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5.1 Introduction

Let R denote the set of reals and N the set of positive integers. By 7y we shall
denote the natural topology on R. Let #(7), K(7), Ba(7) denote the family of
all Borel sets, meager sets and sets having the Baire property in a topological
space (R, 1), respectively. A 7-open set A C R is t-regular if A = int;cl:A ,
where int; and cl; mean the interior and closure with respect to the topology
7. If 7 = 19 then we shall use the notation %4, K and Ha, respectively. The
symmetric difference of sets A, B is denoted by A A B.
Let @: 7y — 2R be an operator satisfying the following conditions:

(i) ®0)=0, ®R)=R,
(i) ¥V ¥ ®ANB)=PA)Nd(B),

A€ty Ber
(iii) ¥ AC P(A).

€Ty

Let @ stand for the family for all operators satisfying conditions (i) — (iii).

Remark 5.1. If @ € @ then ®(A) C clg A for every A € 1.
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It is well known that every set A € Za has the unique representation
A=G(A)AB

where G(A) is a regular open set and B € K (cf. [4]). In particular, if V € 1
then V. = W \ P where W is regular open and P is a nowhere dense closed set
(see [5)]).
Let @ € ® and ®,: Ba — 2R be defined by formula
V @.(A)=P(G(A)).

Y @y(4) = B(G(A))
The following theorems are a special case of similar theorems in [1] concern-
ing arbitrary topological Baire spaces.

Theorem 5.1. For every ®@ € ®, the operator @, is a lower density operator
on (R, Pa,K). This means that the following conditions are satisfied:

1° &,(0) =0, d,(R) =R,

2° V.V @(ANB) = D(A)ND(B
A€Ha BEXa r( ) r( ) r( )’

3 VY AABEK= &,(A) = &,(B),
A€ePBa BEBa

4° YV AND(A)eK.

AcHBa
Theorem 5.2. For every operator ® € ®, the family Tp, = {A € PBa: A C
D, (A)} is a topology on R strictly stronger than 1.

Proof. Since the pair (%a,KK) has the hull property, what means that every
family of pairwise disjont sets having the Baire property but not meager is at
most countable, and &, is a lower density operator on (R, Aa, K), we infer that
the family Jp, = {A € $a;A C P.(A)} is a topology on R, called an abstract
density topology on (R, %a,K) (see [4], p. 208 and p. 213). If V € 1 then
by Remark 5.1, V.= W \ P where W is a regular open set and P € K. Hence
G(A) =W and @,(V) = ®(W) D W D V. Therefore V € Jg,. Evidently, the
set of irrational numbers is a member of I, \ Ty, so the proof is complete. O

The next theorem lists properties of the topological space (R, 7, ). For the
proofs and some related comments see Theorem 4 in [1].

Theorem 5.3. Let @ € ®. Then the topological space (R, Tg,) has the follow-
ing properties:

a) A € Kiff A is Jp,-nowhere dense and closed,
b) K(Zg,) =K,
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c) Ba(Tp,) = B(Tp,) = Aa,

d) (R, Zg,) is the Baire space,

e) A C X is compact iff A is finite,

f) (R, Is,) is neither separable, nor first countable or second countable,
g) (R, Js,) is not a Lindeldf space,

h) if A C R then Intg,(A) = AN D,(B), where B € PBa is a kernel of A.

Some examples of operators belonging to ® have already been considered
in the literature.

Example 5.1. Let @ = ®,, where &, denotes the density operator on the family
of Lebesgue measurable sets in R. Then @ € ®; the topology Jp, = {A €
Pa: A C ®.(A)} was intensively investigated in [11] and some generalization
of this approach is presented in [10].

Example 5.2. Let @ = Py, where Py denote the W-density operator on the
family of Lebesgue measurable sets in R (see [11]). Then @ € ®; the topology
To, ={A € Ba: A C Pyp(A)} was investigated in [8].

Example 5.3. Let ®(A) = A for every A € 9. Then ¢ € ® and Tp, = {B C
R: B=C\D, C € 19, D € K}, (see in [1] and [3]).

Example 5.4. Let @ = &, where @, denote the .#-density operator on the
family %a in R (see [5]). Then @ € ® and for every set A € Ba, P,(A) =
P(G(A)) = ®(A). This implies that T, = 7, where T is the .#-density
topology (see [6]).

5.2 The main results

In the following part we shall focus on two kinds of continuity: topological
and restrictional. Let @ € ®.

Definition 5.1. A function f: R — R is .7, -topologically continuous at xo €
Rif
V o 3 (x€eANAC{x:|f(x)— f(x)| <&}).
e>0 AcTy,
Obviously, a function f: X — R is g -topologically continuous at every
point x € X if and only if it is continuous as a transformation from the topo-
logical space (X, 7,) to (R, 19).
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Definition 5.2. We shall say that a function f: R — R is 7, -restrictionally
continuous at xo € R if there exists a set E € %a such that xo € D,(E) and f|g
is Tp-continuous at xg.

Property 5.1. (cf. [1]) Let @ € ®. If f: R — R is I, -restrictionally continu-
ous at xo € R then f is 7 -topologically continuous at xy.

Proof. Assume that f is Jg, -restricionally continuous at xo € R. Then there
exists a set E € Aa such that xo € @,(E) and f|g is Tp- continuous at xo.
Thus, for every € > 0 there exist V € 1y such that xo € V and ENV C {x €
R: |f(x) — f(x0)] < €}. Thenxo e A=END(E)NV € Tp and A C {x €
R: |f(x) — f(x0)| < €}. This means that f is Zg, -topologically continuous at
XQ- O

The converse is not true. Namely, if @ = & then Jp, = 7, and it was
proved in [6] that .7 »-topological continuity and .7 ,-restrictional continuity
are not equivalent.It is also worth mentioning that the topologies in papers [12]
and [9] are such that topological and restrictional continuity are not equivalent.
However, if @ = &, or @ = Py, the paper [8] contains the proof of equiva-
lence of both kinds of continuity.

By Corollary 3 in [1] we obtain the following theorem giving equivalence
of topological and restrictional continuity on residual sets.

Theorem 5.4. Let & € ® and f: R — R. If Ci(f) and Cy(f) are the sets of
o, -topological continuity and Jg, - restrictional continuity respectively, then
C\(f) is residual if and only if Co(f) is residual with respect to topology T.

Now, we characterize the equivalence of topological and restrictional conti-
nuity in terms of the Jg, -topology for every @ € .

Theorem 5.5. Let f: R — R, @ € ® and xo € R. The following conditions are
equivalent:

(a) f is Tg,-topologically continuous at xg if and only if f is T -restrictionally
continuous at xo,
(b) for every decreasing sequence {E,}nen C PBa such that xo € (- Pr(E,)
there exists a sequence {ry}neny C Ry with r, N\, 0 such that
x0 € P (U1 En N (R (X0 — 7, X0 + 7))
(c¢) for every decreasing sequence {E,}nen C To such that xo € (- Pr(Ey)
there exists a sequence {rytneny C Ry with r, N\, 0 such that
x0 € Pr(Upzy (Ea N (RN (x0 = rus Xo + 1))
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(d) for every decreasing sequence {E,},cn of To-regular open sets such that
X0 € =1 Dr(Ey) there exists a sequence {ry}nen C Ry with r, \ 0 such
that xo € O (U;— 1 (E, N (R\ (x0 — ruyx0+12))))-

Proof. By Theorem 4 in [2] (see also Theorem 3.1 in [7]) conditions (a) and
(b) are equivalent. Obviously, (b) = (¢) = (d). We shall prove (d) = (b).
Let {E,}nen C Pa be a decreasing sequence such that xo € (";_; @r(E,).
Then {G(E,)}qen is a decreasing sequence of regular open sets such that
P, (E,) = ©,(G(E,)) foralln € N, and xo € (,—; ©-(G(E,)). Then there ex-
ists a sequence {r, fneny C Ry with r, N\, 0 such that xo € @-(U,_;(G(E,) N
(R (50— 0+ 7)) = B Uy (B OV (RN, (30— 1o+ 12))). 0

Property 5.2. If ®@(A) = A for every A € Ty, then @ € ® and for every function
f: R — R, Jg -topological continuity and g, -restrictional continuity are
equivalent.

Proof. Evidently @ € ®. It is sufficient to prove condition (a) of Theorem 5.
Let {E,},en be a decreasing sequence of tp-regular open sets such that xy €
M1 ©+(E,) for every n € N. Since &,(E,) = P(G(E,)) = P(E,) = E, for
every n € N, we have that xo € (,_; E,. Let {c, }nen C R be a sequence with
¢n \( 0 and (xo — ¢, x, +¢,) C E, for every n € N. Putting r, = ¢, for every
n € N we have that (xo —c1,x0+c¢1) \ {x0} CUj—1 (E.N(R\ (x0 =, x0+74)))-
Hence xo € G(U,—; (E,N(R\ (x0 — rn,x0 +12))) = Pr(Un i (En N (R (x0 —
FnyX0+11))))- O
Theorem 5.6. Let f: R - R, @ € ® and xy € R. If for every decreasing se-
quence {E, },en of To-regular open sets such that xo € (,—; P (E,) there exists
a sequence {rytnen C Rywith ry 0 such that xo € @ (-1 (E,N(R\ [xo —
n,Xo+1y]))) then T, -topological continuity and g, -restrictional continuity
of the function f at xy are equivalent.

Proof. 1t is sufficient to prove condition (b) of Theorem 5. Let {E, },eny C Ba
be a decreasing sequence such that xo € (,_; D,(E,). Then {G(E,) },en is a
decreasing sequence of regular open sets such that xo € (_; @(G(E,)). Hence
there exists a sequence {r, },eny C Ry with r,, N\, 0 such that

x0 € DU (G(En) N (R[50 — 70+ 1)),
For every n € N we get

G(E,N(R\ [xo — rn,x0 +14])) = G(E,) N (R\ [x0 — ryyx0+ 1)
C G(Un=i (EaN(R\ [xo — 7, x0 + 7))

Hence
D (Up=1 (G (En) V(R [x0 — rnyx0 4 14]))) €
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D (G (Up=1 (Ex N (R\ [xo — ra, X0 +74]))))
and
X0 € (P<G(U:::1(Enm (R\ [XO — }"n,XO—‘rI"n]))))
=&, (U (Ex N (R\ [x0 — Fny X0 +72])))
= &, (U1 (Ea N (R\ (x0 — 7, X0 + 7))
O

The converse of Theorem 5.6 is not true. Let @(A) = A for every A € 1y and
let xo € R. Putting E,, = (xo — &;,X0 + &), where {&, },eny C Ry is a sequence
tending to 0, we have xo € (), P(E,). At the same time for every sequence
{rn}tnen C Ry with r, N\, 0 we get that

x0 & P(UZi ((Ea N (R [x0 = ru, Xo + 7a])))).-
On the other hand, by Property 2, 7, -restrictional continuity and Z,-topolo-
gical continuity are equivalent. The following theorem establishes the equiva-
lence in Theorem 5.6 under additional assumption.

Theorem 5.7. Let @ € ® be an operator such that ®(A) = P(B) for every
A, B € 1) whenever A A B is countable. Then for an arbitrary function f: R —
R and xy € R, T, -topological continuity and T, -restrictional continuity of f
at xq are equivalent if and only if for every decreasing sequence {E, }nen of To-
regular open sets such that xo € (-, P(E,) there exists a sequence {r, } ,en C
Ry with ry \( 0 such that xo € ®(U,—;(E, N (R\ [x0 — rn, X0 + 74)))-

Proof. Sufficiency is a consequence of the previous theorem.

Necessity. Let us suppose that there exists a decreasing sequence {E, },cr of
regular open sets such that xo € (_; ¢(E,) and for every sequence {r, },en C
R, with r, \ 0, we have

30 & DU (Ea ) (RN [¥o = 1nyx0 +12])).

Let
2 for x ¢ E and x # xo,
fx)=<1/n forxeE,\E,. and x # xo,
0 for x € (N, E, or x = xo.
Then

¥ E C{veR: [f(x) — f(w)l < 1/n}

and xo € P(E,) = @.(E,). Thus f is T, -topologically continuous at xo. Let
us suppose that f is J,-restrictionally continuous at xo. Then there exists a
set E € Pa such that xop € ®,(E) and f|g is To-continuous at xo. Hence for
every n € N there exists r, > 0 such that

EN(xo—rn,x0+1,) C{xeR: |f(x)— f(xo0)| < 1/n}.
We can assume that r,, \, 0. Then for every n € N,
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EO(R\ [xo_rn+17x0+rn+l])ﬁ(xo_rn7x0+rn)
C En1 N (R [x0 = 1,0 + 1))

Hence

G(E)N(R\ [xo — ruy1,%0 + rug1]) N (X0 — 7, X0 +7n)
C G(En+1) N ((R\ [XO - rn+1ax0+rn+l]))'

This implies that

G(E)NUp=1 (R\ [xo = 1, X0 + rns1]) N (X0 — 7, X0 + 7))
C Uzt (Enr1 N(RN [xo = 7, %0 + 7))
C Unzi (En N (RN [xo — 7y X0 + 7))

Then

D(G(E)) NP (Upzi (RN [x0 = Fut1,%0 + s 1]) N (X0 — 7, X0 + 7))
C D(Up=i (Ea N (R\ [xo — 1, %0 +74])))-

Since
D (Unzt (R [xo = 71, X0 + 11]) 0 (X0 = 7y Xo + 7)) =
@ ((xo —r1,x0 +r1) \ (U {ra} U{x0})) = @(x0 — r1,x0+11)
D (xo—r1,x0+71)
and xo € @,(E) = ®(G(E)). The contradiction that

x0 € @ (Up=1 (En N (R\ [xo = 1, X0 +14])))
ends the proof. a
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