop of slurry from each positive 

sample was put in Bürker slide with a drop of Meltzer reagent (aqueous solution of 

chloral hydrate, potassium iodide and iodine). For each sample, spores were counted in 

ten 0,04 mm2 grids of the Bürker slide. The number of spores used in the statistical 

analysis was estimated as the sum of spores counted in ten grids of the Bürker slide for 

each sample. At first the number of spores was calculated for the a ml of suspension in 

the Bürker slide using the appropriate formula, but the author later switched back to raw 

spore number (sum of spores in ten grids). This was due to calculation convenience, as 

the results of statistical testing on number of spores and number of spores per ml 

differed only in order of magnitude and not in statistical significance. 

 

3.4. Statistical methods 

 

Differences in temperature between seasons was tested with ANOVA I. 

Generalized linear model (GLM) with Poisson distribution and identity link function 

was used to describe the relationship between hypogeous fungi spores’ number, rodent 

species, sexes, age group (juvenile, adult), study plot (Spała and Konewka) and weather 

conditions. Weather conditions during and prior to the trappings were taken into 

account. In order to reduce the number of dimensions factor analysis with varimax 

normalized was performed, and two first components (PCA1 - mainly attributed to 

temperature and humidity and PCA2 - mainly attributed to rainfall and wind, see 

Appendix Table 1) were taken for further analysis. The model was built using the 

general linear methods: best subsets method, general custom designs, quick specs dialog 

and sigma-restricted parametrization. The sum of squares was counted using the 

regression method. The best fitting model was chosen using the Akaike information 

criterion (AIC). The interactions between rodent species, sexes and age were analysed 

using a cross model with a between effect. 

The GLM with Poisson distribution was also used to analyse if there was 

a connection between mean spore number and the trap’s distance from the road. The 

distance was presented in the following logarithmic-normal scale: 

1 – distance up to 1 m from the road; 

2 – distance up to 2 m from the road; 

3 – distance from 3 to 7 m from the road; 

4 – distance from 8 to 20 m from the road; 
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The border values of the scale were calculated using the formula – ek (with 

Euler’s constant e, and k being the next upper interval of the scale. The first category 

was separated to two (1-2) for better results. 

Assuming that in both animal populations there are two feeding strategies – 

foraging and not foraging on fungi – it can be presumed that individuals which search 

actively for sporocarps will not only have bigger diversity of spores in faecal samples 

but also will have more spores in them. Due to this samples with spores present in them 

were qualified into one of three classes: 

I class – low number of hypogeous and epigeous spores (1-30% of examined 

non-overlapping view areas) 

II class – medium number of hypogeous and epigeous spores (35-65% of 

examined non-overlapping view areas); 

III class – high number of hypogeous and epigeous spores (>70% of examined 

non-overlapping view areas). 

The numbers of hypogeous and epigeous spores were qualified separately. For 

convenience the classes are hereafter referred to as “first - third hypogeous class” and 

“first - third epigeous class”. Samples with no spores in them are referred to as “zero 

hypogeous class” and “zero epigeous class”. 

To see if there are differences in the spore number class among the animals 

species in study areas, a Pearson χ2 test was performed. Also, the number samples in 

each class of hypogeous and epigeous spores were compared and tested for correlation. 

Assuming that the presence of fungal spores in gathered samples is the 

expression of the abundance of sporocarps in animal diet, the information on the 

number of species and individual spores were used to count Shanon’s diversity index 

for each sample. The index was calculated according to the formula: 





S

i
ii ppH

1

)ln('  

H’ – Shanon’s diversity index, 

pi – proportion of the given taxon in the given sample, in relation to the number 

of all registered spores in the given sample, 

S – number of all identified taxa in all samples. 

In this analysis a variant of the index based on the natural logarithm was used 

(with entropy expressed in nats, not bits). In theory Shanon’s diversity index reaches 

values from 0 to ∞, but in practice of ecological studies it usually has values for 0 to 3-
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4. The growing value of Shanon’s index corresponds to the growing diversity of the 

environment. 

Based on Shanon’s diversity index, an effective taxa number was calculated, 

according to the formula: 
'HeE   

E – the effective number of species, 

e – Euler’s constant, 

H’ – Shanon’s diversity index. 

This value enables the practical interpretation of the calculated diversity, in 

accordance with the principle that a community (in this case a sample) of an effective 

number of taxa E, has an equal diversity to a community with real number E of 

equinumerous taxa. This description allows to extrapolate the evaluation of diversity to 

the samples of a zero number of identified taxa, through an assumption that in those 

samples, the effective number of taxa E = 0. 

The distribution of index values were tested for normality: Shapiro-Wilk test, 

Shapiro-Franca test, D’Agostino tests based on skewness, kurtosis and both moments 

(D’Agostino-Pearson test), Lillefors test, Cramer-von Mises test, Anderson-Darling test, 

Chi-squared test and a modification of data driven Neyman normality test. Distributions 

of index values for M. glareolus and A. flavicollis were analysed for monotonicity of 

kernel density estimation function, and for this purpose the first numerical derivative for 

both distributions was calculated. 

Preferences in animal diet were estimated using the indices for dominance, 

frequency and ecological importance (Kasprzak, Niedbała after Czachorowski 2006), 

according to three formulas: 

N

p
P

N

j ji
i
  1 ,

 

Pi – dominance index for ith taxon 

pi,j – proportion of spores of i taxon in the jth sample 

N – number of samples in the class for which the dominance index is calculated 

(I-III) 

N
NF i

i   

Fi – frequency index for ith taxon 

Ni – number of samples in which the given taxon was identified 
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N – number of samples in the class for which the dominance index is calculated 

(I-III) 

iii FPQ   

Qi – contribution index for ith taxon 

Pi – dominance index for ith taxon 

Fi – frequency index for ith taxon  

The size of spores observed under the microscope was noted for calculating the 

circularity index (length/width), descriptive statistics and ANOVA I testing for changes 

in spore size between seasons. 

Statistical analysis was done using Statistica 10.0 package and the R statistic 

package. Values of 95,00 % confidence interval (CI) and statistical significance p=0,05 

were applied in the analysis. 
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4. RESULTS 
 

4.1. Gathered samples 

 

Overall 247 samples were examined: 196 from yellow-necked mouse, and 

51 from bank vole. 166 samples were gathered from Spała (131 from yellow-necked 

mouse and 35 from bank vole), and 81 from Konewka (65 from yellow-necked mouse 

and 16 from bank vole). Detailed numbers of samples gathered are presented in Table 3. 

 
Table. 3. Overall samples gathered from Apodemus flavicollis and Myodes glareolus from Spała and 

Konewka reserves in years 2013-2015 in May, July and October. 
 

 Spała Konewka 

Animal MAY JULY OCTOBER MAY JULY OCTOBER 

A. falvicollis 32 47 52 15 26 24 

M. glareolus 5 23 7 3 10 3 

 

From the overall number of samples, spores of hypogeous fungi were found in 

94 samples (65 from yellow-necked mouse and 29 from bank vole) and in 35 samples 

more than one genus was found (in 22 samples from yellow-necked mouse and 

13 samples of bank vole). Spores of epigeous fungi were found in 235 samples and only 

9 samples no spores were detected. Details on the positive samples and spores found in 

them are shown in Tables 4 and 5. 
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Table. 4. Fungal genera found in samples gathered from Apodemus flavicollis and Myodes glareolus from Spała and Konewka reserves in years 2013-2015 in May, July and 

October. The presented number is the number of positive samples where the given genus was found. 
 

 MAY JULY OCTOBER 

 A. flavicollis M. glareolus A. flavicollis M. glareolus A. flavicollis M. glareolus 

 Spała Konewka Spała Konewka Spała Konewka Spała Konewka Spała Konewka Spała Konewka 

Elaphomyces 4 1 0 1 0 0 1 0 0 0 0 0 

Hydnotrya 2 1 0 0 1 3 1 1 2 0 0 1 

Pachyphloeus 0 0 0 0 0 0 0 0 0 0 0 1 

Genea 0 0 0 0 2 0 0 0 0 0 0 0 

Tuber 0 0 0 0 1 0 1 0 0 0 1 0 

Hymenogaster 3 2 0 0 4 6 0 1 1 1 0 0 

Melanogaster 0 0 1 0 5 2 0 0 1 0 0 0 

Rhizopogon 2 0 0 0 4 1 8 2 1 0 0 0 

Scleroderma 0 0 0 0 3 2 0 0 0 1 0 0 

Gautieria 0 0 0 0 2 0 0 0 1 0 0 0 

Glomus 0 0 1 0 3 0 6 1 0 1 1 0 

Endogone 0 0 0 0 0 1 0 0 1 0 0 0 
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Table. 5. The overall number of spores found in positive samples gathered from Apodemus flavicollis and Myodes glareolus from Spała and Konewka reserves in years 2013-

2015 in May, July and October, with N (the sum of spores in 10 squares of Bürker chamber per sample), and the percentage of the sum of all spores (625 - 100%) 
 

 MAY JULY OCTOBER 

 A. flavicollis M. glareolus A. flavicollis M. glareolus A. flavicollis M. glareolus 

 Spała 
(N; %) 

Konewka  
(N; P) 

Spała  
(N; P) 

Konewka  
(N; P) 

Spała  
(N; P) 

Konewka  
(N; P) 

Spała  
(N; P) 

Konewka  
(N; P) 

Spała  
(N; P) 

Konewka  
(N; P) 

Spała  
(N; P) 

Konewka  
(N; P) 

Elaphomyces 23; 3,7 14; 2,2 0; 0,0 1; 0,2 0; 0,0 0; 0,0 11; 1,8 0; 0,0 0; 0,0 0; 0,0 0; 0,0 0; 0,0 

Hydnotrya 4; 0,6 1; 0,2 0; 0,0 0; 0,0 1; 0,2 12; 1,9 3; 05 6; 1,0 2; 0,3 0; 0,0 0; 0,0 1; 0,2 

Pachyphloeus 0; 0,0 0; 0,0 0; 0,0 0; 0,0 0; 0,0 0; 0,0 0; 0,0 0; 0,0 0; 0,0 0; 0,0 0; 0,0 1; 0,2 

Genea 0; 0,0 0; 0,0 0; 0,0 0; 0,0 15; 2,4 0; 0,0 0; 0,0 0; 0,0 0; 0,0 0; 0,0 0; 0,0 0; 0,0 

Tuber 0; 0,0 0; 0,0 0; 0,0 0; 0,0 1; 0,2 0; 0,0 1; 0,2 0; 0,0 0; 0,0 0; 0,0 1; 0,2 0; 0,0 

Hymenogaster 22; 3,5 14; 2,2 0; 0,0 0; 0,0 103; 16,0 42; 6,7 0; 0,0 4; 0,6 1; 0,2 8; 1,3 0; 0,0 0; 0,0 

Melanogaster 0; 0,0 0; 0,0 1; 0,2 0; 0,0 41; 6,6 2; 0,3 0; 0,0 0; 0,0 2; 0,3 0; 0,0 0; 0,0 0; 0,0 

Rhizopogon 4; 0,6 0; 0,0 0; 0,0 0; 0,0 35; 5,6 1; 0,2 168; 27,0 16; 2,6 2; 0,3 0; 0,0 0; 0,0 0; 0,0 

Scleroderma 0; 0,0 0; 0,0 0; 0,0 0; 0,0 3; 0,5 2; 0,3 0; 0,0 0; 0,0 0; 0,0 1; 0,2 0; 0,0 0; 0,0 

Gautieria 0; 0,0 0; 0,0 0; 0,0 0; 0,0 8; 1,3 0; 0,0 0; 0,0 0; 0,0 1; 0,2 0; 0,0 0; 0,0 0; 0,0 

Glomus 0; 0,0 0; 0,0 9; 1,4 0; 0,0 6; 1,0 0; 0,0 26; 4,2 1; 0,2 0; 0,0 1; 0,2 1; 0,2 0; 0,0 

Endogone 0; 0,0 0; 0,0 0; 0,0 0; 0,0 0; 0,0 1; 0,2 0; 0,0 0; 0,0 1; 0,2 0; 0,0 0; 0,0 0; 0,0 
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4.2. Seasonal changes in spore numbers 

 

The mean number of spores and the average temperature was used for testing 

significant differences between the seasons. The testing has shown that the mean spore 

number was significantly correlated with the mean temperature of the month (r=0,999; 

df=1; p<0,05, 95,00 % CI). In July, when the mean air temperature was the highest 

(19,22oC), the mean number of spores was also the highest (8,80) (Fig. 1). 
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Fig. 1. Box plot showing the mean number of spores (the red line, df = 2; Wald stat. = 767,741; 
p < 0,0001) and the average temperature of the month (dotted blue line, F(2;228) = 474,9781; 
p < 0,0001). 

 

The factor analysis with the AIC has shown that the best model describing 

seasonal changes in spore number in samples, is the model taking into account the 

component 1 (PC1 - temperature and humidity), component 2 (PC2 - rainfall and wind 

speed), the study plot, and the rodent species (see Appendix Table. 2). The mean 

number of spores was positively related to PC1 and negatively related to PC2 associated 

with “stormy conditions”. Higher values for rainfall, wind and humidity were related to 

lower spore number in samples (Table 6, see also Appendix Table 3). The analysis with 

weather conditions from months prior to trappings did not yield statistically significant 

results. 
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Table. 6. Analysis of diversity of fungal spores in relation to weather conditions (PCA1 ,PCA2), study plot 
and rodent species (statistically significant values marked with red colour). 

 
effect df Wald Stat. p 

intercept 1 920,68 <0,0001 

PCA1 1 834,20 <0,0001 

PCA2 1 101,78 <0,0001 

study plot 1 707,69 <0,0001 

rodent species 1 241,81 <0,0001 

 

4.3. Differences in spore numbers between study plots 

 

Generally, the mean number of examined spores was higher in Spała (6,70) 

than in Konewka (3,70) (Fig. 2). The mean number of ascomycetes spores was 

significantly higher in Spała than in Konewka. The mean numbers of spores of basidio- 

and glomeromycetes was not so strongly connected with the study area as with the 

weather conditions. 
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Fig. 2. Box plot showing the variation of mean number of spores of hypogeous fungi in both study 
areas, with statistical significance (df=1; Wald stat. = 707,69, p<0,0001). 
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4.4. Differences between species, sexes and age groups 

 

Mean numbers of spores of asco-, basidio- and glomeromycetes were related 

with the animal species, but not so strongly as with weather conditions and the study 

area (see Appendix Table 4-6). Because the three spore groups (asco, basidio- and 

glomeromycetes) maintain a similar relations within the factor analysis, the groups were 

merged together, for a better statistical sample. 
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Fig. 3. Box plot showing the variation of mean number of spores of hypogeous fungi between A. 
flavicollis, and M. glareolus, with statistical significance (df=1; Wald stat. = 241,81, p<0,0001). 

 

There was a significant difference between the animal species in the mean 

number of spores found in faecal samples. The mean number was significantly higher in 

the bank vole samples than in samples from yellow-necked mouse (Fig. 3). Among the 

yellow-necked mice there was a significant difference in mean spore number between 

sexes and between age groups of animals, with females and juveniles having 

significantly higher mean number of spores in their faecal samples (Table 7-8, Fig. 4-5). 

Such differences were not noted among the bank voles. 
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Table 7. Analysis of diversity of fungal spores in relation to rodent species and sex (statistically 
significant values marked with red colour). 

 
effect df Wald Stat. p 

intercept 1 594,46 0,000 

species 1 50,79 0,000 

sex 1 5,25 0,022 

species × sex 1 5,55 0,019 
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Fig. 4. Box plot showing the variation of mean number of spores of hypogeous fungi between sexes of 
A. flavicollis (red box plot), and M. glareolus (blue box plot), with statistical significance. 

 
Table 8. Analysis of diversity of fungal spores in relation to rodent species and age (statistically 

significant values marked with red colour). 
 

effect df Wald Stat. p 

intercept 1 707,33 0,000 

species 1 114,67 0,000 

age 1 90,58 0,000 

species × age 1 5,95 0,015 
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Fig. 5. Box plot showing the variation of mean number of spores of hypogeous fungi between adults 
and juveniles of A. flavicollis (red box plot), and M. glareolus (blue box plot), with statistical 
significance (df=1; Wald stat. = 90,58, p=0,000). 

 

 

4.5. Spore numbers in relation to trap’s distance from the road 

 

There was a significant relation between the mean number of spores and the 

distance from the given trap to the road. More spores were found in samples which were 

taken from traps set 1-3 m from the road, than in those taken from traps located further 

in the forest (Table 9, Fig. 6). 

 
Table 9. Analysis of diversity of fungal spores in relation to study plot and distance from the road 

(statistically significant values marked with red colour). 
 

effect df Wald Stat. p 

intercept 1 675,15 0,000 

study plot 1 68,67 0,000 

distance from 
the road 

2 100,28 0,000 
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Fig. 6. Box plot showing the mean number of spores of hypogeous fungi in relation to the trap distance 
from the road (fallowing logarithmic-nominal scale, see chapter 3.4 Statistical methods) 
(Wald stat.=100,28, p=0,000, 95,00% CI) 

 

 

4.6. Hypogeous vs. epigeous fungi 

 

Comparing number classes for hypogeous and epigeous fungi shows that the 

majority of overall samples (159) did not have hypogeous spores in them, but among 

those only 9 did not have epigeous spores. 92 samples of the zero hypogeous class had 

the first epigeous class, and 41 and 17 had second class and third class, respectively. In 

samples with the third hypogeous class 0, 3, 10 and 6 samples were in the zero, first, 

second and third epigeous classes, respectively (Table 10). 

 
Table 10. Overall number of samples with each number class (0-3). 

 
hypogeous 0 epigeous 1st epigeous 2nd epigeous 3rd epigeous total 

0 9 92 41 17 159 

1 3 24 14 12 53 

2 0 5 8 3 16 

3 0 3 10 6 19 

total 12 124 73 38 247 
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Analysis of the number classes found in both animal species showed that most 

faecal samples had either zero or first hypogeous class. The number of zero class was 

evident in A. flavicollis (90 of 131 analysed samples from Spała, and 47 out of 65 from 

Konewka) and was a little more balanced in M. glareolus (14 out of 35 from Spała and 

8 out of 16 from Konewka). In order to see if there was a correlation between the 

classes, the Gamma test was used. Due to small numbers of samples, the correlation test 

could be undertaken only for the overall number, without dividing samples according to 

study area, animal species or season. For N=247 and p<,05000, the result of the Gamma 

test (Gamma=0,384658, Z=5,523144), showed that indeed, there was a positive 

correlation between hypo- and epigeous classes. Because of the high amount of zero 

class samples, the correlation could not be tested with the Pearson χ2 test for 

significance. After reducing the number of hypogeous classes to two, indicating 

presence or absence of spores, the Pearson χ2 tests showed that there was a statistical 

significance for the correlation (Pearson χ2=14,339, df=3, P=0,002). 

 

4.5. Analysis of taxa diversity in samples 

 

Histograms of empiric distributions of Shanon’s diversity index for hypogeous 

taxa in samples from A. flavicollis and M. glareolus (Fig. 7), show that indices are not 

of normal distribution. This is confirmed by results of ten normality tests shown in 

Table 11. 

 

 
 

Fig. 7. Histograms of empiric distributions of Shanon’s diversity index for hypogeous taxa in faecal 
samples from A. flavicollis (red) and M. glareolus (blue). 



 35 

Table 11. Critical probabilities for results of ten normality tests for empiric distributions of Shanon’s 
diversity index for hypogeous taxa in faecal samples from A. flavicollis, and M. glareolus. 

 
normality test Apodemus flavicollis Myodes glareolus 

Shapiro-Wilk test 2,834  10-10 1,486  10-5 
Shapiro-Francia test 7,068  10-9 7,260  10-5 
Χ2 Pearson test 9,499  10-51 4,725  10-11 
Liliefors test 2,522  10-28 3,480  10-9 
date driven Neyman normality test 4,121  10-9 6,015  10-4 
D’Agostino test based on skewness 2,200  10-4 3,066  10-2 
D’Agostino test based on kurtosis 3,280  10-1 5,767  10-1 
D’Agostino-Pearson test 6,731  10-4 8,278  10-2 
Cramer-von Mises test 7,370  10-10 9,058  10-7 
Anderson-Darling test 4,201  10-22 7,021  10-8 

 

Figure 8 shows critical statistical significance of the tests. With the standard 

probability p=0,05, only the tests of D’Agostino based on kurtosis and D’Agostino-

Pearson did not allow to reject the H0 hypothesis for the normality of distribution. 

 

 
 

Fig. 8. Critical statistical significance of 10 normality tests for distributions of Shanon’s diversity index 
for fungal taxa in faecal samples from A. flavicollis and M. glareolus (the red dotted line 
indicates the significance α = 0,95 corresponding to the standard probability p = 0,05). 

 

In this analysis samples with no spores identified were not taken into account, 

because of the inability to calculate Shanon’s index. The empiric distributions of 

Shanon’s index for the samples with at least one fungal taxon are clearly asymmetrical 

to the right side, but approximately normokurtic. The measures of asymmetry and 

concentration of the distributions are presented in Table 12. The observed distributions 
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are also multimodal – at least bimodal. First dominants D0 of both distributions are 

equivalent to general dominants equal 0, and correspond to samples with only one 

identified taxon. 

 
Table 12. Values of asymmetry and concentration measures for distributions of Shanon’s diversity index 

for hypogeous taxa in faecal samples from A. flavicollis and M. glareolus (the fourth column 
contains values for an ideally normal distribution) 

 

measure Apodemus 
flavicollis 

Myodes 
glareolus 

normal 
distribution 

third central moment (μ3) 0,0615 0,0207 0,0 

Pearson’s asymmetry factor μ3/σ3 1,2685 0,9279 0,0 

Standard error kurtosis μ4/σ4 3,3728 2,3564 3,0 

 

By analyzing both distributions for monotonicity of kernel density estimation 

function and calculating the first numerical derivative, it was possible to estimate the 

second dominant in both distributions (Figs 9-10). The new dominants D1 are equivalent 

to the third zero moments of the derivatives and amount at 0,591 nat for distribution of 

samples from A. flavicollis, and 0,540 nat for distribution of samples from M. glareolus. 

These values correspond to samples with the effective taxa number EAf = 1,805 and 

EMg = 1,716 respectively. This suggests that in both cases the distributions consist of 

two sub-distributions – one with D0 = 0 is similar to Poisson’s distribution, and the 

other one with the new dominant D1 is more like the normal distribution. It was 

impossible to separate fully the sub-distributions, as the statistical methods (eg. 

Bhattachary’s method, Gregor’s method) enable only separation of bimodal 

distributions consisting of two normal distributions and not a mix of Poisson’s and 

normal distribution.  
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Fig. 9. Graphs of the kernel density estimations for empiric distributions of Shanon’s diversity index for 
hypogeous taxa in faecal samples from A. flavicollis (red) and M. glareolus (blue) (the kernel is 
the function of density of Gauss probability, the smoothness parameter selected by the Silverman 
method). 

 

 
 
Fig. 10. First numerical derivatives of kernel density estimatior for empiric distributions of Shanon’s 

diversity index for hypogeous taxa in faecal samples from A. flavicollis (red) and M. glareolus 
(blue) (the red dotted line indicates the zero moment of the derivative, which corresponds to the 
second dominants of the distributions). 

 

Figure 11 shows the results of 8 normality tests for Shanon’s distribution in the 

number classes. Two of the previously used tests – the D’Agostino test based on 

kurtosis and the D’Agostino-Pearson test – could not be used due to insufficient number 

of samples. It is clear that in classes with higher number of spores the distributions of 

Shanon’s index are more like the normal distribution. In the III class, all conducted tests 

did not allow to reject the H0 hypothesis for normality of distribution. 
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Thought it was impossible to separate completely the sub-distributions and 

their corresponding sub-populations in both rodent species, some tendencies in feeding 

on hypogeous fungi were found in classes of rodents that have higher values of the 

number of spores in their faecal samples. 
 

 
 

Fig. 11. Critical statistical significance of 8 normality tests for distributions of Shanon’s diversity index 
for hypogeous taxa in faecal samples from A. flavicollis and M. glareolus divided into 
hypogeous classes defined by the number of spores found in samples (the red dotted line 
indicates the significance α = 0,95, corresponding to the standard probability p = 0,05). Some 
tests could not be conducted due to insufficient number of samples (compare Fig. 8). 
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4.6. Fungal genera in relation to number classes 

 

Figures 12-14 respectively show the indices for dominance, frequency and 

ecological importance for spores of hypogeous fungi divided into number classes. For 

a better comparison the studied taxa of fungi are sequenced in accordance to the 

descending values of the dominance index (Fig. 12) in samples with the first hypogeous 

class from A. flavicollis. 

 

 
 
Fig. 12. Dominance indices of hypogeous fungi taxa in samples from A. flavicollis and M. glareolus, 

divided into number classes. The sequence of the fungal taxa corresponds to the descending 
values of the dominance index in samples of the I class from A. flavicollis. 

 



 40 

 
 
Fig. 13. Frequency indices of hypogeous fungi taxa in samples from A. flavicollis and M. glareolus, 

divided into number classes. The sequence of the fungal taxa corresponds to sequence used in 
Fig. 12. 
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Fig. 14. Ecological importance indices of hypogeous fungi taxa in samples from A. flavicollis and M. 

glareolus, divided into number classes. The sequence of the fungal taxa corresponds to sequence 
used in Fig. 12. 

 

The index of dominance, frequency and ecological importance among 

A. flavicollis of the first class show that there is low diversity in the spore taxa, with the 

values ranging from 0,0 to 0,25 nat, and with the dominance of genus Hydnotrya. In 

M. glareolus there is a strong dominance, high frequency and ecological importance of 

Glomus taxa in the first hypogeous class. In higher classes within samples from 

A. flavicollis a growing dominance, frequency and importance of Hymenogaster and 

a decline in the indexes for Hydnotrya can be observed. In M. glareolus there is 

a growing dominance, frequency and importance of Rhizopogon and a decline in 

dominance of Glomus, but still with its high frequency and ecological importance. 
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4.7. Morphometric analysis of spores 

 

The size of observed spores within each genera were similar and their 

distributions of length and width were of normal distribution. Detailed descriptive 

statistics for all genera and with separation to seasons is presented in Appendix 3. Due 

to sample size, ANOVA I testing was used for three genera: Hymenogaster, Rhizopogon 

and Glomus, but only in case of Rhizopogon the results were statistically significant and 

have shown an increase in spore size from spring through summer and autumn (Fig. 

15). 

 

5 7 10

Month

13

14

15

16

17

18

19

20

21

22

Le
ng

th

5 7 10

Month

5,0

5,5

6,0

6,5

7,0

7,5

8,0

8,5

9,0

9,5

10,0

W
id

th

 
 
Fig. 15. Box plot showing changes in length and width of Rhizopogon spores in seasons (red line 

indicating length and blue line indicating width (Wilks’ Lambda=0,87909, F(6,394)=4,3704, 
p=0,00027, 95,00% CI). 
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5. IDENTIFIED FUNGAL TAXA 
 

The systematics is presented according to the Catalogue of Life 

(www.catalogueoflife.org) and Trappe et al. 2009. The Author epithets and place of 

publication were taken from Index Fungorum (indexfungorum.org). Genus descriptions 

were prepared based on the following keys: Hawker (1954); Ławrynowicz (1979, 

1988), Castellano et al. (1989), Rudnicka-Jezierska (1991), Pegler at al. (1993), 

Błaszkowski (2012) and other publications: Ławrynowicz (1973, 1984, 1989, 1990), 

Wojewoda (2003). 

 

 

KINGDOM: FUNGI 

Phylum: Ascomycota 

Class:  Eurotiomycetes 

Order:  Eurotiales 
Family:  Elaphomycetaceae 

Genus: Elaphomyces 
Class: Pezizomycetes 

Order: Pezizales 
Family: Discinaceae 

Genus: Hydnotrya 
Family: Pezizaceae 

Genus: Pachyphloeus 
Family: Pyronemycetaceae 

Genus: Genea 
Family:  Tuberaceae 

Genus: Tuber 
 

Phylum: Basidiomycota 

Class: Agaricomycetes 

  Order: Agaricales 
   Family: Strophariaceae 
    Genus: Hymenogaster 
  Order: Boletales 
   Family: Paxillaceae 
    Genus: Melanogaster 
   Family: Rhizopogonaceae 
    Genus: Rhizopogon 
   Family: Sclerodermataceae 
    Genus: Scleroderma 
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Order: Gomphales 
Family: Gomphaceae 

Genus: Gautieria 
 

Phylum: Glomeromycota 

 Class: Glomeromycetes 

  Order: Glomerales 
   Family: Glomeraceae 
    Genus: Glomus 
 

Phylum: Zygomycota 
  Order: Endogonales 
   Family: Endogonaceae 
    Genus: Endogone 
 

 

5.1. Ascomycota 
 

Elaphomyces Nees, Syn. pl. mycet.: 68 (1820) 

Fruitbody: globose, ovoid, subglobose or irregular, 1-5 cm in diameter, tough 

and leathery and become brittle with age. Surface covered with warts, pyramidal and 

concolorous, long and sharp or low and blunt depending on the species. In some species 

a “crust” can be observed: a layer of soil particles and rootlets bound by hyphae. The 

crust’s thickness depends on the type of soil and easily separated from the sporocarp. 

The cortex is dull-yellow, yellow-brown. 

Peridium: brown, dark blue or black, smooth to ornamented with hard, 

rounded warts, pyramids or cones, often tomentose and enhusked by proliferated 

ectomycorrhizae of associated trees or shrubs, crisp-fleshy to leathery or carbonous,    

2-5 mm thick. In some species it is distinctively marbled – with yellowish white veins 

surrounding pink do chestnut brown areas. This is the part of the sporocarp eaten by 

small mammals, which often discard the powdery spore mass of the gleba. 

Gleba: in youth divided into sections by white and greyish pink sterile 

dissepiments, later becoming stuffed with cottony, spore-bearing hyphae, at maturity, 

the hollow is filled with a yellow to brown, olive, brownish, black, bluish black or black 

spore powder. 
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Asci and ascospores: asci globose or ellipsoid, rarely ovoid, 40-50 µm in 

diameter. Typically 6-8 spores in one ascus. Spores globose, yellowish-brown to 

brownish-black, dark brown almost black or purplish black, 20-33 µm in diameter, 

covered with 2-4 µm long spikes or warts. Spores found in course of this study were 

mostly round in shape 13,33-23,33 µm and mean diameter 19,53 µm. Detailed 

descriptive statistics are presented in Appendix 3, Tables 1-3. 

Odour: not distinctive to metallic or garlicy or weak and earthy. 

Habitat: deciduous and mixed forests, in parks, under Quercus, Fagus, 

Carpinus, Betula, Corylus trees. In coniferous forests, under Scots pine and spruce. 

Usually no deeper than 10 cm. In mountainous regions it reaches the edges of forest 

floor. Found throughout the year. In favourable conditions, the sporocarps can be 

present in large numbers at all times of the year. Initiation of young fruit bodies is 

inhibited by extreme cold or drought. Prefers fertile soils with pH 4-5. 

Suspected species:  

 E. granulatus Fr., Syst. mycol. (Lundae) 3(1): 58 (1829) 

E. asperulus Vittad., Monogr. Tuberac. (Milano): 69 (1831) 

E. muricatus Fr., Syst. mycol. (Lundae) 3(1): 59 (1829) 
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Hydnotrya Berk. & Broome, Ann. Mag. nat. Hist., Ser. 1 18: 78 (1846) 

Fruitbody: subglobose or irregularly globose, often lobed, with wrinkled and 

folded surface, 0,5-6 cm in diameter. Color redish, red-brown, dark red. 

Peridium: smooth or scurfy, in colour ivory to pink, orange to brown or dark 

purplish brown. 

Gleba: hollow to fleshy-firm, divided by hollow chambers or labyrinthine 

canals opening to surface between folds. 

Asci and ascospores: asci long, cylindrical, clavate or long-ovoid,              

150-230 μm x 35-70 μm. 6-8 spores inside. In older fruit bodies, cylindrical and 

uniseriate. Spores globose, 20-35 μm in diameter, with thick, deep red-brown 

episporium, and with rounded warts, placed irregularly. Young spores are smooth and 

hyaline, later becoming yellowish brown to brown, 16-34 µm x 16-35 µm without 

ornamentation, with a single wall 1-3 µm thick. Spores observed in the present study 

were mostly globose in shape 13,33-46,67 µm and mean diameter 33,97 µm. Detailed 

descriptive statistics are presented in Appendix 3, Tables 4-7. 

Odour: not distinctive or garlicky. 

Habitat: under Quercus, Fagus, Carpinus trees, on packed soils with pH 4,5-

5, with a good insolation, often in close proximity to roads, paths and intensely trodden 

places. The fruit bodies are found not deep under the soil, partly epigeically. 

Suspected species:  

 Hydnotrya tulasnei (Berk.) Berk. & Broome, Ann. Mag. nat. Hist., Ser. 1 18: 

78 (1846) 
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Pachyphloeus Tul. & C. Tul., G. bot. ital. 1(7-8): 60 (1845), (Pachyphlodes Zobel, 

Icon. fung. (Prague) 6: 55 (1854)) 

Fruitbody: subglobose or globose, often with apical depression or cluster of 

grooves, up to 3 cm diameter, can be flattened with an apical opening and hyphae in the 

basis. Coloration various, black dark green, brown, yellowish-green. Surface with 

polygonal warts. 

Peridium: brownish yellow to yellowish green, red or black, 

pseudoparenchymatous with reddish or violet brown cell walls. 

Gleba: greyish yellow to nearly black marbled with pale veins. 

Asci and ascospores: asci club shaped or cylindrical, 80-150 × 25-45 μm, 8 

spores in one ascus. Spores globose 13-26 μm diameter, hyaline to light yellow-green, 

densely covered with 3 μm long spines or warts. During the course of this study, only 

two spores of Pachyphloeus were found, one round measuring 11,67 μm in diameter 

and second subglobose measuring 21,67 × 16,67 μm. 

Odour: not distinctive or pungent. 

Habitat: under Quercus, Fagus, Carpinus trees, in exposed places. The fruit 

bodies lay shallow underground. Occurs from July to September. 

Suspected species:  

 Pachyphloeus melanoxanthus (Tul. & C. Tul. ex Berk.) Tul. & C. Tul., G. 

bot. ital. 1(7-8): 69 (1845) 
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Genea Vittad., Monogr. Tuberac. (Milano): 27 (1831) 

Fruitbody: 0,3-3 cm in diameter, globose or irregular, with an apical opening 

to a hollow chamber, with a turf of hyphae in the basis of the fruit body, can be 

flattened on the top. Reddish brown to dark in colour. 

Peridium: 4-9 cells thick, brown to black, covered in guard hairs or warty. 

Gleba: white, yellow-white to yellow-brown. 

Asci and ascospores: asci cylindrical, 250-300 μm × 24-35 μm, blunt on top 

and narrowed at the bottom, 8 spored. Spores ellipsoid, rarely almost globose,            

28-42 μm × 19-28 μm, at first hyaline, smooth with lipid drops, later turning yellow to 

reddish. With age, episporium becomes covered with rounded or polygonal, blunt 3 × 2 

μm long warts. Spores found in this study were mostly ellipsoid with the mean 

circularity index of 0,78. The size of spores was 16,67-31,67 × 23,33-35,00 µm and 

mean size was 22,30 × 28,81 µm. Detailed descriptive statistics are presented in 

Appendix 3, Table 8. 

Odour: fungal to strongly garlicky, pungent. 

Habitat: deciduous and mixed forests, most often under Carpinus, Fagus and 

Corylus trees and just under the surface, in the forest bed and moss layer. Occurring 

from July do late autumn. 

Suspected species:  

Genea hispidula Berk. ex Tul. & C. Tul., Fungi hypog.: 121 (1851) 
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Tuber P. Micheli, Nov. pl. gen. (Florentiae): 221, table 102 (1729) 

Fruitbody: globose to irregular, either firm of fleshy, 1-6 cm in diameter, 

various in colour. Surface can be smooth or covered with warts. Interior marbled. With 

age sporocarps become irregular, bumpy or lobed. 

Peridium: smooth, puberulent or verrucose, and thin, yet definite. It is 

composed of interwoven narrow hyphae, covered in short, pointed hairs, easily 

separated from the interior. 

Gleba: veined, white at first, later becoming fleshy pink, red-brown to 

purpulish black, with well developed dissepiments which later disappear with the 

development of asci. 

Asci and ascospores: asci set on hyphae, no bigger than 150 μm diameter, 

globose, ellipsoid or pyriform in shape, 1-4 spores inside. Spores usually ellipsoid, 

sometimes globose, 17-48 µm × 12-40 µm, pale golden brown, light yellow to brown 

and deep red-brown when mature. Wall of the spores is covered with spines or 

reticulum. Spores observed in this study were mostly ellipsoid with the mean circularity 

index of 0,79. The size of spores was 13,33-40,00 × 16,67-48,33 µm and mean size was 

20,21 × 25,76 µm. Detailed descriptive statistics are presented in Appendix 3, Tables 9-

11. 

Odour: usually prominent, pungent, garlicky, cheesy or wine-like. 

Habitat: occurs in various types of forests as well as grassy terrain far from 

trees, under Quercus, Crataegus, Tilia and Larix trees, can be found from June to 

October. Occurs in the humus layer of light and fertile soils, in places with bare soil 

with removed litter cover, near roads, footpaths or under the litter cover and even in 

deeper layers. 

Suspected species:  

 T. rufum Pico, Meleth. bot.: 80 (1788) 

T. puberulum Berk. & Broome, Ann. Mag. nat. Hist., Ser. 1 18: 81 (1846) 
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5.2. Basidiomycota 
 

Hymenogaster Vittad., Monogr. Tuberac. (Milano): 30 (1831) 

Fruitbody: globose, subglobose to irregular, 0,4-15 cm in diameter, at first 

white, later becoming dingy white, sometimes reddish when bruised. 

Peridium: smooth, thin in fragile, white to gray, olive, dull yellow, yellowish-

brown to blackish brown, in some species staining lilac to blue or black when exposed, 

at first soft but brittle and tends to split in older specimens. 

Gleba: cinnamon to dark brown, occasionally with a few sterile veins arising 

from the basal pad, at first white, then lilac to mushroom pink, grey or greyish brown in 

mature fruitbodies. 

Basidia and basidiospores: basidia about 11 µm × 19 µm, 1-4 spored, broadly 

clavate in shape, sterigmata short, conical. Spores wrinkled, can be ornamented with 

warts or pegs or irregularly ridged. In shape spores are longitudinally symmetrical, 

ellipsoid to ovoid, citriform or subcylindric, and in most species with an obscure or 

prominent apical projection. The size of the spores varies: 9-35 µm × 4,5-18 µm with 

ornamentation. Spores observed in this study were ornamented, longitudinally 

symmetrical and ellipsoid with the mean circularity index of 0,56. The size of spores 

was 6,67-20,00 × 10,00-33,33 µm and mean size was 10,19 × 18,55 µm. Detailed 

descriptive statistics are presented in Appendix 3, Tables 12-15. 

Odour: characteristic, sometimes unpleasant. 

Habitat: occurs in groups on well developed, branched rhizomorphs below 

loose layer of leaf litter and humus, no more than 5 cm in calcareous areas and 

throughout the year if conditions are favourable (Pegler et al. 1993). The species occurs 

under Quercus robur and Tilia cordata trees. 

Suspected species:  

 H. tener Berk., Ann. Mag. nat. Hist., Ser. 1 13: 349 (1844) 
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Melanogaster Corda, in Sturm, Deutschl. Fl., 3 Abt. (Pilze Deutschl.) 3(11): 1 

(1831) 

Fruitbody: more or less globose or ellipsoidal, irregularly globose to lobed, 

sometimes confluent,, with size 0,5-4 cm in diameter. Coloration is at first dull reddish 

brown and becomes potato-colored or even olive-brown, blotched black when bruised. 

Peridium: tomentose, dissepiments thick and cavities large and filled with 

gelatinous matrix in which basidia develop irregularly. At first ochraceous, pale 

greenish-yellow to mustard yellow and latter becomes fuscous brown with a reddish tint 

to primrose tint. 

Gleba: Gleba is white, pale yellow at first with blue-black chambers separated 

by white or dingy white dissepiments, later on reddish fuscous to purplish black when 

mature. Chambers are willed with gelatinous contens of a black slimy mass of spores. 

Basidia and basidiospores: Basidia are clavate, 20-35 µm × 5-8 µm, tapering 

to base, 2-4 spores borne on a slender 1-6 µm long sterigmata. Spores are usually dark 

colored, fuscus brown or olive-brown, spindle-shaped, ellipsoid or cylindrical with 

a pointed apex and a clow-like process at the base. Spores observed in this study were 

spindle-shaped and with the characteristic pointed apex. The mean circularity index was 

0,57. The size of spores was 6,67-15,00 × 10,00-28,33 µm and mean size was           

8,28 × 14,81 µm. Detailed descriptive statistics are presented in Appendix 3,    

Tables 16-18. 

Odour: at first sweetish, slight, pleasant and fruity or mildly unpleasant, 

rubbery, strong and foetid. 

Habitat: occurs throughout the year in humus, under loose litter, near the soil 

surface, or even on the surface, usually under Fagus and sometimes other trees, Abies 

alba and Carpinus betulus. 

Suspected species:  

 M. ambiguous (Vittad.) Tul. & C. Tul., Annls Sci. Nat., Bot., sér. 2 19: 378 

(1843) 

 M. variegatus (Vittad.) Tul. & C. Tul., Fungi hypog.: 92 (1851), 

M. broomeianus Berk. [as 'broomeianus'], Ann. Mag. nat. Hist., Ser. 1 10: 377 

(1843) [1842] 
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Rhizopogon Fr., in Fries & Nordholm, Symb. gasteromyc. (Lund) 1: 5 (1817) 

Fruitbody: 1-6 cm in diameter, globose to pyriform to irregular. Some species 

reach the size up to 15 cm in diameter. 

Peridium: white to brownish, reddish brown or red, often with the top darker 

than the base and ranging in thickness from 0,5-2 mm. In many species the peridium is 

stained pink to brick red or brown but in some it is smooth or felty. Most of the species 

have rhizomorphs appressed around the base and sides. 

Gleba: white or yellow at first, with small, empty chambers. In some species 

the chamber is filled with spore powder. At maturity the gleba becomes olive, olive 

gray, olive brown, orange brown or blackish brown. 

Odour: depends on the species, can be fruity, wine like, cheesy or spicy-

pungent. 

Basidia and basidiospores: basidia lageniform, with a ventricose base, 

bearing 4-8 spores. Spores are in most species smooth, longitudinally symethrical and 

cylindric to fusoid. Some species have ellipsoid or irregular spores. The size of the 

spores ranges from 5-15 (max 20) × 1,5-8 µm. The spores have a straight attachment, an 

inconspicuous nipple or a basal, cupped truncation if the spore. Spores observed in this 

study were smooth, longitudinally symmetrical and cylindric with the mean circularity 

index of 0,43. The size of spores was 5,00-16,67 × 10,00-20,00 µm and mean size was 

6,60 × 15,57 µm. Detailed descriptive statistics are presented in Appendix 3,    

Tables 19-22. 

Odour: not distinctive. 

Habitat: Occurs mostly on sandy soils in coniferous and mixed forests and 

pine forests, in sunny, xerorhermic places and sand dunes, from spring to autumn. 

Suspected species:  

 R. nigriscens Coker & Couch, Gasteromycetes E. U.S. Canada (Chapel Hill): 

30 (1928) 

 R. obtextus (Spreng.) R. Rauschert, in Hirsch, Wiss. Z. Friedrich Schiller-Univ. 

Jena, Math.-nat. Reihe 33(6): 818 (1984) 

 R. roseolus (Corda) Th. Fr., Svensk bot. Tidskr. 3: 282 (1909) 
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Scleroderma Pers., Syn. meth. fung. (Göttingen) 1: xiv, 150 (1801) 

Fruitbody: subglobose to irregulat, 2-6 cm in diameter, with a cluster of 

rhizomorphs at the base, covered in shells or warts, cracking in small fields. Usually 

more or less yellowish or brownish. 

Peridium: pale brown or pale yellow to brownish yellow, becoming rosy blush 

when bruised and pink when cut, smooth or slightly scaly, 3-6 mm thick. 

Gleba: White and solid, at maturity olivaceous black to purpulish black. 

Basidia and basidiospores: basidia roughly clavate 4-8 spored. Spores 

globose, 7-15 µm in diameter, covered in spikes, and with a reticulum on surface. 

Spores found this study were mostly round in shape 8,33-20,00 µm and mean diameter 

14,58 µm. Detailed descriptive statistics are presented in Appendix 3, Tables 23, 24. 

Odour: strong, aromatic. 

Habitat: epigeous, or sometimes embedded in the ground, mostly occurring on 

sandy soils, in coniferous and mixed forests, at the forest edges, near walk ways, also on 

tree trunks. Occurs in summer and autumn. 

Suspected species:  

 S. citrinum Pers., Syn. meth. fung. (Göttingen) 1: 153 (1801) 
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Gautieria Vittad., Monogr. Tuberac. (Milano): 25 (1831) 

Fruitbody: 1-8 cm broad, globose, subglobose or irregular, usually with 

a permanent rhizomorphs at the base. 

Peridium: fragile and ephemeral in most species, dingy white to brown. 

Gleba: cinnamon to dark brownish black, consists small or prominent, 

labirynthine chambers and a poorly or strongly developed cartilaginous columella. 

Basidia and basidiospores: basidia cylindrico-clavate, 1-4 spored. Spores 

longitudinally symmetrical, ellipsoid, ovoid or globose, 10-32 × 6-18 µm including 

ornamentation. Ornamentation with longitudinal, slightly piraled and forked ridges. 

Spores observed in this study were ornamented, longitudinally symmetrical and 

ellipsoid to citriform The mean circularity index was 0,61. The size of spores was 6,67-

15,00 × 11,67-21,67 µm and mean size was 9,94 × 16,50 µm. Detailed descriptive 

statistics are presented in Appendix 3, Tables 25-27. 

Odour: not distinctive, mushroom-like in young fruit bodies, often becoming 

intensive, nauseous sweet-oily to sewer-gaseous. 

Habitat: occurs throughout the year, under deciduous trees mostly in early 

spring, even under melting snow. 

Suspected species:  

 G. morchelliformis Vittad., Monogr. Tuberac. (Milano): 26 (1831) 

 



 64 

 



 65 

5.3. Glomeromycota 
 

Glomus Tul. & C. Tul., G. bot. ital. 1(2): 63 (1844) 

Fruitbody: globose to convoluted or irregular, 1-10 mm broad. 

Peridium: when present white to yellow or brown, smooth or cottony, 

otherwise absent. 

Gleba: white to yellow, brown, nearly black. 

Chlamydospores: placed randomly in the gleba or align in rows radiating 

from the base, globose to ellipsoid or pyriform, 20-310 × 18-305 µm when smooth, 

when ornamented 105-452 × 169-470 µm (without ornamentation), thick 3-layered 

wall, 2-18 µm. Spores observed in this study were round or ellipsoid in shape with size 

ranging from 6,00-21,67 µm to 143,33-166,67 µm. The mean circularity index was 0,91 

and the mean size 55,48-61,78 µm. Most spores had a prominent, thick outer wall. 

Detailed descriptive statistics are presented in Appendix 3, Tables 28-31. 

Odour: not distinctive. 

Habitat: found throughout the year in various forests under deciduous trees. 

Suspected species:  

 G. macrocarpum Tul. & C. Tul. [as 'macrocarpus'], G. bot. ital. 1(2): 63 

(1844) 
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5.4. Zygomycota 
 

Endogone Link, Mag. Gesell. naturf. Freunde, Berlin 3(1-2): 33 (1809) 

Fruitbody: in present, subglobose to irregular, 1-2,5 cm in diameter, white or 

white with yellow, grey or pink shade. Some species secrete milk when cut through. 

Peridium: when present white to yellow or brown, smooth or cottony, 

otherwise absent. 

Gleba: grey to bright yellow or brown, loose in structure. 

Zygospore: ellipsoid to globose or irregular, when smooth                            

27-150 × 27-120 µm, when mantled by abherent hyphae 52-150 × 41-190 µm (without 

the hyphae), 2-layered wall, 2-11 µm. Spores observed in this study were round or 

ellipsoid in shape with size raging from 20,83 × 21,67 µm to 68,33 × 73,33 µm. The 

mean circularity index was 0,88 and the mean size 40,96-47,44 µm. Detailed descriptive 

statistics are presented in Appendix 3, Tables 32-34. 

Odour: not distinctive to garlicky. 

Habitat: occurs commonly and throughout the year in coniferous and mixed 

forests, saprobic, or ectomycorrhizal with Fagus, Quercus, Larix, Picea, Pinus and 

Taxus. Found the surface layers of the soil, underneath leaves, mosses and ceased wood. 

Suspected species:  

 E. lactiflua Berk., Ann. Mag. nat. Hist., Ser. 1 18: 81 (1846) 
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6. DISCUSSION 
 

6.1. Differences in spore number between years, study area and seasons 

 

The results of this study, despite the large number of zero attempts, show 

overall trends in mycophagy and its dependence on the environment, fungal availability, 

and accessibility of other food items. 

Difference in spore numbers between years has shown a significance in 

basidiomycetes from summer samples only. The testing has shown a significant relation 

between number of spores found in faecal samples and the mean temperature of the 

given month. Results of GLM analysis have shown that the mean temperature and 

rainfall combined with wind had the greatest impact on the mean spore number. If that 

number in samples is an indicator of sporocarp availability in the habitat (as suggested 

by a number of studies, eg. Claridge, Lindenmayer 1998; Kataržytė, Kutorga 2011; 

Remick 2015), then this means fungi produce fruit bodies in high temperatures, and 

with a mild amount of rainfall (when there are no storms). This corresponds to well 

documented observations (Fogel 1976; Ure, Maser 1982; Luoma et al. 2003). 

Hypogeous fungi (especially the genus Tuber) depend on fruiting triggers such as 

sunshine hours, summer rainfall and summer temperatures. The mycelium can be 

present in the environment, but the fungus will not fruit when the temperature and 

rainfall are not met (Thomas 2014). 

Difference between the years occur depending on the study area (Bertolino et 

al. 2004). In Spała more traps were in close distance to the road, where significantly 

more spores were found. Many hypogeous genera fruit in close proximity to pathways 

and ground roads where there is less plant vegetation (Ławrynowicz 1988, 2009). The 

difference between the study plots in Spała and Konewka indicates a higher fungal 

diversity in Spała. Mean numbers for all spore groups were connected with the study 

area, with ascomycetes having the strongest interaction. The results for spores of 

basidio- and glomeromycetes were not as statistically significant, as the influence of 

weather conditions. The main difference between the two study plots is that Spała is 

closer to Pilica river, the terrain is generally lower in altitude and the microclimate is 

more humid. This suggests that hypogeous ascomycetes are more dependent on local 
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conditions than the other groups. In the study of Kataržytė and Kutorga (2011) seasonal 

mycophagy also mirrored the availability of sporocarps in the study area. 

It is generally observed that ingestion of fungal material by animals varies 

between seasons (Kataržytė, Kutorga 2011; Schickmann et al. 2012). In this study, the 

greatest number of spores was found in samples taken in summer although in most 

studies, the largest amounts of hypogeous spores were found in samples taken in 

autumn, or that summer and autumn results were similar (Claridge, Lindenmayer 1998; 

Bertolino et al. 2004; Schickmann et al. 2012). For example, Kataržytė and Kutorga 

(2011) found most hypogeous fungi were eaten in autumn and least in spring, when 

there was only Elaphomyces detected in faecal samples. On the other hand, Ovasaka 

and Herman (1986) in their studies found highest amounts of hypogeous fungi in animal 

samples in summer and noted a decline in mycophagy in dry summers. McKeever 

(1960) in his paper demonstrated that flying squirrels Glaucomys sabrinus consume 

lichenized fungi in winter when the snow cover is deep. During spring, as the snow 

cover depletes, squirrels consume some amount of hypogeous fungal material and in 

summer it dominates in their diet. This however may also depend on animal species. 

Remick (2015) in his study compared seasonal changes in mycophagy of red-back voles 

Myodes gapperi with Tamias chipmunks. He found that M. gapperi consumed fungi in a 

stable fashion throughout summer, but the Tamias chipmunks eat increasingly more 

fungi during summer. 

Seasonal changes in mammalian mycophagy depend not only on the 

availability of sporocarps in the habitat, but also on the accessibility of other food 

sources (Claridge 2002). In this study, both A. flavicollis and M. glareolus ate more 

fungal material in summer and autumn (both hypo- and epigeous). Both species are 

occasional mycophages, consuming fungi while foraging on different kind of food, or 

when the main food source is unavailable. In north-eastern Europe, the main food 

source for the A. flavicollis are grain, green parts of plants and invertebrates. In 

contrary, M. glareolus favours green parts of plants, seeds, fruits and invertebrates 

(Kataržytė, Kutorga 2011). M. glareolus is generally regarded as more mycophagous 

than A. flavicollis (Kataržytė, Kutorga 2011; Schickmann et al. 2012). 
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6.2. Differences between species, age groups and sexes 

 

Results of this study show that, in comparison, significantly higher mean 

number of spores was found in samples from M. glareolus than from A. flavicollis. The 

explanation might be that vole corridors and dens are approximately at the same depth 

as the fruiting zone of hypogeous fungi, what makes it easy for the animals to come 

across fruit bodies. In most studies, including this one, it is confirmed that vole diet is 

more diverse in fungal material. In comparison A. flavicollis is more active above the 

ground, foraging on vegetation in the understory and even in tree brunches. However 

mice build their nest underground and between tree roots. This explains why in both 

species young individuals ate fungi in greater quantities, as the young stay in the nests 

more than adults and are later more likely to forage closer to the ground. During field 

work and live trappings, cases of two or even three animals caught in one live trap were 

to be observed quite frequently. Most animals caught together ranged from 14,0 to 

26,0 grams and were similar in weight. This indicates that young animals forage 

together, during the stage of separation from their mother, and some keep together for a 

longer period. 

Females of A. flavicollis spend more time in the nests when they bring up their 

young. This corresponds to females of this species consuming more hypogeous fungi in 

relation to males. Such difference does not occur in bank voles, as both males and 

females live and forage under or close to the ground. Bertolino et al. (2004) in their 

study of red squirrels Sciurus vulgaris, found that both males and females are equally 

likely to consume fungi. No differences between sexes were also noted in flying 

squirrels G. sabrinus (Maser et al. 1985). However, McIntire (1984) found that female 

Eutamias chipmunks consume hypogeous fungi to a higher extend. Female chipmunks 

show a higher orientation towards stumps, logs and woody debris than males (Walker 

1923; Brand 1974; States 1976) and such habitats are also fruiting places for hypogeous 

fungi. Therefore differences between male and female diet are present when there is 

a difference in foraging strategy, which can seasonally enhance fungal consumption. 

Animals can find hypogeous fungi with ease, and as dispersion vector they are 

more reliable than wind (Claridge 2002; Jacobs, Luoma 2008). It however would not be 

the case of the distance, as young voles do not disperse very much if the conditions in 

the habitat they were born in are good and the population size is optimal. They will 

disperse greatly when the conditions worsen or their population size is too big (Sokolov 
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1981). Moreover, they will carry the spores where they forage - into rooting zones of 

potential mycorrhizal host plants (Maser et al. 1978a, 1988; Claridge et al. 1992; 

Johnson 1994, 1996; Trappe, Claridge 2005; Trappe et al. 2009). While foraging on 

hypogeous fungi, the animals carry spores not only in their stomachs, but also on their 

fur and claws, leaving the spores as they dig for food and pass through the rooting zone 

(Maser et al. 1988; Claridge et al. 1992). To form mycorrhiza the number of spores in 

the deposited faecal material must be sufficient. Overtime spores may migrate deeper 

into the soil with rain water and accumulate in the rooting zone. Animal faeces provide 

a better inoculum than wind dispersion, as they form a concentrated mass of diverse 

spores. By this, animals ensure the genetic and species diversity of the fungal 

community and promote formation of mycorrhiza (McIlveen et al. 1976; Maser et al. 

1978a; Claridge et al. 1992; Trappe, Claridge 2005). Mammal dispersion enhances 

mycorrhizal inoculation, but not as sufficient as inoculation with already developed 

hyphae from mature trees (Caldwell et al. 2005). Although the mature forests are the 

richest in mycorrhizal inoculation material, rodents disperse mycorrhizal inoculum into 

new networks on the edge of ecosystems (Maser et al. 1978a; Pyare, Longland 2001; 

Frank et al. 2009). For example, G. sabrinus habitat covers not only the middle of the 

forest, but also forest edge and clearcuts. This makes the squirrel a good spore vector 

into new habitats (Flaherty et al. 2008). Animals also carry spores into early succession 

habitats, like glacier forefronts and burnt down forest patches (Cázares, Trappe 1994; 

Pyare, Longland 2001). 

 

6.3. Foraging strategies in mycophagous animals 

 

Analysis of the Shanon’s diversity index distribution shows how mycophagous 

the animals are (Jacobs, Luoma 2008). Samples from M. glareolus are richer in fungal 

genera, whereas samples from A. flavicollis are less diverse. This corresponds with 

findings of Kataržytė and Kutorga (2011) who also found higher species diversity in 

samples from M. glareolus compared to A. flavicollis. 

The bimodality of Shanon’s diversity index distributions presented in this 

study indicates that there are apparently two sub-distributions combined together, 

although there is no method to separate the two fractions from one another. The two 

distributions suggest that there are two foraging strategies among individuals of both 

species. The first strategy corresponds to feeding on fungi accidentally and eating only 
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one of the most common species while foraging on different types of food. The second 

strategy is connected to active searching for fruit bodies and a diet diverse in fungal 

genera. 

This corresponds to a number of studies suggesting that the key aspect of 

mammalian mycophagy is the diversity of the diet. Animals thought to be at least 

occasionally mycophagous feed on a variety of fungal genera. They also do not feed 

only on fungi, but rather have a balanced, mixed diet with plant and animal material. 

This way animals maintain their body mass; and their nitrogen intake from the fungi is 

sufficient enough to sustain them (Maser et al. 1978a; Cork, Kenagy 1989; Johnson 

1994, 1996; Claridge et al. 1999; Trappe, Claridge 2005; D’Alva et al. 2007). 

Consuming a variety of fungal species allows the animals to be more independent of 

fruiting times of different species, as they do not rely on one species, but can always 

find a currently fruiting fungus. This makes hypogeous fungi a more reliable food 

source and lessens the searching effort for animals (Maser, Maser 1988a; Schickmann et 

al. 2014). 

The strategy of accidental mycophagy is dominant in both studied populations, 

whereas the strategy of active searching is observable during summer. The most 

statistically significant observations came from the A. flavicollis population in Spała, 

but this may be due to the largest proportion of these samples in the overall number. 

Nevertheless, a general trend is observed that animals feed on hypogeous fungi most 

frequently and deliberately in summer. 

Foraging or not on any kind of food is always an outcome of balance between 

nutrition and energy costs. When nutrition of a given food item is not sufficient to cover 

the energy cost of foraging and the animal’s energy demand, the item is not a good food 

source. For rodents, the nutrition of hypogeous fungi lie in their seasonal availability 

and relative easiness in finding. Fungi tend to occur abundantly in some periods of the 

year, but some species are accessible throughout the year. Additionally hypogeous fungi 

produce sporocarps in large number in certain places called “nests” and emit specific 

and intensive odours attractive to mammals, additionally luring the animals to these 

nests (Vogt et al. 1981; Cork, Kenagy 1989; Johnson 1994, 1996; North et al. 1997; 

Gomez et al. 2003). Therefore fungal sporocarps may be nutritionally important as 

seasonal food, especially in seasons when more high quality food like seeds and nuts are 

unavailable (Drożdż 1966; Holišová 1971; Hansson, Larsson 1978; Ure, Maser 1982; 

Hanssen 1985a; Cork, Kenagy 1989; North et al. 1997). 
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From a nutritional point of view fungi contain high concentrations of nitrogen, 

minerals (eg. iron, phosphorus, magnesium), organic compounds like amino-acids, 

steroids, amines (Claridge 2002), microelements, lipids, vitamins and are also a source 

of water (Fogel, Trappe 1978; Vogt et al. 1981; Trappe et al. 2009). They contain 

hormone-like organic compounds, and may be the only source of these components in 

the environment (Cork, Kenagy 1989). The concentration of minerals and nitrogen in 

fungi is higher than in leaves and fruits, but their availability to animals is generally low 

(Vogt et al. 1981; Cork, Kenagy 1989; Claridge et al. 1999; Trappe, Claridge 2005; 

D’Alva et al. 2007). Studies on fungal nutrition report that about 50-80% of nitrogen in 

fungi is in non-digestible spores and from the remaining amount half is in non-protein 

form and carbohydrates constructing the cell wall, which are also not digestible to 

mammals. During digestion only about 50% of energy from the sporocarp is 

assimilated. This however can be enhanced for some mammals due to digestive 

specialization (Cork, Kenagy 1989; Claridge et al. 1999). Claridge et al. (1999) 

researched nutritional value of a hypogeous species Rhizopogon viricolor in a feeding 

experiment and compared the digestion of fungal material for the Californian vole 

Myodes californicus and the northern flying squirrel, G. sabrinus, both reported as 

preferential mycophages. Their results have shown that, although the animals favoured 

fungi in their diet, they lost weight when fed only this type of food. They also indicated 

that voles are adapted to digesting fungal matter and reducing nitrogen loss in faeces 

more efficiently than the flying squirrels. Another feeding experiment by D’Alva et al. 

(2007) conducted on mice from genus Peromyscus confirmed that animals loose body 

mass when fed only fungi. These feeding experiments suggest that at least for rodents 

fungi, both hypo- and epigeous, are of moderate nutritional value. It is because these 

animals have a hindgut fermentation and are not adapted to digest non-protein structures 

of fungal cell walls and extract nitrogen from them. On the contrary, marsupials such as 

rat kangaroos and wallabies have an expended forestomach and have a foregut 

fermentation, which prolongs their digestive process and allows them to take down cell 

wall structures, making them suited for a fungal dominated diet (Claridge, Cork 1994, 

Claridge et al. 1999; D’Alva et al. 2007; Danks 2012). 

In comparison with studies in forests of America and Australia, European 

mammals seem to practice mycophagy to a mild degree. In fact, it was already 

suggested that there are no obligatory fungivore species in Central Europe (Schickmann 

et al. 2014). This may be due to ecosystem differences and differences in species 
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occupying specific niches. In North America ground squirrels occupy the ecological 

niche which in Europe is typically occupied by voles and mice. Ground squirrels are 

better adapted to mycophagy than European rodents (Claridge et al. 1999). Their 

adaptations may not only be anatomical, but also lie in foraging habits (Claridge, Cork 

1994). Squirrels are known to store food for a latter time, and flying squirrels were even 

observed drying fungal sporocarps in tree brunches. Analysis of the sporocarps suggest 

that fungi may increase their digestibility over time, due to autolysis of cell walls 

(Trappe et al. 2009). Red-backed voles in North America (M. californicus and M. 

gapperi) also cache hypogeous fungi (Ure, Maser 1982) and it is well established that 

M. californicus is a preferential mycophage (Maser, Maser 1988b). M. glareolus on the 

other hand does not store food and if it does, it does not use it fully (Sokolov 1981). It 

may be that European animals have different foraging habits that exclude them as 

obligatory mycophages. 

Australia is yet another ecosystem with different habitats and different 

organisms in different niches (Claridge, Cork 1994). It is a continent with the typically 

seasonal rainfall which can cause seasonal soil deficiencies in nutrients for plant 

growth. Animals living there have different food strategies than those in the North 

Hemisphere to utilize seasonal availability of food sources (Taylor 1992; Claridge 

2002). 

 

6.4. Hypogeous and epigeous domination in animal diet 

 

In studies referenced in this dissertation, hypogeous fungi dominated over 

those epigeous in faecal samples (Maser et al. 1978a; Ure, Maser 1982; Ovasaka, 

Herman 1986; Rhodes 1986; North et al. 1997; Bertolino et al. 2004; Kataržytė, 

Kutorga 2011; Schickmann et al. 2012). This is explained by a theory that hypogeous 

fungi are a more stable food source than the epigeous fungi, as they last longer in dry 

conditions, protected by the humus layer, whereas epigeous fungi are abundant only in 

autumn and after an onset of rain (Maser et al. 1978b; North et al. 1997; 

Izzo et al. 2005). In the presented study however, the majority of samples did not 

contain hypogeous spores, but did contain epigeous spores in various degrees. When 

looking at the reduced values of the number of samples in classes (showing only 

presence and absence of hypogeous spores), one can see that the highest number of 

samples containing hypogeous spores is in the first and second epigeous class. In the 
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zero epigeous class there are hardly any hypogeous spores, and in third epigeous class 

there is less than in the previous two classes. This corresponds to the fact that 

mycophagous mammals indeed feed on a variety of species in a mild amount. Whether 

or not these are hypo- or epigeous species dependents on the type of environment (Ure, 

Maser 1982).  

In the analysed samples from the first hypogeous class the dominant 

hypogeous genus is Glomus, which may suggest that spores were ingested together with 

plant material, as Glomus forms endomycorrhiza mainly with herb roots. In samples 

with higher general number of spores, indexes of dominance, frequency and ecological 

importance shift from the endomycorrhizal Glomus to ectomycorrhizal Rhizopogon and 

Hymenogaster. On this basis one can assume those genera make the core of hypogeous 

fungi in the study area, however, it must be borne in mind, that results of faecal analysis 

do not point to biomass production in the environment, but rather the proportional 

representation of consumed taxa (Remick 2015). 

Basidiomycetes are dominant among hypogeous fungi found in animal 

samples, accounting for 61% of spores found (Maser et al. 1978a). In the study of red 

squirrels, Bertolino et al. (2004) and Jacobs and Luoma (2008) also found that the most 

frequent genus in animal samples was Rhizopogon. Izzo et al. (2005) found Rhizopogon, 

Melanogaster, and Gautieria being the most abundant in their samples. Orrock and 

Pagels (2002) in their study noted that Melanogaster was the most frequent, 

Elaphomyces was close second and Hymenogaster was least frequent.  

The frequency of some basidiomycetes is linked to the study area. In their work 

on sporocarp production in forests, Colgan et al. (1999) discovered that light thinning 

and forest management promote formation of Melanogaster and Rhizopogon sporocarps 

in a local scale, but causes the decline in other species like Gauteria. Izzo et al. (2005) 

also stated that the genus Rhizopogon occurs in disturbed environments and be absent 

from mature stands. Both of the study plots in Spała and Konewka are in managed 

forests with heavy anthropogenic influence, which creates a microclimate suitable for 

development of specific species like Rhizopogon. 

North et al. (1997) suggested that consumption of various species change due 

to their abundance, but also depends on the diversity of overall sporocarps available in 

the environment and on the availability of alternative food items. The Author of this 

study would add that spore presence in faecal samples is derived not only from the 

presence of fruit bodies in the habitat, but also from aspects such as their attractiveness 
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for the animals and the structure of fruit bodies. North et al. (1997) postulated that high 

abundance of Elaphomyces granulatus, which is slow to decay and linger in the soil 

makes it an important food reservoir for mycophages. This however is not supported by 

this study, where Elaphomyces is not frequent in samples. Kataržytė and Kutorga 

(2011) also found that although Elaphomyces is abundant in the environment, it is not 

abundant in samples form animals, and found only in spring samples, when other 

species were scarce. Johnson (1994) suggests that the reason why animals – in his study 

the Australian rat-kangaroo Bettongia gaimardi – do not feed often on Elaphomyces is 

because of its faint aroma. It also may be that the low frequency of Elaphomyces is due 

to dispersal strategy of the fungus, as it is partly wind-dispersed. When mycophages 

open the sporocarp, the powdery mass of spores is freed into the air, enabling additional 

dispersion when animals feed on the peridium (Schickmann et al. 2014). This could be 

linked with the structure of the Elaphomyces sporocarp, which may be not attractive to 

animals. In such a case, the animal opens the sporocarp and eats some part of the 

peridium, but leaves the powdery spore mass, allowing dispersion by wind 

(Trappe et al. 2009). Even though animals mostly eat the peridium, samples taken from 

them still contain some amounts of mature spores (Trappe, Maser 1976). 

Although in the analysed samples Glomus was one of the more frequent 

genera, the second endomycorrhizal genus – Endogone was among the least frequent. 

This may be due to the fact, that Endogonaceae produce a fainter odour and are smaller 

than other hypogeous fungi (Ure, Maser 1982), but also to changes in nomenclature, 

where some Endogone fungi were included to Glomus (Meyer et al. 2015) 

 

6.5. Morphometric characteristics and ornamentation 

 

The observation of seasonal morphometric diversity of spores turned out to be 

inconclusive. The first condition for ANOVA I testing of morphometric diversity was 

for spores to occur in all three seasons and the second was the sufficient number of 

measured spores. The only statistically significant result of ANOVA I testing was for 

the genus Rhizopogon. Spores of this genus increased in size from spring and through 

summer and autumn. This may suggest that Rhizopogon is available to animals 

throughout the year and in great numbers, unlike some genera like Pachyphloeus and 

Genea, which were in samples only in one, given season. This however needs to be 

confirmed in further studies on mycophagy combined with fenological studies on 
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hypogeous fungi. Studying faecal samples gives scientists more information about the 

taxa found in the given terrain, but in the process some taxonomical information is lost. 

Most spores found in animals can be identified to genus level, but identification to 

species may be problematic (Remick 2015). One of the most characteristic features of 

hypogeous spores is their ornamentation. The patterns of the ornamentation are specific 

for each genus, which is what makes hypogeous fungi identifiable under the 

microscope. However it is sometimes insufficient to identify spores to species level, as 

their colour, size and ornamentation change with age. This makes identification difficult 

in case of immature spores. The ornamentation can also partly dissolve after passage 

through the animal gut. This is a source of speculation, that the ornamentation serves as 

a protective barrier against spore digestion (Claridge et al. 1992; Trappe, Claridge 2005; 

Trappe et al. 2009). In this study the Author’s observation on the matter is that under 

the microscope spores were rarely found in clear suspension, but usually in the 

sediment. Under the microscope, spores were found in fields where faecal material was 

gathered. The Author therefore presumes that ornamentation of the spores enables their 

enclosing in faecal material. After passing through the animal gut, the gathered material 

in spaces between the ornamentation may serve as a nutrient reservoir for the spores 

during further development in the soil (Li et al. 1986). 

 

6.6. Final remarks 

 

Hypogeous fungi are a very interesting group to study by mycologists. They 

are frequently found in mycorrhizal samples and samples from animals, but less 

frequently as sporocarps. Often more hypogeous taxa are found in animal samples than 

was reported found in the environment by researchers (Johnson 1994; Pyare, Longland 

2001; Izzo et al. 2005; Kataržytė, Kutorga 2011; Remick 2015). 

As a lot of mycorrhizal fungi are consumed by animals, making mycorrhiza 

and mycophagy inseparable phenomena, influencing the structure, functioning and 

stability of the forest ecosystem (Johnson 1996). It is highly possible that mycophagy is 

a network-phenomenon, like pollination and frugivory. This indicates a high 

specialization of the organisms involved – fungi produce aromas attractive to 

mycophages and animals develop metabolic mechanisms suitable to digest fungal 

material. The phenomenon itself and its role in the forest ecosystem is still not fully 

understood (Maser et al. 1985; Trappe at al. 2009; Schickmann et al. 2014). As it is with 
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all complex networks, a disruption in any of the levels constructing this system will 

inevitably impact others and by this influence other elements of the forest ecosystem 

such a predators (Maser et al. 1985; North et al. 1997; Trappe et al. 2009). In this field 

of study, there are still aspects of animal-fungus-tree relationship that science has yet to 

uncover. It is still inconclusive, how these relations influence the resilience and 

productivity of the whole ecosystem. Interactions between mammals and fungi may 

have an important role in retaining forest health, and the regeneration of forest stands 

after clear cuts, where there is a need for reinoculation with spores (Maser et al. 1985; 

Pyare, Longland 2001; Trappe, Claridge 2005; Jacobs, Luoma 2008; Trappe et al. 2009; 

Schickmann et al. 2014). Legal protection of hypogeous fungi has recently shifted from 

species protection to habitat protection, so to protect fungi as well as their mycophages, 

mycorrhizal hosts, and ceased wood, which also benefits, both fungi and animals 

(Grzywacz 2003; Trappe et al. 2009; Ławrynowicz 2014-2015) 

A question remains about the factors that influence the germination of spores 

after passing through the animal digestive tract. In particular, how gut retention, body 

temperature, anatomical differences and animal physiology influence the development 

of the mycelium itself and the formation of mycorrhizae. These are particularly difficult 

questions, as testing the hypothesis for them is problematic in the natural environment 

(Claridge et al. 1992; Colgan, Claridge 2002). There also remain questions of ecological 

nature, like how animal activity influences trees and fungi, both negative (eating the 

roots) and positive (aeration and turning of the soil). 

The forest ecosystem in its whole is composed of living organisms and is 

regulated by interactions between them. Animals depend on plants for food, shelter and 

breeding places. In turn, the growth of plants is conditioned by mycorrhizal fungi. 

Therefore, the forest should be considered as a system with overlapping trophic and 

symbiotic interactions where every component benefits from the ecosystem and has 

an input on its prolonged functioning (Maser et al. 1985; Maser, Maser 1988a). Fungi 

play an important binding role in this system, through mycorrhiza linking hyphae with 

plants and through mycophagy connecting sporocarps to animals (Maser, Maser 1988a). 

Only an integrated research, combining knowledge of various natural sciences 

(mycology, zoology, botany, ecology) can provide methods for conducting studies for 

better understanding, protection, restoration and management of the forest resources 

(McCreary 2004; Izzo et al. 2005; Nathan 2006; Trappe et al. 2009; Ławrynowicz 2014-

2015).  
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7. CONCLUSIONS 
 

The recorded seasonal differentiation in samples shows that hypogeous fungi 

may be a significant element in the diet of forest rodents. In particular, the Author 

concludes: 

 In spring and autumn, M. glareolus and A. flavicollis eat the most common 

hypogeous fungi, and in summer season both species consume significantly 

more fungi from a multitude of genera. The amount of found spores follows 

the patterns of high temperature and mild rainfall. 

 The mean number of spores found in samples was higher in Spała than in 

Konewka. This may be due to more favourable microhabitat conditions in 

Spała, especially for hypogeous ascomycetes. 

 Significantly more spores were found in samples from traps which were closer 

to the road. This corresponds to the fact that close proximity to trampled 

pathways limits plant vegetation and favours formation of sporocarps. 

 M. glareolus is more mycophagous than A. flavicollis, as samples from voles 

were richer in fungal genera the those from mice. 

 Young specimens of both species eat more hypogeous fungi than adults. The 

young are more likely to forage closer to the ground and due to their mobility, 

they play an important role in spore dispersion. 

 Females of A. flavicollis eat more hypogeous fungi than males. Females are 

more sedentary than males and forage in places suitable for fruiting of 

hypogeous fungi. 

 Spores of genus Rhizopogon were observed to increase in size from spring 

through summer and autumn. This suggests that this genus is available to 

animals throughout the year unlike some genera which were found in samples 

only in one given season. 

 



 81 

8. SUMMARY 
 

Hypogeous fungi are a ecological group which congregates various fungal 

genera from Ascomycota, hypogeous ‘gasteromycetes’ from Basidiomycota and a few 

taxa from Glomeromycota. Though taxonomically distant, hypogeous fungi show 

features of convergent evolution in habitat adaptations, because they occupy a specific 

ecological niche. They produce underground, closed macroscopic fruit bodies, and are 

important in the forest ecosystem due to their role as ectomycorrhizal partners for 

plants, especially forest trees. As their sporocarps remain close, the fungi rely mostly on 

animals as vectors of dispersion. In case of hypogeous ascomycetes, the asci have no 

opening mechanisms and remain closed until natural decay or digestion by animals. 

Hypogeous fungi produce characteristic odours, detectable by animals which 

feed on them. Most mammals are opportunistic or accidental mycophages which means 

they feed on fungi when this type of food is abundant in the environment or while 

foraging for other food source. Examples of mycophages can be found in the mouse 

family Muridae and the vole family Arvicolinae. 

The aim of this study is to examine the significance of hypogeous fungi in diet 

of rodents in the forest ecosystem of Central Poland. The study will verify the 

hypothesis that hypogeous fungi are an important component of rodent diet and that 

mycophagy plays a significant role in the forest ecosystem. For this purpose, the Author 

examined the occurrence of spores in faecal samples from two species of rodents: bank 

vole Myodes glareolus and yellow-necked mouse Apodemus flavicollis. Both species 

are widely spread in the Palaearctic, abundant in forest ecosystems and are reported as 

preferential or opportunistic mycophages. In particular the following issues were of a 

special concern (1) the diversity of fungal genera in faecal samples; (2) difference in 

spore occurrence in samples obtained in three seasons: spring, summer and autumn; (3) 

differences in spore occurrence in relation to study area, animal species, sexes and age. 

This is the first study of this kind conducted in central Poland and is based on 

original field research and microscope analysis of samples gathered in the field. 

The study was carried out by live trapping animals. The study was conducted 

in the Spała (5131’37” N 2008’42” E) and Konewka (5104’08” N 2009’26” E) 

nature reserves, located in Pilica Forest, in Łódzkie Voivodship in central Poland, 

between July 2013 and May 2015. Once an animal was caught, its species was 
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determined. After the capture, animals were weighed and their sex and age group 

(juvenile or adult) were determined for later comparisons. The animals were marked 

with a red dot on the abdomen and released. Faecal samples were then taken from the 

live traps and placed in a 1,5 ml Eppendorf tube with 1 ml of 90% ethanol for 

preservation. Samples were examined using NIKON E200 light microscope under x600 

magnification. Spores of hypogeous fungi which were found in samples were 

determined to genus level. Twelve hypogeous genera were present in the samples: 

Elaphomyces, Hydnotrya, Pachyphloeus, Genea, Tuber, Hymenogaster, Melanogaster, 

Rhizopogon, Scleroderma, Gautieria, Glomus and Endogone. 

Statistical analysis of seasonal differences in animal diet as well as differences 

between animal’s species, age and sex has shown that in spring and autumn, M. 

glareolus and A. flavicollis eat the most common genera of hypogeous fungi, and in 

summer season both species consume significantly more fungi from a multitude of 

genera. The amount of found spores follows the patterns of high temperature and mild 

rainfall. The mean number of spores found in samples was higher in Spała than in 

Konewka. This may be due to more favourable microhabitat conditions in Spała, 

especially for hypogeous ascomycetes. Significantly more spores were found in samples 

from traps which were closer to the road. This corresponds to the fact that close 

proximity to trampled pathways limits plant vegetation and favours formation of 

sporocarps. M. glareolus is more mycophagous than A. flavicollis, as samples from 

voles were richer in fungal genera the those from mice. Young specimens of both 

species eat more hypogeous fungi than adults. The young are more likely to forage 

closer to the ground and due to their mobility, they play an important role in spore 

dispersion. Also females of A. flavicollis eat more hypogeous fungi than males. Females 

are more sedentary than males and forage in places suitable for fruiting of hypogeous 

fungi. 

Spores of genus Rhizopogon were observed to increase in size from spring 

through summer and autumn. This suggests that this genus is available to animals 

throughout the year unlike some genera which were found in samples only in one given 

season. The Author also presumes that the ornamentation on the surface of the spores 

may serve as a reservoir for nutritional material from the faeces. 
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9. STRESZCZENIE 
 

Grzyby podziemne to grupa ekologiczna składająca się z różnych gatunków 

grzybów spośród Ascomycota, Basidiomycota oraz kilku rodzajów z Glomeromycota. 

Choć taksonomicznie odległe, należące do tej grupy grzyby wykazują zbieżne cechy 

ewolucyjne w przystosowaniu do środowiska, co wynika z zajmowania przez nie 

specyficznej niszy ekologicznej. Grzyby te wytwarzają podziemne, zamknięte, 

makroskopowe owocniki i są istotne dla ekosystemu leśnego ze względu na swoją rolę 

jako partnerzy ektomykoryzowi dla roślin, głownie drzew lasotwórczych. Ze względu 

na fakt, że ich owocniki pozostają zamknięte, w zakresie rozprzestrzeniania się grzyby 

te głównie wykorzystują zwierzęta. W przypadku Ascomycota, worki nie posiadają 

mechanizmów otwierających, pozostając zamknięte aż do samoistnego rozpadu lub 

strawienia przez zwierzę. 

Grzyby podziemne wydzielają charakterystyczny zapach, wyczuwalny przez 

zwierzęta, które się nimi żywią. Większość ssaków zalicza się do przypadkowych lub 

oportunistycznych mykofagów, co oznacza, że żywią się grzybami wtedy, gdy te 

obficie występują w środowisku lub też gdy znajdują je szukając innego pożywienia. 

Przykłady mykofagów można znaleźć wśród myszy z rodziny Muridae i norników 

z rodziny Arvivolinae. 

Celem badań przedstawionych w rozprawie jest ocena znaczenia grzybów 

podziemnych w diecie gryzoni w ekosystemach leśnych w Polsce Środkowej, 

w szczególności potwierdzenie hipotezy o znacznym udziale grzybów podziemnych 

w diecie gryzoni, a co za tym idzie ważnej roli mykofagii w ekosystemie leśnym. 

W tym celu Autorka zbadała obecność zarodników w próbkach odchodów zebranych od 

dwóch gatunków gryzoni: nornicy rudej Myodes glareolus oraz myszarki leśnej 

Apodemus flavicollis. Oba gatunki badanych zwierząt są szeroko rozprzestrzenione w 

Palearktyce i występują powszechnie w ekosystemach leśnych. Uważa się je również za 

preferencyjnych lub oportunistycznych mykofagów. W szczególności zbadano 

następujące zagadnienia: (1) różnorodność taksonomiczne grzybów w próbkach; (2) 

różnice w pojawianiu się zarodników w próbach z trzech pór roku: wiosny, lata i 

jesieni; (3) różnice w obecności zarodników w zależności od terenu badań, gatunku 

zwierzęcia, jego płci oraz wieku. 
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Są to pierwsze badania tego rodzaju przeprowadzone w Polsce Środkowej, 

oparte na oryginalnych badaniach terenowych i analizie mikroskopowej próbek 

pobranych od zwierząt. 

Badanie przeprowadzono metodą chwytania zwierząt w pułapki żywołowne 

w rezerwatach Spała (51°31’37” N, 20°08’42” E) i Konewka (51°04’08” N, 20°09’26” 

E), w Puszczy Pilickiej (województwo łódzkie) między czerwcem 2013 

a majem 2015 r. Złapane zwierza po wyjęciu z pułapek, oznaczano do gatunku oraz 

ustalono płeć, wagę i wiek dla późniejszych porównań. Zwierzęta oznaczano czerwoną 

kropką na stronie brzusznej i wypuszczano. Próbki odchodów były pobierane z pułapek, 

umieszczone w próbówkach (Eppendorf, 1,5 ml) i utrwalone w 1 ml 90% etanolu. 

Próbki były analizowane przy użyciu mikroskopu świetlnego NIKON E200 (x600). 

Znalezione w próbkach zarodniki grzybów podziemnych zostały oznaczone do rodzaju, 

a gdzie było to możliwe, do gatunku. W próbkach zidentyfikowano dwanaście rodzajów 

grzybów podziemnych: Elaphomyces, Hydnotrya, Pachyphloeus, Genea, Tuber, 

Hymenogaster, Melanogaster, Rhizopogon, Scleroderma, Gautieria, Glomus oraz 

Endogone.  

Analiza statystyczna zróżnicowania sezonowego w diecie gryzoni, jak również 

porównanie składu ilościowego i jakościowego prób między gatunkami zwierząt, 

grupami wiekowymi i płciami wykazały, że grzyby podziemne są atrakcyjnym 

pożywieniem dla zwierząt w czasie letnim. Wiosną i jesienią M. glareolus i A. 

flavicollis żywią się pojedynczymi i łatwo dostępnymi rodzajami grzybów, natomiast w 

lecie zwierzęta konsumują istotnie więcej grzybów z wielu rodzajów. Ilość zarodników 

znalezionych w próbach korespondowała z występowaniem wysokich temperatur i 

umiarkowanych opadów. Średnia liczba zarodników była wyższa w próbach zebranych 

w Spale. Może to wskazywać, że w Spale występują lepsze warunki dla rozwoju 

owocników niż w Konewce. Ma to szczególne znaczenie dla podziemnych workowców, 

dla których analiza statystyczna wykazała istotną zależność od terenu badań. Istotnie 

więcej zarodników znaleziono w próbach pobranych z pułapek ustawionych bliżej 

drogi. Przemawia to za stwierdzeniem, że owocniki grzybów podziemnych pojawiają 

się częściej przy wydeptywanych ścieżkach, gdzie roślinność jest przerzedzona i są 

lepsze warunki do rozwoju grzybów. 

Nornice częściej niż muszarki wybierają grzyby jako źródło pokarmu, jako że 

w próbach od nornic odnotowano większe zróżnicowanie taksonomiczne grzybów, niż 

w próbach od myszarki. Młode osobniki jedzą więcej grzybów podziemnych niż 
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osobniki dorosłe. Młode zwierząta wyszukują pokarm bliżej powierzchni gruntu, a ze 

względu na swoją mobilność, pełnią w ten sposób istotną rolę w rozprzestrzeniamu 

zarodników. Również samice myszarki leśnej są bardziej mykofagiczne niż samce. Są 

one bardziej stacjonarne niż samce i żerują w miejscach odpowiednich dla owocników 

grzybów podziemnych. 

Analiza morfometryczna zarodników z rodzaju Rhizopogon wykazała iż 

zarodniki te zwiększały swoje rozmiary w ciągu roku. Sugeruje to, iż grzyby z tego 

rodzaju są dostępne dla zwierząt przez cały rok, w odróżnieniu od niektórych rodzajów, 

które były znajdowane tylko w czasie określonej pory roku. Ponadto Autorka 

zauważyła, że skulptura na powierzchni zarodników może magazynować substancje 

odżywcze znajdujące się w odchodach zwierząt. 
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Appendix 1. 
Tables for factor analysis. 

 

In presented Tables values marked in red are statistically significant. 

 

Table 1. Factor analysis for weather conditions 
 

Weather conditions PCA1 PCA2 

Average temperature 0,968 0,123 

Maximum temperature 9,65 0,108 

Minimum temperature 0,838 0,458 

Humidity -0,927 0,138 

Rainfall -0,258 0,764 

Average wind speed 0,341 0,872 

Maximum wind speed 0,363 0,845 

Fog -0720 -0,367 

Expo. Var 4,262 2,451 

Prp. Totl 0,533 0,306 

 

Table 2. All possible statistical models for weather conditions (PCA1, PCA2), study 
plot and rodent species, using the Akaike Information Criterion 

 
 Var. 1 Var. 2 Var. 3 Var 4. dr AIC L. Ratio χ2 

1 PCA1 PCA2 Study plot Rodent 
species 

4 2543,8 994,15 

2 PCA1 PCA2 Rodent 
species 

 3 2632,7 903,30 

3 PCA1 Rodent 
species 

  2 2654,9 879,11 

4 PCA1 Study plot Rodent 
species 

 3 2668,9 867,10 

5 PCA1 PCA2   22 2717,3 816,65 

6 PCA1 Study plot   2 2754,4 779,58 

7 PCA1    1 2756,0 775,95 

8 PCA1 PCA2 Study plot  3 2789,0 746,94 

9 Study plot Rodent 
species 

  2 3146,5 387,52 

10 PCA2 Study plot Rodent 
species 

 3 3146,7 389,32 

11 PCA2 Rodent 
species 

  2 3269,5 264,47 

12 Rodent 
species 

   1 3281,5 250,43 

13 PCA2 Study plot   2 3325,2 208,75 

14 Study plot    1 3335,0 197,01 

15 PCA2    1 3460,3 71,67 
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Table 3. Statistics for chosen models from Table 2 
 

Effect Effect 
Level 

Evaluation Std. Er. Walda Stat. Upper GU 
95,0% 

Lower GU 
95,0% 

p 

Intercept  5,20034 0,171387 920,6806 4,86443 5,53626 < 0,0001

PCA1  3,70594 0,128311 834,2005 3,45446 3,95743 < 0,0001

PCA2  -0,47936 0,047514 101,7817 -0,57248 -0,38623 < 0,0001

Study plot 1 1,49856 0,056332 707,6934 1,38816 1,60897 < 0,0001

Rodent 
species 

1 -1,82462 0,117337 241,8062 -2,05458 -1,59463 < 0,0001

Scale  1,00000 0,000000  1,00000 1,00000 

 

Table 4. Analysis of diversity of ascomycetous spores in relation to weather conditions 
(component 1-2), study plot and rodent species 

 
Effect df Wald Stat. p 

Intercept 1 92,15 <0,0001 

PCA1 1 58,17 <0,0001 

PCA2 1 53,13 <0,0001 

Study plot 1 11,50 0,001 

Rodent species 1 2,51 0,113 

 

Table 5. Analysis of diversity of basidiomycrtous spores in relation to weather 
conditions (component 1-2), study plot and rodent species 

 
Effect df Wald Stat. p 

Intercept 1 812,92 <0,0001 

PCA1 1 723,54 <0,0001 

PCA2 1 431,04 <0,0001 

Study plot 1 0,07 0,936 

 

Table 6. Analysis of diversity of glomeromycetous spores in relation to weather 
conditions (component 1-2), study plot and rodent species 

 
Effect df Wald Stat. p 

Intercept 1 105,00 <0,0001 

PCA1 1 15,36 <0,0001 

PCA2 1   
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Table 7. All possible statistical models for rodent species and sex, using the Akaike 
Information Criterion 

 
 Var. 1 Var. 2 Var. 3 df AIC L. Ratio χ2 

1 Species Sex Species*sex 3 3052,509197 128,663173 

2 Species Species*sex  2 3055,809821 123,362549 

3 Species Sex  2 3055,950506 123,221864 

4 Species   1 3094,745003 82,427367 

5 Sex Species*sex  2 3114,325474 64,846896 

6 Species*sex   1 3128,043355 49,129015 

7 Sex   1 3137,762687 39,409683 

 

Table 8. All possible statistical models for rodent species and age, using the Akaike 
Information Criterion 

 
 Var. 1 Var. 2 Var. 3 df AIC L. Ratio χ2 

1 Species Age Species*age 3 3403,675839 263,443703 

2 Species Age  2 3407,717596 257,401946 

3 Species Species*age  2 3434,971028 230,148513 

4 Species   1 3435,089222 228,030319 

5 Age Species*age  2 3529,914375 135,205166 

6 Age   1 3560,376147 102,743394 

7 Species*age   1 3623,938522 39,181019 
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Appendix 2. 
Soil analysis 

 

Table 1. Soil analysis in the study area: pH in H2O, pH in KCl, presentage of organic 
compunds (N, C and organic matter) and K2O, P2O5, CaO, K, Na, Ca and Mg in 
mg per 100 g of soil. Data gather from 10 plots in each study plot (Spała S 1-10 
and Konweka K 1-10) (Ławrynowicz, Mleczko unpublished data). 

 

Lp pH in 
H2O 

pH in 
KCl 

org. 
N 

org. 
C 

org. 
mat 

K2O P2O5 CaO K Na Ca Mg 

S 1 5,64 4,22 0,380 3,823 6,591 4,0 10 16,8 1,4 2,3 12 1,0 

S 2 5,03 3,96 0,290 5,639 9,722 3,6 13,2 22,4 1,4 2,4 16 1,6 

S 3 4,60 3,66 0,287 6,155 10,396 5,0 7,6 30,8 2,0 0,9 22 2,4 

S 4 4,53 3,55 0,391 7,325 12,628 9,6 7,0 37,8 4,8 2,3 27 2,2 

S 5 4,57 3,60 0,419 7,550 12,300 5,8 5,4 28,0 2,0 2,8 20 1,6 

S 6 3,96 3,68 0,285 5,081 8,760 8,6 9,4 25,2 3,0 1,1 18 3,0 

S 7 4,68 4,02 0,167 2,950 5,172 5,8 9,4 25,2 2,0 1,1 18 2,4 

S 8 5,14 4,13 0,304 5,493 9,470 5,0 4,4 25,2 2,6 1,3 18 0,6 

S 9 5,01 4,03 0,674 10,85 18,705 12,2 10,4 75,6 8,6 1,6 54 3,0 

S 10 4,37 3,36 0,299 5,041 8,708 5,8 3,2 44,8 2,6 0,9 32 1,0 

K 1 5,62 4,74 0,133 2,440 4,206 11,4 8,0 98 7,4 2,1 70 5,0 

K 2 5,61 4,55 0,148 2,330 4,017 9,8 10,6 50,4 6,2 2,8 36 3,0 

K 3 5,12 3,90 0,360 7,000 12,068 41,5 21,6 103,6 30,6 2,3 74 8,0 

K 4 5,69 4,62 0,146 2,653 4,574 10,4 14,0 47,6 7,0 2,4 34 3,0 

K 5 5,84 4,55 0,141 2,226 3,839 12,6 17,8 36,4 9,2 2,8 26 4,0 

K 6 5,91 4,67 0,119 1,962 3,382 8,6 12,6 42,0 5,8 2,3 30 3,6 

K 7 5,25 4,31 0,294 5,259 9,067 10,2 21,6 162,4 7,0 3,8 116 5,4 

K 8 5,32 4,34 0,155 2,371 4,088 10,4 12,6 61,6 5,4 1,6 44 0,0 

K 9 4,60 3,67 0,195 3,021 5,592 6,2 13,2 28,0 2,6 0,9 20 0,0 

K 10 5,03 4,06 0,366 6,959 11,997 17,6 20,4 109,2 12,2 3,8 78 0,0 
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Appendix 3. 
Morphometrical analysis of spores found in faecal samples 

 

 

Table 1. Descriptive statistics for length and width of Elaphomyces spores, with N 
(number of spores measured), Std. D. (standard deviation) and Std. Er. (standard 
error). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 60 19,53 13,33 23,33 2,23 -0,26 0,31 0,26 0,61

Width 60 18,99 13,33 23,33 2,33 -0,10 0,31 -0,42 0,61

CI 60 0,97 0,83 1,08 0,05 -0,85 0,31 0,42 0,61

 

 

Table 2. Descriptive statistics for length and width of Elaphomyces spores found in 
spring (column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 36 20,64 18,33 23,33 1,56 0,49 0,393 -0,64 0,79

Width 36 19,99 16,25 23,33 1,97 -0,044 0,393 -0,63 0,77

CI 36 0,9679
1

0,83 1,083 0,05 -0,60 0,393 0,29 0,77

 

 

Table 3. Descriptive statistics for length and width of Elaphomyces spores found in 
summer (column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 24 17,88 13,33 23,33 2,070 0,22 0,472 1,36 0,92

Width 24 17,50 13,33 21,67 2,03 0,00 0,472 -0,34 0,92

CI 24 0,98 0,90 1,00 0,037 -1,39 0,472 0,089 0,92

 

 

Table 4. Descriptive statistics for length and width of Hydnotrya spores (column 
designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 42 33,97 18,33 46,67 6,21 -0,36 0,37 0,02 0,72

Width 42 30,16 13,33 38,33 5,52 -0,67 0,37 0,51 0,72

CI 42 0,89 0,70 1,00 0,08 -0,49 0,37 -0,35 0,72
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Table 5. Descriptive statistics for length and width of Hydnotrya spores found in spring 
(column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 4 36,25 31,67 41,67 5,34 0,084 1,014185 -5,52 2,62

Width 4 30,42 25,00 38,33 5,67 1,199 1,014185 1,98 2,62

CI 4 0,84 0,75 0,92 0,082 -0,12 1,014185 -4,44 2,62

 

Table 6. Descriptive statistics for length and width of Hydnotrya spores found in 
summer (column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 33 35,05 25,00 46,67 5,13 0,20 0,41 -0,28 0,80

Width 33 31,26 25,00 38,33 4,29 -0,12 0,41 -1,25 0,80

CI 33 0,90 0,70 1,00 0,08 -0,49 0,41 -0,03 0,80

 

Table 7. Descriptive statistics for length and width of Hydnotrya spores found in 
autumn (column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 5 25,00 18,33 36,67 6,97 1,54 0,91 2,92 2,00

Width 5 22,67 13,33 35,00 7,78 0,94 0,91 2,47 2,00

CI 5 0,90 0,73 1,00 0,11 -1,20 0,91 1,38 2,00

 

Table 8. Descriptive statistics for length and width of Genea spores (column 
designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 21 28,81 23,33 35,00 3,81 -0,08 0,50 -0,97 0,97

Width 21 22,30 16,67 31,67 2,91 1,28 0,50 5,08 0,97

CI 21 0,78 0,62 1,00 0,11 0,66 0,50 -0,23 0,97

 

Table 9. Descriptive statistics for length and width of Tuber spores (column 
designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 23 25,76 16,67 48,33 6,99 2,13 0,48 5,00 0,94

Width 23 20,21 13,33 40,00 6,04 2,04 0,48 5,10 0,94

CI 23 0,79 0,62 1,00 0,11 0,17 0,48 -1,01 0,94
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Table 10. Descriptive statistics for length and width of Tuber spores found in summer 
(column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 21 23,93 16,67 33,33 3,47 0,65 0,50 2,09 0,97

Width 21 18,64 13,33 25,00 3,05 -0,08 0,50 -0,42 0,97

CI 21 0,78 0,62 1,00 0,11 0,14 0,50 -0,86 0,97

 

Table 11. Descriptive statistics for length and width of Tuber spores found in autumn 
(column designations see Table 1). 

 

 Dimension N Mean Min Max Std. 
D. 

Length 2 45,00 41,67 48,33 4,71

Width 2 36,67 33,33 40,00 4,72 
CI 2 0,83 0,69 0,96 0,19

 

Table 12. Descriptive statistics for length and width of Hymenogaster spores (column 
designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 168 18,55 10,00 33,33 3,47 0,69 0,19 1,36 0,37

Width 168 10,19 6,67 20,00 2,03 1,35 0,19 3,65 0,37

CI 168 0,56 0,33 0,90 0,10 0,61 0,19 0,89 0,37

 

Table 13. Descriptive statistics for length and width of Hymenogaster spores found in 
spring (column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 48 19,58 13,33 33,33 4,01 1,13 0,34 1,82 0,67

Width 48 10,14 6,67 15,00 1,73 0,24 0,34 0,26 0,67

CI 48 0,53 0,40 0,90 0,09 1,57 0,34 5,53 0,67

 

Table 14. Descriptive statistics for length and width of Hymenogaster spores found in 
summer (column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 105 18,01 10,00 25,00 3,19 0,22 0,24 -0,19 0,47

Width 105 10,25 6,67 20,00 2,23 1,54 0,24 3,66 0,47

CI 105 0,58 0,33 0,90 0,10 0,24 0,24 0,29 0,47
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Table 15. Descriptive statistics for length and width of Hymenogaster spores found in 
autumn (column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 15 19,00 15,00 23,33 2,87 -0,24 0,58 -1,49 1,12

Width 15 9,94 8,33 11,67 1,36 0,01 0,58 -1,49 1,12

CI 15 0,53 0,42 0,67 0,07 0,42 0,58 0,18 1,12

 

Table 16. Descriptive statistics for length and width of Melanogaster spores (column 
designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 64 14,81 10,00 28,33 3,52 2,53 0,30 7,28 0,59

Width 64 8,28 6,67 15,00 1,54 2,40 0,30 7,47 0,59

CI 64 0,57 0,42 0,86 0,08 0,97 0,30 1,86 0,59

 

Table 17. Descriptive statistics for length and width of Melanogaster spores found in 
summer (column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 61 14,37 10,00 27,50 2,73 2,72 0,31 11,45 0,60

Width 61 8,13 6,67 15,00 1,32 2,83 0,31 13,00 0,60

CI 61 0,57 0,42 0,86 0,08 0,97 0,31 1,90 0,60

 

Table 18. Descriptive statistics for length and width of Melanogaster spores found in 
autumn (column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Length 2 27,50 26,67 28,33 1,17

Width 2 12,92 12,50 13,33 0,59 
CI 2 0,47 0,44 0,50 0,04

 

Table 19. Descriptive statistics for length and width of Rhizopogon spores (column 
designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 202 15,57 10,00 20,00 1,72 -0,08 0,17 0,46 0,34

Width 202 6,60 5,00 16,67 1,16 3,60 0,17 28,84 0,34

CI 202 0,43 0,27 1,00 0,07 2,45 0,17 17,10 0,34
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Table 20. Descriptive statistics for length and width of Rhizopogon spores found in 
spring (column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 7 15,00 11,67 18,33 2,54 0,39 0,79 -1,12 1,59

Width 7 6,67 5,00 8,333 0,96 -0,01 0,79 3,00 1,59

CI 7 0,45 0,36 0,56 0,07 0,03 0,79 -1,23 1,59

 

Table 21. Descriptive statistics for length and width of Rhizopogon spores found in 
summer (column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 191 15,51 10,00 20,00 1,62 -0,28 0,18 0,49 0,35

Width 191 6,56 5,00 16,67 1,14 3,94 0,18 33,18 0,35

CI 191 0,43 0,27 1,00 0,07 2,59 0,18 18,16 0,35

 

Table 22. Descriptive statistics for length and width of Rhizopogon spores found in 
autumn (column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 4 19,17 16,67 20,00 1,67 -2,00 1,01 4,00 2,62

Width 4 8,33 6,67 10,00 1,36 0,01 1,01 1,50 2,62

CI 4 0,44 0,33 0,50 0,08 -0,85 1,01 -1,31 2,62

 

Table 23. Descriptive statistics for length and width of Scleroderma spores (column 
designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 12 15,00 8,33 20,00 3,26 -0,53 0,64 0,32 1,23

Width 12 14,58 8,33 20,00 3,19 -0,23 0,64 0,20 1,23

CI 12 0,97 0,89 1,00 0,05 -1,37 0,64 -0,10 1,23

 

Table 24. Descriptive statistics for length and width of Scleroderma spores found in 
summer (column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 11 15,00 8,33 20,00 3,42 -0,51268 0,66 0,017 1,28

Width 11 14,70 8,33 20,00 3,32 -0,34687 0,66 0,08 1,28

CI 11 0,98 0,89 1,00 0,04 -1,98011 0,66 2,45 1,28
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Table 25. Descriptive statistics for length and width of Gautieria spores (column 
designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 30 16,50 11,67 21,67 2,75 0,47 0,43 -0,57 0,83

Width 30 9,94 6,67 15,00 1,92 0,96 0,43 0,59 0,83

CI 30 0,61 0,42 0,75 0,10 -0,34 0,43 -1,04 0,83

 

Table 26. Descriptive statistics for length and width of Gautieria spores found in spring 
(column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 4 15,00 13,33 16,67 1,36 0,00 1,01 1,50 2,62

Width 4 9,375 8,33 10,00 0,80 -0,87 1,01 -1,24 2,62

CI 4 0,63 0,56 0,69 0,06 -0,34 1,01 -3,05 2,62

 

Table 27. Descriptive statistics for length and width of Gautieria spores found in 
summer (column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 25 16,60 11,67 21,67 2,83 0,40 0,46 -0,59 0,90

Width 25 10,03 6,67 15,00 2,08 0,81 0,46 0,01 0,90

CI 25 0,61 0,42 0,75 0,11 -0,37 0,46 -1,13 0,90

 

Table 28. Descriptive statistics for length and width of Glomus spores (column 
designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 82 61,78 21,67 166,67 28,47 1,04 0,27 1,74 0,53

Width 82 55,48 6,00 143,33 26,68 1,03 0,27 1,16 0,53

CI 82 0,91 0,09 1,43 0,14 -1,96 0,27 17,34 0,53

 

Table 29. Descriptive statistics for length and width of Glomus spores found in spring 
(column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 17 34,22 21,67 56,67 14,45 0,71446 0,55 -1,49 1,06

Width 17 31,86 21,67 50,83 11,82 0,69021 0,55 -1,53 1,06

CI 17 0,95 0,77 1,04 0,07 -1,44644 0,55 1,87 1,06
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Table 30. Descriptive statistics for length and width of Glomus spores found in summer 
(column designations see Table 1). 

 
Dimension N Mean Min Max Std. 

D. 
Skewness Std. Er 

Skewness 
Kurtosis Std. Er. 

Kurtosis 
Length 48 74,62 25,00 166,67 27,70 1,159 0,34 1,75 0,67

Width 48 66,27 6,00 143,33 27,87 0,73 0,34 0,52 0,67

CI 48 0,89 0,09 1,43 0,17 -1,54 0,34 12,83 0,67

 

Table 31. Descriptive statistics for length and width of Glomus spores found in autumn 
(column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 17 53,09 33,33 78,33 16,01 0,37 0,55 -1,66 1,06

Width 17 48,63 31,67 71,67 13,77 0,54 0,55 -1,33 1,06

CI 17 0,92 0,79 1,00 0,07 -0,60 0,55 -0,82 1,06

 

Table 32. Descriptive statistics for length and width of Endogone spores (column 
designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 13 47,44 21,67 73,33 17,88 -0,10 0,62 -1,44 1,19

Width 13 40,96 20,83 68,33 14,10 0,065 0,62 -0,26 1,19

CI 13 0,88 0,71 1,20 0,13 1,27 0,62 2,72 1,19

 

Table 33. Descriptive statistics for length and width of Endogone spores found in 
summer (column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 9 56,76 36,67 73,33 12,28 -0,40 0,72 -0,81 1,40

Width 9 47,59 33,33 68,33 10,24 0,75 0,72 1,23 1,40

CI 9 0,84 0,71 0,93 0,07 -0,59 0,72 0,02 1,40

 

Table 34. Descriptive statistics for length and width of Endogone spores found in 
autumn (column designations see Table 1). 

 

Dimension N Mean Min Max Std. 
D. 

Skewness Std. Er 
Skewness 

Kurtosis Std. Er. 
Kurtosis 

Length 4 26,46 21,67 33,33 5,46 0,65 1,01 -2,17 2,62

Width 4 26,04 20,83 40,00 9,31 1,99 1,01 3,97 2,62

CI 4 0,97 0,77 1,20 0,18 0,31 1,01 0,74 2,62

 


