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2.1 Introduction

The definition of quasicontinuity for real functions of real variable was given
in [34] by S. Kempisty. Nevertheless, R. Baire in his work [1] has shown that
a function of two variables continuous at each variable is quasicontinuous. An
independent definition was given by W. W. Bledsoe [2] in 1952 under the name
neighborly function. S. Marcus in [49] proved that the notions of neighborly
and quasicontinuous functions are equivalent and he developed further proper-
ties of quasicontinuous functions. He showed that quasicontinuous functions
need not be (Lebesgue) measurable and for each countable ordinal α there is
a quasicontinuous function in the Baire class α + 1 which does not belong to
Baire class α .

N. Levine in [44] introduced the notion of semi-continuous function as a
function for which the inverse image of every open set is a semi-open set (a set
A is semi-open if A is a subset of the closure of the interior of A). A. Neubrun-
nová in her paper [53] has shown that the notions of quasicontinuity and semi-
continuity in the sense of Levine are equivalent. Z. Grande in [33] has shown
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that a function f is quasicontinuous if and only if the graph of the function f
restricted to the set of all continuity points of f is dense in the graph of f .

A fundamental result concerning continuity points is due to N. Levine [44]
for functions with values in a second countable space (and for functions with
values in a metric space [53]) is that the set of discontinuity points of a quasi-
continuous function is small.

Theorem 2.1. Let X be a topologocal space and let Y be a second countable
space ([44]) or let Y be a metric space ([53]). If f : X→Y is a quasicontinuous
function then the set of discontinuity points is of first category.

So, quasicontinuous functions have the Baire property. On the other hand, if
X = R2 [19] or if X is a Baire pseudometrizable space space without isolated
points (or X is a Baire resolvable perfectly normal locally connected space)
[5] or X is a hereditarily separable perfectly normal Fréchet-Urysohn space
[50], then for each Fσ -set A of first category there is a quasicontinuous func-
tion f : X→R such that A is the set of all discontinuity points of this function.
Points of quasicontinuity were characterized in [45]. Quasicontinuous func-
tions were investigated very intensively. We recommend a survey [52] pub-
lished in 1988 with more than 120 references.

2.2 Basic definitions

Let R, Q and N be the set of all real, rational and positive integer numbers,
respectively. For a set A ⊂ R denote by IntA and ClA the interior and the
closure of A, respectively.

Recall that a function f : X → Y (X and Y are topological spaces) is said to
be quasicontinuous at a point x if for each neighbourhood U of x and each
neighbourhood V of f (x) there is an open nonempty set G ⊂ U such that
f (G)⊂V [34].

H. P. Thielman introduced cliquish functions:
A function f : X → Y (X is a topological space and (Y,d) is a metric space)
is said to be cliquish at a point x ∈ X if for each neighbourhood U of x and
each ε > 0 there is an open nonempty set G ⊂U such that d( f (y), f (z)) < ε

for each y,z ∈ G [63].
Denote by C( f ), D( f ), Q( f ) and K( f ) the set of all continuity, disconti-

nuity, quasicontinuity and cliquishness points of f , respectively. A function
f is quasicontinuous (cliquish) if Q( f ) = X (K( f ) = X). Further, denote by
C (X ,Y ), Q(X ,Y ) and K (X ,Y ) (or briefly C , Q and K ) the family of all
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continuous, quasicontinuous and cliquish functions. Evidently C( f )⊂Q( f )⊂
K( f ) and C ⊂Q⊂K (if Y is a metric space). The set D( f ) for cliquish func-
tions is of first category and if X is a Baire space then f is cliquish if and only
if the set C( f ) is dense in X . The triplet (C( f ),Q( f ),K( f )) is characterized in
[5], [17], [16], [18].

The notion of strongly quasicontinuous function was used by Z. Grande for
s.q.c. functions [26]. In this paper, we will use the notion of strong quasiconti-
nuity for any classes functions between continuous and quasicontinuous func-
tions with the set of discontinuity points of measure zero and all such classes
of functions will be called stronly quasicontinuous.

2.3 Quasicontinuous functions with sets of discontinuity points of
measure zero

In this section we will assume that functions are defined in R with values in
R. Quasicontinuous functions need not be measurable [49]. The set Q( f ) need
not be measurable, however, if f : R→ R is measurable, then the set Q( f ) is
measurable [35]. The set Q( f ) \C( f ) is of the first category [53], however it
need not be measurable nor of measure zero. Even there is a Darboux function
such that the measure of Q( f )\C( f ) is positive [43]. If f is a quasicontinuous
function then the set D( f ) is measurable as an Fσ -set, however it need not be
of measure zero. Of course, if D( f ) is of measure zero then the function f is
measurable. In this section we will deal with quasicontinuous functions with
sets of discontinuity points of measure zero.

Let `e (`) denote the outer Lebesgue measure (Lebesgue measure) in R.
Denote by

du(A,x) = limsup
h→0+

`e(A∩ (x−h,x+h))
2h

the upper outer density of A⊂ R at a point x ∈ R. Similarly,

dl(A,x) = liminf
h→0+

`e(A∩ (x−h,x+h))
2h

is the lower outer density of A⊂ R at a point x ∈ R.
A point x ∈R is called a density point of A⊂R if there exists a measurable

(in the sense of Lebesgue) set B ⊂ A such that dl(B,x) = 1. The family Td of
all measurable sets A such that every point x ∈ A is a density point of A is a
topology called the density topology. Denote by Te the Euclidean topology on
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R. A function f is approximately continuous (at x) if it is continuous (at x)
as a function f : (R,Td)→ (R,Te). Denote by A the family of all approx-
imately continuous functions. Approximately continuous functions need not
be quasicontinuous, and quasicontinuous functions need not be approximately
continuous.

In [55] O’Malley introduced the topology Tae as the set of all A ∈ Td for
which `(A\ IntA) = 0 and proved that f : R→ R is Tae-continuous (i.e. con-
tinuous as a mapping from (R,Tae) to (R,Te)) if and only if it is everywhere
approximately continuous and almost everywhere continuous. It is easy to see
that every Tae-continuous function is quasicontinuous. Denote by Cae the fam-
ily of all Tae-continuous functions.

Z. Grande gave the following definitions

Definition 2.1. [26] A function f : R→ R is s.q.c. at x if for every ε > 0 and
for every U ∈ Td there is a nonempty open set V such that V ∩U 6= /0 and
| f (y)− f (x)|< ε for all y ∈V ∩U .

Definition 2.2. [26] A function f : R→ R has property A(x) at x ∈ R if there
exists an open set U such that du(U,x)> 0 and the restricted function f �(U ∪
{x}) is continuous at x. We will write f ∈ A(x) if f has the property A(x) at a
point x.

Definition 2.3. [26] A function f : R→ R has property B(x) at x ∈ R (abbre-
viated f ∈ B(x)) if for ε > 0 we have du(Int{y : | f (y)− f (x)|< ε},x)> 0.

Denote by Qs( f ) the set of all x at which f is s.q.c., by A( f ) the set {x ∈
R : f ∈ A(x)} and by B( f ) the set {x ∈ R : f ∈ B(x)}. Obviously,

C( f )⊂ A( f )⊂ B( f )⊂ Qs( f )⊂ Q( f ).

All inclusions can be proper. However, if Qs( f ) = R then B( f ) = R.
The following theorem shows that s.q.c. functions are quasicontinuous func-

tions with the set of discontinuity points of measure zero.

Theorem 2.2. [26] The set Qs( f )\C( f ) need not have measure zero. However,
if Qs( f ) = R then R\C( f ) = D( f ) is of measure zero.

Theorem 2.3. [27] The set B( f )\C( f ) is of measure zero.

Moreover, the sets A( f ) and B( f ) have Baire property, however, they need
not be borelian. Further, he gave a characterization of the set A( f ).
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Theorem 2.4. [27] Let A⊂ R. Then A = A( f ) for some f : R→ R if and only
if A =

⋃
m
⋂

n Am,n, where Am,n be such that there are open sets Gn such that
for each m,n ∈N we have du(IntAm,n,x)≥ 1/m for each x ∈ A, Am,n+1 ⊂ Am,n,
Am,n ⊂ Am+1,n, Gn+1 ⊂ Gn, Gn ⊂ Am,n and du(Gn,x)≥ 1/m for all x ∈ Am,n.

Also, there exist the characterizations of the pairs (C( f ),A( f )) and (C( f ),B( f )).

Theorem 2.5. [3] Let A and C be subsets of R. Then C =C( f ) and A = A( f )
for some function f : R→ R if and only if there exist open sets Gn such that
C =

⋂
n Gn ⊂ A, Gn+1 ⊂ Gn and inf{du(Gn,x) : n ∈ N}> 0 for each x ∈ A.

Theorem 2.6. [3] Let B and C be subsets of R. Then C =C( f ) and B = B( f )
for some function f : R→ R if and only if there exist open sets Gn such that
C =

⋂
n Gn ⊂ B, Gn+1 ⊂ Gn and du(Gn,x)> 0 for each x ∈ B.

Definition 2.4. [9] Let f : R→ R be a function and let r ∈ [0,1). We put
Ar( f )= {x∈R : there is an open set U such that du(U,x)> r and f � (U∪{x})
is continuous at x},
Al

r( f ) = {x∈R : there is an open set U such that dl(U,x)> r and f � (U∪{x})
is continuous at x},
Br( f ) = {x ∈ R : for each ε > 0 there is an open set U such that du(U,x)> r
and f (U)⊂ ( f (x)− ε, f (x)+ ε)},
Bl

r( f ) = {x ∈ R : for each ε > 0 there is an open set U such that dl(U,x) > r
and f (U)⊂ ( f (x)− ε, f (x)+ ε)}.

The set A0( f ) is the set A( f ) from Definition 2.2 and B0( f ) is B( f ) from
Definition 2.3. We have

Theorem 2.7. [9] Let f : R→ R be a function and let 0≤ s < r < 1. Then

Ar( f ) // Br( f ) // As( f ) // Q( f )

C( f ) // Al
r( f ) //

OO

Bl
r( f ) //

OO

Al
s( f )

OO

and each of inclusions can be proper (here, arrows mean inclusions).

For r∈ [0,1) let Ar = { f : R→R : Ar( f )=R}, A l
r = { f : R→R : Al

r( f )=
R}, Br = { f : R→ R : Br( f ) = R} and Bl

r = { f : R→ R : Bl
r( f ) = R}.
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Theorem 2.8. [9] Let 0≤ s < r < 1. Then the following inclusions hold

Ar // Br // As // Q

C // A l
r

//

OO

Bl
r

//

OO

A l
s

OO

and all inclusions are proper.

According to Theorem 2.3 we have

Theorem 2.9. All sets Ar( f )\C( f ), A l
r ( f )\C( f ), Br( f )\C( f ) and Bl

r( f )\
C( f ) have measure zero and all families Ar, A l

r , Br and Bl
r have the set of

discontinuity of measure zero.

Moreover, for s ∈ [0,1), the set
⋃

1>r>s
Br is nowhere dense set in As and⋃

1>r>s
Bl

r is nowhere dense set in A l
s . So, (Br)r∈[0,1) is the family of func-

tions between continuous functions and quasicontinuous almost everywhere
continuous functions such that Br is nowhere dense subset of Bs whenever
0≤ s < r < 1 (in the topology of uniform convergence).

Sometimes, the density of a set at a point is defined in other way.

Du(A,x) = limsup
h→0+, k→0+

`e(A∩ (x−h,x+h))
k+h

Dl(A,x) = liminf
h→0+, k→0+

`e(A∩ (x−h,x+h))
k+h

Evidently, du(A,x)≤Du(A,x) and dl(A,x)≥Dl(A,x). Moreover, Dl(A,x) =
1 if and only if dl(A,x) = 1 and du(A,x)> 0 if and only if Du(A,x)> 0. More
we can find in [42].

If we use in Definition 2.4 Du(U,x) and Dl(U,x) instead of du(U,x) and
dl(U,x), respectively, (i.e. let DAr( f ) = {x ∈ R : there is an open set U such
that Du(U,x)> r and f � (U ∪{x}) is continuous at x}), and similarly DAl

r( f ),
DBr( f ), DBl

r( f ), DAr, DA l
r , DBr and DA l

r , the corresponding Theorems 2.7,
2.8 as well as all remarks remain true, although the classes of functions are
different (we have

Ar( f )⊂ DAr( f ) and Ar ⊂ DAr,

with equality only for r = 0).
We can use in Definition 2.4 measurable sets instead of open sets.
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Definition 2.5. [37] Let ρ ∈ (0,1). A function f : R→ R is called ρ-upper
continuous at x provided there is a measurable set E such that x∈E, Du(E,x)>
ρ and f � E is continuous at x. If f is ρ-upper continuous at every point we say
that f is ρ-upper continuous.

Denote the class of all ρ-upper continuous functions by U Cρ . ρ-upper con-
tinuous functions are investigated in [37], [54], [41], [40], [42], [38], [36], [39].
Although the definition seems to be similar to Definition 2.4 and DAρ ⊂U Cρ ,
the differences are important.

Functions from classes Ar, A l
r , Br, Bl

r, DAr, DA l
r , DBr and DBl

r are qua-
sicontinuous the set of discontinuity points is of measure zero and they do
not contain approximately continuous functions. Functions from classes U Cρ

need not be quasicontinuous the measure of the set of discontinuity points can
be positive and they contains approximately continuous functions. All classes
of functions are measurable.

Z. Grande in [29] has given the following definitions.

Definition 2.6. [29] A function f : R→ R has property s0 at a point x if for
each positive ε and for each U ∈Td containing x there is a point t ∈C( f )∩U
such that | f (t)− f (x)|< ε .
A function f : R→R has property s1 at a point x if for each positive ε and for
each U ∈Td containing x there is an open interval I such that /0 6= I∩U ⊂C( f )
and | f (t)− f (x)|< ε for all points t ∈ I∩U .
A function f has property s0 (s1) if it has it at each point.

Each function f having property s1 has also property s0. Functions with
properties s0 or s1 are quasicontinuous. Each function with property s0 at x
is s.q.c. at this point. Moreover, a function f has property s0 if and only if
it is s.q.c. Functions with property s0 have the set D( f ) of measure zero and
functions with property s1 have the set D( f ) even of measure zero and nowhere
dense. The characterization of sets of discontinuity points of these functions is
following.

Theorem 2.10. [20] A set A is the set of points of discontinuity of some func-
tion f : R→ R with property s0 if and only if A is an Fσ -set of measure zero.

Theorem 2.11. [20] A set A is the set of points of discontinuity of some func-
tion f : R→ R with property s1 if and only if A is an Fσ -set of measure zero
and for each nonempty set U ∈Td contained in the closure of the set A, the set
U ∩A is nowhere dense in U.
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E. Strońska investigated maximal families for classes of s.q.c. functions
and functions with property s1. Let X be a topological space and let F be
a nonempty family of real functions defined on X . For F , we define the maxi-
mal additive class Madd(F ) as
Madd(F ) = { f : X → R : f +g ∈F for every g ∈F},
the maximal multiplicative class Mmult(F ) as
Mmult(F ) = { f : X → R : f ·g ∈F for every g ∈F},
the maximal class with respect to maximum Mmax(F ) as
Mmax(F ) = { f : X → R : max( f ,g) ∈F for every g ∈F},
the maximal class with respect to minimum Mmin(F ) as
Mmin(F ) = { f : X → R : min( f ,g) ∈F for every g ∈F},
and the maximal latticelike class Mlatt(F ) as
Mlatt(F ) = { f : X → R : max( f ,g) ∈ F and min( f ,g) ∈ F for every g ∈
F}. She proved (Qs is the family of all s.q.c. functions and Qs1 is the family
of all functions with property s1)

Theorem 2.12. [60] Madd(Qs) = Mmax(Qs) = Mmin(Qs) = Mlatt(Qs) =

Qs∩Cae and Madd(Qs1) = Mmax(Qs1) = Mmin(Qs1) = Mlatt(Qs1) = Qs1 ∩
Cae.

Let MQ denote the family of all functions with this property: if f is not
Tae-continuous at x ∈ R then f (x) = 0 and du({t ∈ R; f (t) = 0},x)> 0.

Theorem 2.13. [60] Mmult(Qs) = Qs ∩MQ, Mmult(Qs1) = Qs1 ∩MQ and
Mmult(Qs2) = Qs2 ∩MQ.

2.4 Quasicontinuous functions with sets of discontinuity points
almost of measure zero

Z. Grande in [23] gave the following definition (` is the Lebesgue measure in
Rn).

Definition 2.7. [23] A function f : Rn→ R is R-integrally quasicontinuous at
a point x if for each positive ε and for each open set U containing x there is a
bounded Jordan measurable set I with nonempty interior such that I ⊂U , the
restricted function f � I is integrable in the sense of Riemann and∣∣∣∣∫I f (t)dt

`(I)
− f (x)

∣∣∣∣< ε.

A function f is R-integrally quasicontinuous if it is such at each point.
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Theorem 2.14. [23] If a function f : Rn→ R is R-integrally quasicontinuous
then there is a dense open set U ⊂ Rn such that `(U \C( f )) = 0.

Therefore the measure of D( f ) is zero on some dense open set. However,
there is a R-integrally quasicontinuous nonmeasurable function f : R→ R.
Evidently, for such a function the measure of D( f ) is positive. Obviously,
R-integrally quasicontinuous functions are between continuous and quasi-
continuous functions. There are quasicontinuous functions which are not R-
integrally-quasicontinuous.

Theorem 2.15. [23] If f : Rn→ R is quasicontinuous and if there is a dense
open set G⊂ Rn such that `(G\C( f )) = 0 then f is R-integrally quasicontin-
uous.

Therefore, in the family of almost everywhere continuous functions, quasi-
continuous and R-integrally quasicontinuous functions coincide.

2.5 Quasicontinuous functions with σ -porous set of discontinuity
points

The notion of a σ -porous set was introduced in [15]. For a set A ⊂ R and an
open interval I ⊂ R let Λ(A, I) denote the length of the largest subinterval of I
having an empty intersection with A. Let x ∈ R. Then the right-porosity of the
set A at x is defined as

p+(A,x0) = limsup
h→0+

Λ (A,(x,x+h))
h

,

the left-porosity of the set A at x is defined as

p−(A,x0) = limsup
h→0+

Λ (A,(x−h,x))
h

,

and the porosity of the set A at x is defined as

p(A,x0) = max
{

p−(A,x0), p+(A,x0)
}
.

The set A⊂R is called right-porous at a point x∈R if p+(A,x)> 0, left-porous
at a point x ∈R if p−(A,x)> 0 and porous at a point x ∈R if p(A,x)> 0. The
set A⊂R is called porous if A is porous at each point x∈ A and A⊂R is called
σ -porous if A is the countable union of porous sets.
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Every σ -porous set is of first category and of measure zero, but there are
sets of first category and of measure zero, which are not σ -porous [64].

Definition 2.8. A point x ∈ R is called a point of πr-density of a set A ⊂ R
for 0 ≤ r < 1 (µr-density of a set A ⊂ R for 0 < r ≤ 1) if p(R\A,x) > r,
(p(R\A,x)≥ r).

Definition 2.9. [12] Let r ∈ [0,1). The function f : R→ R is called
Pr-continuous at a point x if there exists a set A ⊂ R such that x ∈ A, x is a
point of πr-density of A and f � A is continuous at a point x,
Sr-continuous at a point x if for each ε > 0 there exists a set A⊂ R such that
x ∈ A, x is a point of πr-density of A and f (A)⊂ ( f (x)− ε, f (x)+ ε).

Let r ∈ (0,1]. The function f : R→ R is called
Mr-continuous at a point x, if there exists a set A ⊂ R such that x ∈ A, x is a
point of µr-density of A and f � A is continuous at a point x,
Nr-continuous at a point x, if for each ε > 0 there exists a set A⊂ R such that
x ∈ A, x is point of µr-density of A and f (A)⊂ ( f (x)− ε, f (x)+ ε).

All of these functions are called porouscontinuous functions.

Symbols Pr( f ), Sr( f ), Mr( f ) and Nr( f ) will denote the sets of all points
at which the function f is Pr-continuous, Sr-continuous, Mr-continuous and
Nr-continuous, respectively. Collectively, these sets will be called the sets of
porouscontinuity points of the function f .

Porouscontinuity was defined by the set A containing the point x. There is,
however, a second option using an open set B where the continuity would be
required at a point x for f � B∪{x}. In [12] it is shown that it results in the
same notion. This is a difference with the measure case.

Theorem 2.16. [12] Let f : R→ R. Then the set S0( f )\C ( f ) is σ -porous.

The following theorem summarizes relations between sets of continuity,
porouscontinuity and quasicontinuity of a function f : R→ R.

Theorem 2.17. [12] Let 0 < r < s < 1 and f : R→ R. Then

C ( f )⊂M1( f ) = N1( f )⊂Ps( f )⊂Ss( f )⊂Ms( f ) =

Ns( f )⊂Pr( f )⊂P0( f )⊂S0( f )⊂Q( f ).

All inclusions are proper.

Let there be introduced the following denotations:
Mr = { f : Mr( f ) = R}, Nr = { f : Nr( f ) = R},
Pr = { f : Pr( f ) = R}, Sr = { f : Sr( f ) = R}.
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Theorem 2.18. Let 0 < r < s < 1. Then

C ⊂M1 = N1 ⊂Ps ⊂Ss ⊂Ms = Ns ⊂Pr ⊂P0 ⊂S0 ⊂Q.

All inclusions are proper.

Therefore functions in the family S0, and so all porouscontinuous func-
tions, have σ -porous sets of discontinuity points.

2.6 Limits

It is easy to see that the family of quasicontinuous functions is closed under
uniform convergence.

Theorem 2.19. [9] Let s ∈ [0,1). Then the sets Br, Bl
r,

⋃
1>r>s

Br and
⋃

1>r>s
Bl

r

are closed in the topology of the uniform convergence.

However, the sets Ar and A l
r are not closed.

Theorem 2.20. [9] For each r ∈ [0,1) there is a sequence ( fn)n of functions
belonging to A l

r such that its uniform limit does not belong to Ar.

Problem 2.1. Characterize uniform limits of Ar and A l
r . Is it true that each

function from Br (Bl
r) can be written as the uniform limit of functions from

Ar (A l
r )? (Z. Grande in [26] has shown that this is true for B0.)

Similarly, by [13], the families Sr and Mr are closed under uniform con-
vergence, whereas families Pr not.

The family of R-integrally quasicontinuous functions is not closed under
uniform convergence [23].

Let X be a topological space and (Y,d) a metric one.
We say that a sequence of functions fn : X → Y discretely converges to the

function f : X → Y ([14]) if ∀x ∈ X∃n(x)∀n≥ n(x) : fn(x) = f (x).
Z. Grande in [22] has characterized discrete limits of quasicontinuous al-

most everywhere continuous functions.

Theorem 2.21. [22] A function f : R→ R is the discrete limit of a sequence
of quasicontinuous almost everywhere continuous functions if and only if the
set R \Q( f ) is nowhere dense and there is an Fσ -set A of measure zero such
that the restriction f � (R\A) is the discrete limit of a sequence of continuous
functions (on R\A).
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Recall that a sequence of functions fn : X →Y quasiuniformly converges to
f : X → Y if the sequence ( fn)n pointwise converges to f and
∀ε > 0∀m ∈ N∃p ∈ N∀x ∈ X : min{d( fm+1(x), f (x)),. . .,d( fm+p(x), f (x))}<ε .

The quasiuniform limit of continuous functions is continuous but the quasi-
uniform limit of quasicontinuous functions need not be quasicontinuous. How-
ever, the quasiuniform limit of quasicontinuous functions is cliquish. In [8] it is
shown that every cliquish function f : R→R can be expressed as the quasiuni-
form limit of a sequence of quasicontinuous functions. The result was strength-
ened, by showing it holds for functions defined on more general spaces. Ch.
Richter has shown [56] that this is true for functions defined on pseudometriz-
able spaces and by Z. Grande [21], we can assume moreover that functions are
quasicontinuous and Darboux.

The uniform limit of s.q.c. functions fn : R→ R is s.q.c. Since s.q.c. func-
tions have the sets of discontinuity points of measure zero (Theorem 2.2), the
quasiuniform limit of sequence of s.q.c. functions has the set of discontinuity
points of measure zero.

Theorem 2.22. [29] A function f : R→ R is almost everywhere continuous
if and only if there is a sequence of Darboux s.q.c. functions quasiuniformly
convergent to f .

Similar result we can find for functions with property s1.

Theorem 2.23. [58] A function f : R→ R is almost everywhere continuous
if and only if there are functions fn : R→ R with property s1 quasiuniformly
converging to f

Since the set of discontinuity of porouscontinuous functions is σ -porous,
the quasiuniform limit of a sequence of some porouscontinuous functions has
the set of discontinuity points σ -porous and previous theorem is not true for
porouscontinuous functions.

Problem 2.2. Is every function f : R→ R with σ -porous set of points of dis-
continuity the quasiunform limit of a sequence (some) porouscontinuous func-
tions?

2.7 Quasicontinuous almost everywhere continuous functions

Evidently, the biggest class of quasicontinuous functions with the set of discon-
tinuity points of measure zero is the family of almost everywhere continuous
quasicontinuous functions.
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It is easy to see that the uniform limit of quasicontinuous almost everywhere
continuous functions is quasicontinuous almost everywhere continuous. From
Theorem 2.23 we obtain that each almost everywhere continuous function is
the quasiuniform limit of a sequence of quasicontinuous almost everywhere
continuous functions.

Almost everywhere continuous function f : R→R has dense set of continu-
ity, so it is cliquish. According to [10] (also [24], [47]), each cliquish function
f : R→ R is the sum of two quasicontinuous functions f1 and f2 such that
D( f1)∩D( f2) ⊂ D( f ). So, immediately we have the characterization of the
sums of quasicontinuous almost everywhere continuous functions.

Theorem 2.24. A function f : R→ R is almost everywhere continuous if and
only if it is the sum of two quasicontinuous functions both with the set of dis-
continuity points of measure zero.

However, it need not be the sum of two functions from the family Ar. Sim-
ilarly, each function with σ -porous set of discontinuity is the sum of two qua-
sicontinuous functions with σ -porous set of discontinuity points.

2.8 Other classes of functions between continuous and
quasicontinuous functions

Of course, each family of quasicontinuous functions with some extra property
lies between continuous and quasicontinuous functions. For example, Darboux
and quasicontinuous functions (see survey paper [51]), strong Świa̧tkowski
functions (e.g. [47], [61]), extra strong Świa̧tkowski functions [62], which are
both Darboux and quasicontinuous however their set of dicontinuity points can
be of positive measure.

Quasicontinuous functions with closed graph [11], [57] or internally qua-
sicontinuous functions (a function f is internally quasicontinuous [48] if is
quasicontinuous and its set of points of discontinuity is nowhere dense) are
such that the set of discontinuity is nowhere dense, but it can be of positive
measure. However, it is a subject for another paper.
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[17] J. Ewert, J. S. Lipiński, On points of continuity, quasicontinuity and cliquishness of
real functions, Real Anal. Exchange 8 (1982/83), 473-478.
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