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1. Introduction

Time series with small sample sizes are common in econometrics and reg-
ularly analysed with vector autoregressive (VAR) models. In such cases, con-
fidence intervals for impulse response functions (IRFs) for VAR models have
to be constructed using bootstrapping. Confidence intervals for IRFs based on
asymptotic approximation such as that of Lütkepohl (1990) are known to fall
short of the nominal coverage level in small samples, see e.g. Kilian (1998a).
Kilian proposed a bootstrap algorithm to construct bias corrected small sample
confidence intervals. An extension allowing for an unknown lag order of the VAR
process is given in Kilian (1998b). While the bootstrap intervals achieved higher
coverage frequencies than the asymptotic intervals, they still deviated from the
nominal coverage rate. The deviations in actual coverage from nominal cover-
age levels are particularly pronounced for small sample sizes. When the true
lag order is no longer assumed to be known, the coverage accuracy declines fur-
ther. For processes with unit roots or cointegrated processes the performance
of asymptotic as well as bootstrap confidence intervals was also found to de-
teriorate in Kilian (1998a,b). This confirmed the result of Basawa et al. (1991),
who show that the standard bootstrap algorithm is not valid for cointegrated
VAR models in levels. However, unit roots may not always be detected and
estimation of a vector error correction model (VECM) requires knowledge of
the cointegration rank. Thus, misspecification can easily occur, as discussed
in Kilian (1998a, p. 225) and Berkowitz and Kilian (2000, p. 30). Therefore,
using a bootstrap method that maintains a high coverage accuracy even when
the process is non-stationary appears desirable.

Two major issues in obtaining an adequate bootstrap distribution are the
bias and the skewness of the least squares (LS) estimator in autoregressive mod-
els.1 To the best of the authors’ knowledge, there is no method for adjusting
the skewness that is practical for IRF analyses. The percentile interval as given
in Hall (1992), also called basic interval, can in principle deal with skewness,
but does not perform well for IRF coefficients, as shown in Kilian (1999) and
also reported in this article. We propose an alternative but related route for
constructing skewness-adjusted confidence intervals. The approach is based on
the idea of mirroring the bootstrap distribution of the least squares estimator of
the autoregressive coefficients before computing the non-linear transformation
that yields the impulse response functions. Thereby, the skewness of the boot-
strap distribution is reversed. Three different implementations of this concept
are investigated and compared to the standard approaches of Kilian (1998a,b)
and of Hall (1992). The mirroring procedures are shown to improve coverage
rates for unit-root processes and for stationary processes in small and medium
sized samples.

1Berkowitz and Kilian (2000, p. 30) conjecture that the poor performance of the bootstrap
confidence intervals in the presence of unit roots and roots close to unity is due to small sample
bias. The evidence presented in this article suggests that skewness may also play an important
role.
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We also show that the proposed adjustments improve the coverage accuracy
of joint confidence bands. Confidence bands are supposed to contain the true
IRF throughout all considered periods with a given probability. Compared to
confidence intervals, the actual coverage rate of joint confidence bands is more
dependent on the tails of the bootstrap distribution of the VAR coefficients.
Thus, adjusting for the skewness may be especially useful in their construction.
Methods for constructing joint bands have been proposed by, among others,
Sims and Zha (1999), Staszewska (2007), Jordà (2009), Jordà and Marcellino
(2010), Staszewska-Bystrova (2011), Staszewska-Bystrova and Winker (2013),
Inoue and Kilian (2013) and Wolf and Wunderli (2015). The performance of
different methods is compared in Lütkepohl et al. (2015a,b). Therein it was
shown that for samples of size 100 and larger and non-persistent processes,
confidence bands constructed using bootstrapping and a method derived from
the Bonferroni principle achieved good coverage rates. However, the coverage
still falls short of the nominal level. We provide evidence that adjusting the
skewness improves the coverage accuracy of joint confidence bands.

Section 2 discusses the problem with skewness and proposes ways to adjust
the bootstrap distribution. Section 3 presents the bootstrap algorithm in detail
and describes the way confidence intervals and bands are obtained. We conjec-
ture that the proposed methods lead to improved coverage rates of confidence
intervals and bands by adjusting the skewness in addition to correcting the bias.
To confirm this, evidence from Monte Carlo simulations is provided in Section
4. We do not derive analytical results regarding the effect on impulse response
functions or the asymptotic validity of the method. Section 5 concludes.

2. Skewness and Mirroring

In this section, we introduce and motivate adjustments to the bootstrap dis-
tribution used to compute confidence intervals and bands for impulse response
functions. For explanatory purposes, consider the simple two-dimensional VAR(1)
process

y1,t = α11y1,t−1 + α12y2,t−1 + ε1,t

y2,t = α21y1,t−1 + α22y2,t−1 + ε2,t, t = 2, ..., T
(1)

for the time series y1,t and y2,t, where ε1,t and ε2,t denote error terms. For
a sample of size T , the parameters αij can be estimated with least squares.
Let α̂ij denote the LS estimators and Fα̂ij their unknown distribution. These
estimators are biased in finite samples and the distribution Fα̂ij is skewed, as
visualized in Figure 1a. Based on a Monte Carlo simulation, the figure shows
an approximation of the distribution Fα̂11 . The data generating process (DGP)
used in the simulation is the one given in (1) with α11=0.5, α12=0, α21=0.5 and
α22=0.5, i.e.

y1,t = 0.5y1,t−1 + ε1,t

y2,t = 0.5y1,t−1 + 0.5y2,t−1 + ε2,t.
(2)
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Figure 1: a) Distribution of α̂11 and α̂bc
11 based on 2000 Monte Carlo simulations

of a DGP given by equation (2). b) Distribution of α̂b,bc
11 and α̂b,m

11 based on 2000
bootstrap simulations using the mean values of α̂bc

ij and α̂ij , respectively, from
Figure 1a.

The error terms ε1,t and ε2,t follow a multivariate normal distribution with
means of zero, variances of one, and a covariance of 0.3. The sample size is
set to T=100 observations. For an unbiased estimator, the mean of α̂11 should
be close to 0.5. However, in this example, the mean LS estimate over 2000
simulated DGPs turns out to be 0.4589. Furthermore, the distribution is not
symmetric. The skewness is -0.2344, i.e., Fα̂11 is skewed left. When generating
a bootstrap distribution, it is common to correct for the bias, but not for the
skewness. Figure 1a also shows the distribution of the bias corrected estimator
α̂bc
11, obtained using the method of Pope (1990). Its mean is 0.4949, so the bias

correction was successful. Unsurprisingly, the skewness remains at -0.2830.
In applications, Fα̂11 is generally unknown and for constructing confidence

intervals a bootstrap distribution that resembles—or is hoped to resemble—the
true distribution Fα̂11 is used. A bootstrap distribution of the bias corrected

bootstrap coefficients α̂b,bc
ij is shown in Figure 1b for i, j=1. It approximately

retains the properties of the distribution of α̂bc
11. With a mean of 0.4975, the bias

is successfully removed, while the skewness is still -0.2699. Thus, the bootstrap
approximation to the true distribution was successful. Nonetheless, using this
distribution to construct confidence intervals without taking into account the
skewness can be inappropriate.

The problem resulting from the skewness is recognized in the literature (see,
e.g., Hall (1992)), but is briefly restated here. A left-skewed distribution Fα̂ij

implies a relatively higher probability of obtaining an estimate far to the left
of the true parameter value of αij . When conducting inference, we start from
the estimate α̂ij and want to infer from this the position of the true αij . Thus,
if Fα̂ij has probability mass further to the left, we want confidence intervals
extending further right to cover the true parameter with sufficient frequency.
The standard approach for constructing percentile confidence intervals, used for
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example in Efron (1981) and Efron and Tibshirani (1986), does not accomplish
this. Such a 1−a confidence interval for a parameter θ is obtained as

CI = [θ̂ba/2; θ̂
b
1−a/2], (3)

where θ̂ba/2 and θ̂b1−a/2 are the
a
2 and 1−a

2 quantiles of the bootstrap distribution

of θ̂. Hall (1992, p. 95) calls this ’looking up the wrong tail [...] of a distribution.’
Hall suggests to compute percentile intervals instead as

CI∗ = [2θ̂ − θ̂b1−a/2; 2θ̂ − θ̂ba/2]. (4)

However, such intervals turned out to not work well if the statistic of interest,
θ, is an impulse response coefficient, as shown in Kilian (1999).

2.1. Mirroring the bootstrap distribution

As an alternative to (3) and (4), we propose to mirror the bootstrap dis-
tribution of the autoregressive coefficients before carrying out the non-linear
transformation to the impulse response coefficients. The mirroring reverses the
skewness of the bootstrap distribution and thus hopefully improves the cover-
age accuracy of confidence intervals. Similarly to the bias correction in Kilian
(1998a), the skewness adjustment is done before computing the IRFs. Correct-
ing for the skewness that is present in the distribution of the autoregressive
coefficients after applying the non-linear IRF-transformation would be infeas-
ible.

The mirroring algorithm is simple. Consider a model such as the VAR(1) in
equation (1). First, we can obtain least squares estimates α̂ij . Next, we generate
B bootstrap time series ybi,t. This can be done by resampling residuals—details

are given in the next section. Based on ybi,t, we obtain bootstrap estimates α̂b
ij .

The mirrored bootstrap estimates are then given by

α̂b,m
ij = α̂ij − (α̂b

ij − α̂ij) ∀ i, j. (5)

Note that, by flipping the bootstrap around the initial estimates, we automatic-
ally subtract the mean bias of the bootstrap distribution relative to the estim-
ated coefficient two times and thus adjust for the bias that has occurred both
in the initial estimation and in the estimation during the bootstrapping. Based
on the mirrored bootstrap estimates, we can proceed to compute the impulse
responses and subsequently the confidence intervals based on Efron’s percentile
interval given in (3). Details are given in Section 3. Using this approach, we

obtain a distribution of the mirrored bootstrap estimator α̂b,m
ij that is plotted

in Figure 1b for i, j=1. This achieves a bias correction as good as using the
algorithm of Pope (1990). The mean of αb,m

11 is 0.4989. In addition, the sign
of the skewness is now almost exactly reversed (from -0.2344 in the true distri-
bution to 0.2391 in the mirrored bootstrap distribution), so we obtain a right
skewed distribution as desired.
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Figure 2: a) Example of bias corrected percentile confidence intervals as in
Kilian (1998a) compared to mirroring confidence intervals. b) Example of Hall
percentile confidence intervals compared to mirroring confidence intervals.

If we are interested in confidence intervals for the AR coefficients, Hall’s
method and the mirroring method result in the same confidence intervals. The
difference between the two comes into play when the quantity of interest is an
impulse response parameter and not an autoregressive parameter. Because the
former is a non-linear transformation of the latter, correcting for the bias and
skewness that is present in the distribution of the AR coefficients after the IRF
transformation is not straightforward. Hence, we intervene at an earlier stage
and mirror the VAR coefficients instead of the IRF coefficients.

Figure 2a shows exemplarily confidence intervals for IRFs obtained using
the ideas of Efron (1981) and Kilian (1998a) (called CI EK). The intervals are
based on the bootstrap distributions shown in Figure 1b. This is compared to
confidence intervals from the mirroring method (labelled M-method). The plot
shows that, due to the right-skewness of the mirrored distribution, the mirroring
confidence intervals collapse less quickly to zero and thus are wider in the later
periods. Figure 2b compares confidence intervals obtained using the method
based on Hall (1992) (called CI Hall) to the mirroring intervals. Hall’s method
also involves a sort of mirroring, but of the estimated IRF. These intervals
appear to not correctly adjust for the skewness in the bootstrap distribution
of the VAR coefficients. Hall’s method moves the intervals further downwards,
instead of extending them upwards, where we would rather expect the true IRF
if the distribution of the estimators is skewed left.

2.2. Refinements to the mirroring

Mirroring the bootstrap coefficients around the LS estimates as described
above is a relatively crude method, as it can completely change the dynamics of
the VAR model. Because each coefficient is mirrored individually, the percentile
ranks of bootstrap coefficients of the same model change in a non-consistent
way. For example, consider some particular bootstrap values of α̂b

11 and α̂b
12,
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coming from the bth iteration. Let these values constitute the 10th and the
70th empirical percentile of their respective bootstrap distributions. Then, the
values after applying the mirroring, i.e. α̂b,m

11 and α̂b,m
12 , constitute the 90th and

the 30th percentile of their respective distributions. Therefore, it seems that
the dynamics of the VAR system resulting from the mirroring are possibly quite
disconnected from the originally estimated structure. The least squares estimate
represents a reasonable estimate because it minimizes a loss function. The
mirrored estimates do nothing of the sort and have no particular justification
in and on themselves, other than leading to a bootstrap distribution that has
desirable properties in terms of mean and skewness.

For multidimensional data no clear ordering exists that would allow to jointly
mirror the data. Therefore, we are left with adjusting individual coefficients in-
stead of the entire system. However, there is a less disruptive way to adjust
the distribution than simply mirroring the coefficients. We can mirror the dis-
tribution without mirroring the coefficients by adjusting the distance between
the estimates and the percentiles of the bootstrap distribution. This percentile
mirroring, labelled MP, is given by

α̂b,mp
ij = α̂ij − (α̂b

ij − α̂ij)100−r(α̂b
ij)

∀ i, j, (6)

where r(α̂b
ij) is the percentile rank of α̂

b
ij in its distribution and (α̂b

ij−α̂ij)100−r(α̂b
ij)

is the (100− r(α̂b
ij))

th empirical percentile of the distribution of (α̂b
ij − α̂ij). To

see the difference more clearly, the mirroring given in (5) can be restated as

α̂b,m
ij = α̂ij − (α̂b

ij − α̂ij)r(α̂b
ij)

∀ i, j. (7)

The mean and the skewness resulting from the two mirroring methods are
identical. In fact, the distribution of α̂b,mp

ij is the same as that of α̂b,m
ij , but

the positions of individual coefficients are reversed. With MP, the bootstrap
distribution is stretched in one tail and shrunk in the other instead of the coef-
ficients being swapped within the distribution. When using MP, the coefficients
will each retain their rank order in their respective distributions. This difference
matters because the different VAR coefficients jointly determine the dynamics
of the VAR system.

Even though the MP method also corrects for a bias, it only does so after
bootstrapping. Thus, the bootstrap series are generated from a VAR model
that has not been bias-corrected. To address this potential shortcoming, we
investigate combining the skewness adjustment with a bias correction as a third
option. As in Kilian (1998b) we use the bias correction from Pope (1990) to
adjust the estimates of the VAR coefficients as well as the bootstrap coefficients.
After this, the MP method from (6) is applied to the bias corrected coefficients.
This combined approach is labeled the MPbc method.

Unknown lag orders represent a challenge for MP and MPbc. For their
computation we need percentiles for each bootstrap coefficient. It appears reas-
onable to compute the percentiles using only bootstrap coefficients that come
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from a VAR with the same estimated lag order. However, some lag orders might
be estimated only very few times during bootstrapping and thus there are very
few matching bootstrap coefficients available. One could generate additional
bootstrap draws until a satisfactory number of models is available for each lag
length. We do not consider this approach here due to the high computational
cost. Instead, we compute the percentiles based on however many bootstrap
coefficients with the same lag order are available.

3. Bootstrap confidence intervals and bands

3.1. The model

Consider a VAR(p) model, p denoting the lag order, for t=p+1, ..., T , given
by

yt = A0 +A1yt−1 + ...+Apyt−p + εt, (8)

where yt = (y1t, ..., yKt)
′ is the vector of time series, A0 is a K×1 vector of

constants, A1 to Ap are K×K parameter matrices and εt is a K×1 error term.
The errors are assumed to be uncorrelated over time, having zero mean and
covariance matrix Σε. To estimate the VAR model, we first determine the
lag order p. As discussed in Kilian (1998b) and Berkowitz and Kilian (2000),
different information criteria may be used to accomplish this in the context of
bootstrap confidence intervals. The criterion should, however, not be biased to
underestimate the true lag order in small samples. This point is particularly
important in the context of bootstrapping, where the lag order is estimated two
times and a downward bias would thus be exacerbated. Kilian (1998b) suggests
using the AIC (Akaike, 1974). Our simulations showed that this produces too
wide confidence intervals and bands, in line with the results in Kilian (1998b).2

This is probably due to the overestimation of the true lag order by the AIC and
the subsequently higher estimation uncertainty of models with too many free
parameters. We therefore use the corrected AIC (AICc) introduced by Sugiura
(1978), applied to autoregressions in Hurvich and Tsai (1989) and to vector
autoregressions in Hurvich and Tsai (1993). The AICc is given by

AICc = AIC +
2κ(κ+ 1)

T − κ− 1
(9)

with κ being the number of parameters per VAR equation. For a given lag
order p̂, we can estimate equation (8) using LS. Denote the estimators by Â0

to Âp̂. When constructing confidence intervals it was found useful to correct
for the bias in the estimated autoregressive coefficients, see e.g. Kilian (1998a)

2Simulations of DGPs with higher lag orders than considered here or by Kilian (1998b)
indicate that the AICc might provide to low estimated lag orders and the AIC might be
preferable. Research into the optimal information criterion for bootstrap confidence intervals
and bands at different sample sizes may be helpful.
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and Berkowitz and Kilian (2000). Two commonly used methods are the ana-
lytical method of Pope (1990) and the bootstrap method of Kilian (1998a). For
a description of the method of Pope in a similar context to ours, the reader is
referred to Kim (2004) and Staszewska-Bystrova and Winker (2013). Because
of the lower computational cost we use the method of Pope (1990) to obtain bias
corrected estimates Âbc

0 to Âbc
p̂ . The bias correction includes the stationarity cor-

rection suggested by Kilian (1998a). This means that the bias correction is not
applied if a system is non-stationary. Further, if the estimates imply stationar-
ity, but the bias corrected estimates correspond to a non-stationary model, only
a fraction of the estimated bias is subtracted from the estimates. The fraction
is gradually reduced until stationarity of the system is maintained throughout
the bias correction. A process is considered stationary if the modulus of the
largest eigenvalue of the companion matrix associated with the autoregressive
coefficients is less than one.

Given estimated coefficients, we can compute residuals either as

ε̂t = yt − Â0 − Â1yt−1 − ...− Âpyt−p (10)

or consistent with the bias corrected estimates as

ε̂bct = yt − Âbc
0 − Âbc

1 yt−1 − ...− Âbc
p yt−p. (11)

The residuals of (11) will no longer have a mean of zero, and should be recentered
by subtracting the mean. Furthermore, the residuals of both (10) and (11) are
rescaled by a factor of

√
(T − p̂)/(T − p̂−Kp̂− 1) (see Stine, 1987). Let ε̂∗t

denote the recentered and rescaled residuals. Given ε̂∗t , we compute the least
squares estimator Σ̂ε of the covariance matrix Σε. In a next step, the impulse
response coefficients over H periods are obtained as

Φ̂h =
h∑

i=1

Φ̂h−iÂi, h = 1, ...,H, (12)

with Φ̂0 = IK and Âi = 0 for i > p̂. Orthogonalized impulse response functions
can be obtained as

Θ̂h = Φ̂hP, h = 0, ...,H, (13)

where PP ′ = Σ̂ε is the Cholesky decomposition of Σ̂ε. An element θ̂k,j,h of Θ̂h

can be interpreted as the reaction of variable k to a shock in equation j, after h
periods. In the case of a two dimensional VAR model, i.e. K=2, the recursive
ordering of the Cholesky decomposition implies that the reaction of the first
variable to the second shock is restricted to zero in the initial period h=0.

3.2. Bootstrap Algorithm

Our interest is in constructing confidence intervals and joint confidence bands
for the orthogonalized impulse response functions. This section describes the
algorithm to obtain bootstrap distributions of IRF coefficients. Based on these,
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confidence intervals and bands can be constructed, as detailed in Section 3.3.
The bootstrap algorithm given below includes optional steps for conducting a
bias correction or a skewness adjustment or both. Aside from the mirroring
steps, the bootstrap procedure described here is in large parts similar to that in
Kilian (1998a,b) as well as to that in Lütkepohl et al. (2015a). The bootstrap
procedure is given in Algorithm 1. Based on the ideas of Efron (1981) and
Kilian (1998a,b) we construct confidence intervals and bands, labelled EK, using
Algorithm 1 with the bias correction options (steps 2 and 8). Hall-type intervals
and bands are obtained using the same bootstrap algorithm, also including the
bias correction. The difference between the two is whether we use the percentile
intervals given in (3) or the interval given in (4). The M and the MP methods do
not employ the bias correction options but use the mirroring and the percentile
mirroring given in (5) and (6), respectively (step 13 in Algorithm 1). The MPbc
method utilises the percentile mirroring as well as the bias correction steps of
Algorithm 1.

Algorithm 1 Bootstrap Procedure

1: Estimate lag order and coefficients of VAR;
2: Optional: Bias-correct VAR coefficients;
3: Obtain, rescale, and re-center residuals;
4: Optional: When a mirroring method is used, estimate and store VAR para-

meters for all lag orders between 1 and pmax

5: for b = 1 to B do
6: Construct bootstrap time series ybt=Â0+Â1y

b
t−1+...+Âp̂y

b
t−p̂+ε∗bt ,

t=p̂+1, ..., T , where ε∗bt is a random draw with replacement from the
residuals. The initial values (yb1, ..., y

b
p̂) are set to a randomly chosen se-

quence (yτ , ..., yτ+p̂−1) from the data {yt}, τ∈{1, ..., T−p̂}. If the bias

correction in step 2 is applied, use Âbc
0 to Âbc

p instead of Â0 to Âp;
7: Estimate bootstrap lag order and bootstrap coefficients;
8: Optional: Bias-correct the bootstrap coefficients;
9: Obtain, rescale, and re-center bootstrap residuals;

10: Calculate the bootstrap covariance matrix;
11: end for
12: for b = 1 to B do
13: Optional: Apply the mirroring or percentile mirroring to the bootstrap

coefficients;
14: Compute orthogonalized IRF coefficients;
15: end for

3.3. Construction of Confidence Intervals and Bands

For the construction of confidence intervals, the percentile interval of Efron
(1981), given by (3), is used for all methods but Hall’s. Hall’s interval is based
on the adjusted percentile interval given in (4). Thus, in contrast to the three
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mirroring methods, Hall’s method ’mirrors’ the distribution after computing the
impulse response functions.

Furthermore, we construct five types of joint confidence bands. The bands
are constructed based on the Bonferroni adjusted (Ba) method introduced in
Lütkepohl et al. (2015a). Out of the different possibilities given in the liter-
ature, the Ba method is chosen here because it was shown to work well in
previous studies. The method was successfully applied to VAR forecasting of
corporate bond spreads in Staszewska-Bystrova and Winker (2014), to forecast-
ing with SETAR models in Grabowski et al. (2017), and was shown to compare
favourably for constructing confidence bands for impulse response functions in
Lütkepohl et al. (2015a,b).

The Bonferroni adjusted bands are constructed as follows. First, select the
a

2(H+1)B smallest and largest bootstrap impulse response coefficients in each

period and eliminate the corresponding impulse response functions from the
set containing all B bootstrapped IRFs (H+1 is the number of periods over
which the IRFs are investigated). This ensures that at most a fraction a of
the bootstrap impulse response paths are eliminated, which is consistent with
the Bonferroni principle. If the contour of the set of remaining IRFs is taken
as confidence bands, it should ensure a coverage rate of at least 1−a. In gen-
eral, this procedure eliminates less than aB paths and can thus be considered
conservative, exhibiting a large width. The Bonferroni adjusted method there-
fore proceeds to eliminate more bootstrap IRF paths. In each step, the path
which contributes the most to the width of the current band is removed. The
width is measured as the sum of the widths of the individual intervals. This
continues until aB bootstrap impulse response functions have been eliminated.
The envelope of the remaining (1−a)B functions represents the Ba band. For a
more detailed discussion of the Ba method see Staszewska-Bystrova and Winker
(2014) and Lütkepohl et al. (2015a).

If the Ba bands are computed based on IRFs obtained with the bias corrected
bootstrap, the bands are labelled Efron-Kilian (EK) bands. Based on bootstrap
IRFs obtained with Algorithm 1 using the mirroring, the percentile mirroring
or the percentile mirroring with bias correction, we obtain M bands, MP bands,
and MPbc bands, respectively. To compute Hall-type bands, the bias corrected
bootstrap is again used. Similarly to the construction of confidence intervals in
(4), Hall bands reverse the Ba bands. For this, the bootstrap IRF coefficients of
each period are mirrored at the estimated IRF coefficients, i.e.

Θ̂b,Hall
h = 2Θ̂h − Θ̂b

h. (14)

Based on the bootstrap distribution of Θ̂b,Hall
h , Hall-type confidence bands are

constructed using the Ba algorithm described above.
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4. Monte Carlo Evaluation

4.1. Simulation Setup

To evaluate the performance of the proposed mirroring procedure, we simu-
late different DGPs that all follow a two-dimensional VAR(p) process as given
in equation (8). Simulations are performed under the assumption that the true
lag order p of the DGP is known and also under the assumption that it is not
known and has to be estimated. If the true lag order is set to p=1 it is not
possible to underestimate the lag length (if an order of zero is not considered).
Underestimating the true lag order generally leads to substantial coverage er-
rors of confidence intervals and bands. To critically evaluate the methods, we
therefore consider the cases p=1 as well as p=2.

For the DGP with one lag we use a design common in the literature (e.g.
Kilian (1998a)),

A0 =

(
0
0

)
, A1 =

(
α11 0
0.5 0.5

)
. (15)

For the parameter α11 values in {-1, -0.8, -0.5, -0.3, 0, 0.1, 0.3, 0.5, 0.7, 0.9,
0.95, 0.99, 1} are used. Alternative values of α11 imply different persistences
of the process. For α11= ± 1 the process is non-stationary. In such a setting,
estimation of a vector error correction model may be preferable—provided the
unit root and the cointegration rank are both correctly tested for (Kilian, 1998a;
Berkowitz and Kilian, 2000). Thus, it makes sense to distinguish the results for
different cases. In what follows, we aggregate the results in two ways: over all
values of α11 and separately over only the less persistent cases. As less persistent
DGPs we consider the models with α11∈{-0.8, -0.5, -0.3, 0, 0.1, 0.3, 0.5, 0.7,
0.9}.

For the DGP with two lags we use

A0 =

(
0
0

)
, A1 =

(
α11 0
0.4 0.4

)
, A2 =

(
0.3 0

−0.2 −0.1

)
. (16)

This setting uses α11∈{-0.7 -0.6, -0.5, -0.3, 0, 0.1, 0.3, 0.5, 0.6, 0.65, 0.69, 0.7}.
For α11= ± 0.7 the process has a unit root. Hence, summary statistics for
processes with α11∈{-0.6, -0.5, -0.3, 0, 0.1, 0.3, 0.5, 0.6} are again reported
separately.

The error term is assumed to follow a multivariate normal distribution with
mean zero and covariance matrix

Σε =

(
1 0.3
0.3 1

)
. (17)

The impulse responses are evaluated for horizons h=0,...,10. For a given
DGP we simulate 2000 time series of size T . The sample size takes on values in
{30, 50, 100, 200, 1000}. The bootstrap algorithm uses B=2000 iterations. The
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confidence level is set to 1−a=95%. We present results for confidence intervals
in section 4.2 and for joint confidence bands in section 4.3.

4.2. Results for Confidence Intervals

Across all α11 α11 ∈ {−0.8, ..., 0.9}
T M MP MPbc EK Hall M MP MPbc EK Hall

Lag order p=1 known
30 95.04 95.34 95.15 95.01 89.24 95.35 95.80 95.33 96.76 90.36
50 95.02 95.38 95.28 94.95 90.36 95.05 95.59 95.49 96.25 90.68
100 95.28 95.60 95.44 95.09 91.81 95.32 95.74 95.67 95.98 91.59
200 94.99 95.30 95.05 94.84 92.62 94.99 95.32 95.26 95.47 92.26
1000 95.14 95.23 95.09 95.05 93.66 95.20 95.32 95.29 95.33 93.18

Lag order p=2 known
30 96.88 96.08 96.31 96.15 92.93 97.31 96.78 96.77 97.39 94.32
50 96.38 95.92 95.84 95.70 92.91 96.76 96.52 96.47 96.84 93.90
100 96.32 96.10 95.87 95.67 94.07 96.47 96.47 96.35 96.51 94.57
200 95.73 95.79 95.52 95.37 94.98 95.75 96.01 95.89 95.94 95.32
1000 95.38 95.43 95.26 95.15 95.47 95.36 95.40 95.36 95.35 95.70

Lag order p=1 unknown
30 96.27 96.47 96.38 95.61 90.45 96.60 96.91 96.54 97.32 91.79
50 96.84 97.05 97.03 96.11 92.27 97.00 97.30 97.21 97.40 93.00
100 97.28 97.49 97.40 96.66 93.81 97.49 97.75 97.69 97.67 93.94
200 97.23 97.50 97.35 96.75 94.55 97.39 97.63 97.57 97.56 94.46
1000 97.34 97.57 97.47 97.27 96.14 97.49 97.65 97.59 97.74 96.22

Lag order p=2 unknown
30 94.64 94.33 95.06 93.32 85.48 94.75 94.34 94.95 93.60 86.00
50 96.31 96.15 96.28 93.67 88.17 96.45 96.21 96.33 93.87 88.52
100 97.29 97.21 97.09 95.61 93.42 97.45 97.42 97.36 96.20 93.89
200 97.16 97.27 97.12 96.50 95.55 97.25 97.47 97.41 97.13 95.94
1000 97.04 97.20 97.11 96.71 96.29 97.15 97.23 97.20 97.05 96.48

Table 1: Mean coverage frequencies (in percent) for nominal 95% confidence
intervals. Means of estimated coverage frequencies of intervals are computed
over different parameter settings for α11, over periods h=0, ..., 10 and over the
four impulse responses in a two-dimensional VAR.

This section compares the performance of different confidence intervals for
IRFs. We summarize results by averaging over the performances for all the
different parameter choices for α11, over horizons h = 0, ..., 10, and over the
four IRFs (y1→y1, y1→y2, y2→y1, y2→y2). When p=1, each summary statistic
is therefore based on 572 individual coverage frequencies when evaluating the
entire range of α11, and 396 values when looking only at the less persistent pro-
cesses. For p=2, averages are obtained over 528 and 352 individual performance
results. Table 1 shows the mean coverage frequencies for the different methods
under investigation. Except for Hall’s method in small samples, mean coverage
rates approximate 95%. They tend to be larger when only less persistent pro-
cesses are considered, when the lag order is endogenous, and when the sample
size increases. Because the results of Table 1 are means that are computed
across different periods, different settings for α11 and four impulse response
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Across all α11 α11 ∈ {−0.5, ..., 0.6}
T M MP MPbc EK Hall M MP MPbc EK Hall

Lag order p=1 known
30 2.78 2.62 2.40 5.33 11.81 2.84 2.71 2.54 3.35 10.70
50 2.13 1.92 1.79 3.94 10.45 2.18 2.02 1.86 2.35 10.69
100 1.60 1.55 1.44 2.79 8.78 1.67 1.62 1.54 1.73 9.71
200 1.25 1.21 1.05 2.09 7.29 1.24 1.17 1.09 1.20 8.53
1000 0.92 0.95 0.89 1.13 3.56 0.95 0.97 0.95 0.98 4.26

Lag order p=2 known
30 3.64 3.46 3.02 4.47 9.05 3.87 3.61 3.27 3.75 8.01
50 2.84 2.64 2.47 3.69 8.01 3.11 2.87 2.74 3.00 8.76
100 2.27 2.07 2.06 2.79 6.74 2.48 2.35 2.31 2.39 6.76
200 1.81 1.60 1.50 1.95 4.45 1.97 1.84 1.78 1.79 4.77
1000 1.00 1.03 0.90 1.19 2.22 1.04 1.08 1.05 1.03 2.69

Lag order p=1 unknown
30 3.11 3.08 2.75 5.42 10.76 3.27 3.28 2.90 3.77 9.29
50 2.78 2.83 2.72 4.32 8.35 2.95 3.06 2.90 3.41 7.97
100 2.89 2.96 2.88 3.67 6.50 3.12 3.21 3.15 3.36 6.89
200 2.73 2.86 2.73 3.16 5.36 2.93 3.01 2.95 3.16 6.21
1000 2.71 2.90 2.80 2.94 2.85 2.90 3.00 2.94 3.29 3.29

Lag order p=2 unknown
30 4.27 4.49 3.96 6.21 19.75 4.51 4.70 4.35 5.89 20.14
50 2.92 2.90 2.90 5.29 14.50 3.10 3.05 3.12 5.05 15.40
100 2.97 2.86 2.73 3.18 6.65 3.17 3.08 3.00 2.93 6.90
200 2.80 2.77 2.64 2.69 3.93 2.98 3.00 2.95 2.83 4.14
1000 2.49 2.61 2.52 2.44 2.38 2.66 2.68 2.66 2.71 2.77

Table 2: Root mean squared coverage errors (RMSCEs) (in percentage points)
for nominal 95% confidence intervals. Root means of the squared deviations of
estimated coverage frequencies from the desired 95% nominal rate are computed
over different parameter settings for α11, over periods h=0, ..., 10 and over the
four impulse responses in a two-dimensional VAR.

functions, they are not very informative with regard to the coverage accuracy.
For some individual settings of α11, horizon h, and IRF, we obtain coverage
rates of around 99% while for others values drop below 80%. This might still
result in mean coverages close to 95%, but cannot be considered accurate.

Table 2 presents root mean squared coverage errors (RMSCEs) to measure
the percentage point deviations from the desired 95% coverage level. This num-
ber gives a good indication of how well each method is maintaining the nominal
level across all settings for a given sample size.3 The table shows that all three
variations of the mirroring approach (M, MP, MPbc) substantially reduce the
coverage errors in all four scenarios (known and unknown lag orders of p=1, 2)
when highly persistent and non-stationary time series are allowed for. When

3This supposes that we equally dislike positive and negative deviations from the nominal
coverage level. Arguably, too low coverages are a more severe violation of the idea underlying
the construction of confidence intervals.
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Across all α11 α11 ∈ {−0.8, ..., 0.9}
T M MP MPbc EK Hall M MP MPbc EK Hall

Lag order p=1 known
30 1.64 1.24 1.32 0.63 0.63 1.09 0.84 0.96 0.54 0.54
50 0.81 0.68 0.66 0.46 0.46 0.54 0.45 0.47 0.37 0.37
100 0.40 0.37 0.35 0.31 0.31 0.27 0.25 0.25 0.23 0.23
200 0.23 0.23 0.22 0.21 0.21 0.16 0.16 0.16 0.15 0.15
1000 0.09 0.09 0.09 0.09 0.09 0.07 0.06 0.06 0.06 0.06

Lag order p=2 known
30 1.84 1.06 1.12 0.69 0.69 1.48 0.85 0.97 0.66 0.66
50 0.83 0.59 0.58 0.47 0.47 0.66 0.48 0.49 0.43 0.43
100 0.39 0.33 0.31 0.30 0.30 0.31 0.27 0.27 0.26 0.26
200 0.22 0.21 0.20 0.20 0.20 0.18 0.17 0.17 0.17 0.17
1000 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07

Lag order p=1 unknown
30 1.78 1.38 1.53 0.66 0.66 1.20 0.93 1.12 0.57 0.57
50 0.92 0.81 0.82 0.50 0.50 0.63 0.55 0.59 0.40 0.40
100 0.47 0.45 0.45 0.34 0.34 0.33 0.32 0.32 0.26 0.26
200 0.28 0.29 0.28 0.23 0.23 0.21 0.20 0.20 0.17 0.17
1000 0.11 0.12 0.11 0.10 0.10 0.08 0.09 0.08 0.07 0.07

Lag order p=2 unknown
30 1.46 1.16 1.46 0.56 0.56 1.01 0.80 1.09 0.49 0.50
50 0.84 0.70 0.73 0.45 0.45 0.63 0.52 0.57 0.39 0.39
100 0.44 0.39 0.39 0.32 0.32 0.35 0.31 0.32 0.27 0.27
200 0.26 0.25 0.25 0.21 0.21 0.22 0.21 0.21 0.18 0.18
1000 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.08 0.08

Table 3: Mean widths for nominal 95% confidence intervals. The mean distance
between the upper and lower bound of an interval is computed over different
parameter settings for α11, over periods h=0, ..., 10 and over the four impulse
responses in a two-dimensional VAR.

only less persistent series are considered, the mirroring methods dominate the
EK and Hall method in very small samples (T=30, 50). For medium and large
sample sizes (T=100, 200), the performance of EK and the mirroring methods
becomes comparable. Hall’s method exhibits the largest deviations from the
nominal coverage rate throughout all settings, but draws level with the other
methods for T=1000. MPbc offers the smallest RMSCE out of the three newly
proposed methods. Comparing the left and right side of Table 2 reveals an
interesting difference between the mirroring methods and the two benchmark
methods. The left blocks report summary statistics that include non-stationary
processes while on the right only less persistent DGPs are considered. The
mirroring methods generally do better for highly persistent and non-stationary
processes than for less persistent processes. This is in contrast to the EK and
Hall method, whose coverage properties are generally worse when highly per-
sistent processes are allowed for. In conclusion, MPbc provides better or similar
coverage accuracy as compared to the simpler mirroring schemes as well as to
the EK and Hall intervals.

Besides the coverage frequencies, the size of confidence intervals is a relevant
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measure of how informative the intervals are. Table 3 gives the mean widths of
the intervals. The EK and Hall’s intervals have the lowest widths throughout
all settings.4 Out of the three mirroring methods, MP offers the smallest width.
For small samples the mirroring methods produce particularly wide intervals.
This might be justified as they also substantially improve coverage frequencies.

As discussed in Section 2, MP and MPbc are based on percentiles of a boot-
strap distribution using only models with the same estimated lag length. This
means that for scenarios where the true lag order is unknown, some percentiles
may be based upon very few realizations. This might explain why MP and
MPbc dominate the EK and Hall’s intervals when the lag order is known, but
cannot keep up their superiority when the lag order is endogenous. Nonetheless,
both methods turn out to be relatively successful even for unknown lag orders.

In summary, mirroring the bootstrap distribution of the VAR coefficients
seems to offer a path to achieving better coverage accuracy for confidence inter-
vals in small samples, especially when unit roots may be present. However, the
mirroring intervals are less informative due to their larger width.

4.3. Results for Joint Confidence Bands

A joint confidence band is considered to cover the true IRF only if the IRF
is contained in the band at every horizon h. In presenting results for bands,
we thus compute mean coverages and RMSCEs as averages across different
settings of α11 and across the four impulse response functions. The width is
still computed as the average width per period, however. Table 4 presents
mean coverage frequencies for confidence bands. The results match those of
Section 4.2. M, MP, MPbc, and EK bands all yield coverage rates around 95%.
Coverage frequencies are lower for small samples and for known lag orders,
while for larger samples and endogenous lag orders coverage rates are above
95%. Hall’s bands again fall substantially short of the nominal level in samples
of size 30, 50 and sometimes also 100. To measure the deviations of actual from
nominal coverage rates for the different settings, we again turn to the RMSCEs
presented in Table 5. The results show that the mirroring methods also work
well for the construction of confidence bands. Coverage errors of M, MP, and
MPbc bands are substantially lower than those of EK and Hall’s bands when
highly persistent and non-stationary processes are included in the evaluation.
When looking only at the less persistent processes in the right columns of Table
5, the mirroring methods still outperform the benchmarks when the sample
sizes are very small (T=30, 50). For medium (T=100, 200) and large samples
(T=1000) the performance of the mirroring bands and the EK bands converge.
The method providing the smallest RMSCE varies depending on sample size,
lag length and between known and unknown lag orders.

We notice that again the comparatively strong performance of the percentile
mirroring approaches (MP and MPbc) for known lag lengths appears to vanish
for endogenous lag orders. Note also that the increases of the RMSCEs when

4By construction, the EK and Hall’s intervals have the same width.
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Across all α11 α11 ∈ {−0.8, ..., 0.9}
T M MP MPbc EK Hall M MP MPbc EK Hall

Lag order p=1 known
30 93.20 93.31 93.67 92.48 82.99 93.31 93.62 93.85 94.22 85.20
50 94.35 94.40 94.55 93.47 84.13 94.28 94.63 94.78 94.85 85.12
100 94.93 94.97 94.85 94.19 86.32 94.82 95.09 95.16 95.08 85.89
200 94.80 94.86 94.63 94.26 87.53 94.78 94.90 94.92 94.94 86.32
1000 94.83 94.62 94.50 94.58 90.29 94.82 94.67 94.68 94.78 89.10

Lag order p=2 known
30 94.75 93.63 94.60 94.10 88.63 95.14 94.31 95.10 95.33 89.28
50 95.38 94.31 94.59 94.35 87.96 95.82 94.87 95.22 95.43 89.64
100 95.69 94.99 94.88 94.65 89.58 95.82 95.34 95.33 95.44 90.66
200 95.15 94.83 94.58 94.49 91.04 95.05 94.99 94.92 95.01 90.72
1000 94.41 94.35 94.14 94.12 92.91 94.33 94.29 94.23 94.25 92.10

Lag order p=1 unknown
30 94.67 94.64 95.31 93.45 86.34 94.82 94.93 95.47 94.98 88.95
50 96.33 96.37 96.65 94.94 89.67 96.40 96.57 96.84 96.19 91.90
100 97.18 97.30 97.30 96.12 93.08 97.27 97.53 97.57 97.05 94.37
200 97.30 97.57 97.50 96.59 94.19 97.37 97.69 97.67 97.41 94.63
1000 97.63 97.87 97.80 97.32 95.85 97.77 97.95 97.89 97.71 96.03

Lag order p=2 unknown
30 93.54 92.57 94.10 91.58 77.16 93.64 92.55 94.11 92.18 78.45
50 95.90 95.52 96.00 91.97 80.82 96.06 95.81 96.15 92.43 81.82
100 97.12 96.83 96.87 94.60 89.43 97.18 97.06 97.15 95.16 90.25
200 97.02 96.95 96.88 96.15 93.52 97.03 97.09 97.11 96.73 94.04
1000 96.95 97.11 97.07 96.54 95.19 96.92 97.11 97.12 96.76 95.22

Table 4: Mean coverage frequencies (in percent) for nominal 95% joint con-
fidence bands. Means of estimated joint coverage frequencies of bands are
computed over different parameter settings for α11 and over the four impulse
responses in a two-dimensional VAR.

the sample size grows, which occur for all mirroring methods and also the EK
method, are due to a shift from coverage rates being mostly below the nominal
level in smaller samples to coverage rates mostly above the nominal level in
larger samples.

Table 6 shows the mean widths per period for the different kinds of confidence
bands. Again, EK’s and Hall’s method offer the lowest widths in all settings.
Out of the three mirroring methods, MP has the lowest width while M bands
might be considered excessively wide in small samples.

5. Conclusions

We investigate modifications of the bootstrap algorithm for the construction
of confidence intervals and confidence bands for impulse response functions in
vector autoregressive models. The simple mirroring method adjusts for bias
and skewness of the bootstrap distribution of the coefficient estimators. This
is achieved by mirroring the distribution of the bootstrap coefficients at the es-
timates, similarly to the percentile intervals suggested in Hall (1992). Mirroring
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Across all α11 α11 ∈ {−0.5, ..., 0.6}
T M MP MPbc EK Hall M MP MPbc EK Hall

Lag order p=1 known
30 3.80 3.55 3.00 6.23 17.11 3.61 3.24 2.94 3.27 14.81
50 2.67 2.26 1.97 4.69 15.76 2.73 2.14 1.89 2.32 15.23
100 1.96 1.61 1.69 3.23 13.40 2.05 1.57 1.57 1.87 14.43
200 1.69 1.20 1.43 2.52 11.77 1.77 1.24 1.25 1.41 13.64
1000 1.38 1.14 1.29 1.63 6.97 1.40 1.12 1.16 1.37 8.26

Lag order p=2 known
30 2.84 3.32 2.22 3.81 11.95 2.91 2.73 1.98 2.16 9.74
50 2.09 2.36 1.89 3.44 12.86 2.11 2.00 1.61 1.93 11.06
100 1.77 1.68 1.68 2.63 10.24 1.67 1.60 1.58 1.80 7.85
200 1.23 0.97 1.17 1.70 7.02 1.41 0.93 0.97 1.04 6.48
1000 0.99 1.00 1.18 1.30 3.28 1.21 0.98 1.02 1.04 3.84

Lag order p=1 unknown
30 2.98 2.93 2.41 5.46 14.54 2.85 2.71 2.42 2.98 11.54
50 2.35 2.93 2.32 4.26 11.13 2.38 2.37 2.42 2.53 8.94
100 2.60 2.66 2.67 3.35 6.58 2.67 2.78 2.81 2.68 5.14
200 2.62 2.74 2.68 2.94 3.70 2.70 2.83 2.82 2.75 3.63
1000 2.83 2.97 2.90 2.76 1.82 2.96 3.05 3.00 2.98 2.07

Lag order p=2 unknown
30 4.35 5.31 3.54 6.92 27.67 4.30 5.34 3.58 6.07 26.53
50 2.52 2.56 2.31 6.34 21.46 2.57 2.48 2.40 5.59 21.06
100 2.49 2.38 2.33 3.21 9.85 2.57 2.46 2.49 2.65 9.43
200 2.25 2.14 2.12 2.04 4.44 2.28 2.21 2.25 2.03 4.00
1000 2.08 2.18 2.15 1.80 1.41 2.09 2.19 2.20 1.95 1.67

Table 5: Root mean squared coverage errors (RMSCEs) (in percentage points)
for nominal 95% joint confidence bands. Root means of the squared deviations
of estimated joint coverage frequencies from the desired 95% nominal rate are
computed over different parameter settings for α11 and over the four impulse
responses in a two-dimensional VAR.

individual coefficients moves them a considerable distance within the parameter
space and does so for each coefficient individually. Because this might distort
the dynamics of the estimated VAR systems, we explore a related but altered
approach. The percentile mirroring equally mirrors the bootstrap distribution,
but does so by squeezing and stretching the distribution rather than swapping
coefficients. While both methods adjust the bias in the bootstrap distribution,
they do so only after the bootstrapping. To address this problem, we suggest
as a third approach to combine the percentile mirroring with a bias correction
of the LS estimator. These three methods are compared to standard methods
from the literature.

Monte Carlo evidence suggests that in samples with 50 or fewer observations,
all three mirroring methods improve the coverage accuracy of confidence inter-
vals and bands as compared to the benchmark methods. For samples of size 100
and larger, the different methods start to converge in terms of coverage rates.
The best suited method might depend on the lag length of the true DGP and
the kind of lag order selection. For unit root processes, the coverage rates of the
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Across all α11 α11 ∈ {−0.8, ..., 0.9}
T M MP MPbc EK Hall M MP MPbc EK Hall

Lag order p=1 known
30 1.70 1.32 1.38 0.74 0.74 1.17 0.92 1.03 0.64 0.64
50 0.87 0.75 0.73 0.53 0.53 0.60 0.52 0.53 0.44 0.44
100 0.44 0.42 0.40 0.35 0.35 0.31 0.29 0.29 0.27 0.27
200 0.26 0.26 0.25 0.24 0.24 0.19 0.19 0.18 0.18 0.18
1000 0.10 0.10 0.10 0.10 0.10 0.08 0.08 0.08 0.08 0.08

Lag order p=2 known
30 2.13 1.26 1.33 0.88 0.88 1.09 1.05 1.18 0.84 0.84
50 0.97 0.71 0.71 0.58 0.58 0.91 0.59 0.61 0.54 0.54
100 0.46 0.40 0.39 0.36 0.36 0.44 0.33 0.33 0.32 0.32
200 0.27 0.25 0.24 0.24 0.24 0.26 0.21 0.21 0.21 0.21
1000 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09

Lag order p=1 unknown
30 2.00 1.54 1.67 0.80 0.80 1.42 1.09 1.27 0.70 0.70
50 1.10 0.96 0.97 0.61 0.61 0.81 0.69 0.74 0.51 0.51
100 0.58 0.56 0.55 0.42 0.42 0.44 0.41 0.42 0.33 0.33
200 0.35 0.35 0.35 0.29 0.29 0.27 0.26 0.27 0.23 0.23
1000 0.14 0.14 0.14 0.12 0.12 0.11 0.11 0.11 0.10 0.10

Lag order p=2 unknown
30 1.65 1.28 1.53 0.70 0.70 1.21 0.93 1.18 0.63 0.63
50 1.02 0.84 0.87 0.56 0.56 0.81 0.66 0.72 0.51 0.51
100 0.56 0.50 0.50 0.41 0.41 0.47 0.42 0.43 0.36 0.36
200 0.34 0.32 0.32 0.28 0.28 0.29 0.28 0.28 0.25 0.25
1000 0.13 0.13 0.13 0.12 0.12 0.11 0.11 0.11 0.10 0.10

Table 6: Mean widths for nominal 95% joint confidence bands. The mean
distance between the upper and lower bound of a confidence band in one period
is computed over different parameter settings for α11, over the four impulse
responses in a two-dimensional VAR and also over periods h=0, ..., 10.

mirroring methods clearly dominate the benchmarks. The mirroring methods
maintain almost the same coverage accuracies whether or not non-stationary
and highly persistent processes are allowed for.

The MPbc method offered the lowest squared coverage errors when the lag
order was assumed to be known. The performance was less dominant for en-
dogenously estimated lag lengths. As discussed in Sections 2 and 4, the imple-
mentation of MP and MPbc in this article can result in MP and MPbc intervals
and bands that are based on very few bootstrap draws of VAR models for some
lag orders. This might negatively affect their performance when the lag order
has to be estimated. Finding a better implementation of this method is left to
future research.

The article presents results for coverage frequencies as summary statistics
due to the large number of simulation settings. When inspecting individual
results for coverage rates, these reveal that coverage frequencies are usually
below the nominal level in the initial period of a shock to the VAR system.
At later horizons, the coverage rates are higher and usually above the nominal
level. This indicates that the uncertainty about the covariance matrix of the
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VAR system might be underestimated in the resampling procedure, while the
bootstrap VAR coefficients exhibit too much variation. Future research might
aim to reduce the variation of the bootstrap autoregressive coefficients while
increasing the variation of the bootstrap covariance matrices.
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Jordà, Ò., 2009. Simultaneous confidence regions for impulse responses. The
Review of Economics and Statistics 91 (3), 629–647.
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