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9.1 Introduction

In this text we will work with several topological notions that enable us to
compare the behavior of functions. So-called relations of continuity and rela-
tions of constancy were introduced for the first time in [8]. We show on ex-
amples that these relations between functions occur naturally. This approach
allows not only to compare functions, but also to generalize some "continuity-
preserving" theorems and to generate new ones. Sometimes it allows to replace
differentiation by a simpler procedure - manipulation with inequalities - that
can be used to examine nondifferentiable functions too. As the reader will see
later, comparing functions in this way yields also new insight into the structure
of some function spaces. Optimization applications of this new approach will
be shown as well.

The most results presented here come from our articles [8], [9], we have
slightly improved some of them. A few results are new (e.g. Lemma 9.1). If
we use results of other authors, we always cite their works.
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9.2 Motivation

New notions mentioned above are defined in the next section. Before defining
them, we want the reader to know that these notions did not come just out of
blue. Therefore we think it is important to show some preliminary examples of
behavior of functions, known by everybody and relevant to our case.

Let us consider the following simple situation. We have two continuous
real functions of real variable - f and g - and we are counting a limit of their
quotient applying the L‘Hospital‘s rule. Suppose a ∈ R, f and g have a finite
derivative on open intervals (a−ε,a) and (a,a+ε) and lim

x→a
f (x) = lim

x→a
g(x) =

0 is true. Suppose we obtain

lim
x→a

f (x)
g(x)

= lim
t→a

f
′
(t)

g′(t)
= 3.

The equalities above imply that there exists an interval I = (a− δ ,a+ δ )

such that 1 < f
′
(t)

g′ (t)
< 4 for all t from I \ {a}. Now we can observe that f and

g behave "similarly" on the interval I. Indeed, since none of the derivatives
equals zero for a t from I \ {a}, they are both positive or both negative on
(a−δ ,a) (and on (a,a+δ )). There are four possibilities for f and g:

• f and g are increasing on I;
• f and g are decreasing on I;
• f and g are both increasing on (a− δ ,a) and decreasing on (a,a+ δ ) so

they have both a local maximum at a;
• f and g are both decreasing on (a− δ ,a) and increasing on (a,a+ δ ) so

they have both a local minimum at a.

Could we obtain an information like this without using derivatives? Well,
we could argue, that f and g behave similarly because we know that for every
b from I \{a} the following is true

(*) 1 < f (b)− f (a)
g(b)−g(a) < 4

Of course, in this particular case we know this is true because we have used

the Cauchy mean value theorem ( f (b)− f (a)
g(b)−g(a) =

f
′
(c)

g′ (c)
for a c from I \{a}). But we

can see, that if for all b from I \{a} the inequalities from (*) are satisfied, we
need not f and g to be differentiable to realize that if f has a local extremum
at a then g has a local extremum at a too and vice versa.

Let us consider two more contexts and two other types of inequalities that
can assure that two functions behave "similarly".
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(I) f and g are real valued functions defined on an arbitrary set X . Suppose
there exist two positive constants K and L such that for all points x and y from
a set A⊂ X if x 6= y then

K <
| f (x)− f (y)|
|g(x)−g(y)|

< L.

(II) f and g are defined on a set X . The function f has values in a metric
space (Y,d) and the function g has values in a metric space (Z,ρ). Suppose
there exist two positive constants K and L such that for all points x and y from
a set A⊂ X ,

d( f (x), f (y))< K·ρ(g(x),g(y))< L·d( f (x), f (y)).

If one of the situations described above takes place, we can for example
conclude, that if f is bounded on A, so is g. If the set X was endowed with a
topology and we would have X = A, we could do some predictions about the
continuity of f just observing whether g is continuous at a certain point.

The examples mentioned above serve only as a motivation for us. In this
paper we examine more general relations between functions. These relations
will be described in a purely topological way. But the reader will be able to see
that relations and inequalities shown above represent special cases of a more
general topological phenomenon.

9.3 Basic notions

In what follows we will use these notions, concerning topological spaces and
functions: a net of points, a limit of a net, a net of functions, uniform conver-
gence, pointwise convergence (see e. g. [5] or [6]).

First we introduce the notion of the continuous similarity. The definition
was introduced in our article [8] and here we take the liberty to replace the
original cumbersome expression " the degree of continuity of g at x is greater
or equal than the degree of continuity of f at x " by a simpler expression "g is
f -continuous at the point x".

Definition 9.1. Let X , Y , Z be topological spaces, let f : X → Y , g : X → Z be
functions.

(a) Let x be from X . We say that g is f -continuous at x if for every net
{xγ}γ∈Γ of elements from X converging to x the following holds:
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If the net { f (xγ)}γ∈Γ converges in Y then the net {g(xγ)}γ∈Γ converges in
Z. We denote this by cx

t (g)≥ cx
t ( f ).

Let A be a subset of X . We say that g is f -continuous on A if for every x
from A, cx

t (g)≥ cx
t ( f ) is true. We denote this by cA

t (g)≥ cA
t ( f ). Of course, for

a particular x, the expressions cx
t (g)≥ cx

t ( f ) and c{x}t (g)≥ c{x}t ( f ) describe the
same situation. When cX

t (g)≥ cX
t ( f ) is true, we write simply ct(g)≥ ct( f ) and

we say that g is f -continuous.
Let A be a subset of X . We say that f and g are continuously similar on A

if cA
t (g) ≥ cA

t ( f ) and cA
t ( f ) ≥ cA

t (g) is true at the same time. We denote this
situation by writing cA

t (g) = cA
t ( f ). If A = X we write also ct(g) = ct( f ) or, for

the sake of simplicity, f ∼ g and we say that f and g are continuously similar.
(Of course, the f -continuity of a function g per se does not guarantee, that

g will automatically have all nice properties of f . Considering any type of
generalized continuity of f , it must be always examined and proven, whether
this type of continuity will be inherited by g or not.)

Remark 9.1. To sum up, f ∼ g means that for every convergent net {xγ}γ∈Γ

from X the net { f (xγ)}γ∈Γ converges in Y if and only if the net {g(xγ)}γ∈Γ

converges in Z.
In general, we can see immediately that if f is continuous on a subset A

of X and cA
t (g) ≥ cA

t ( f ) is true, then g is continuous on A too. And if g is
not continuous at a point x from X and cx

t (g) ≥ cx
t ( f ) is true, then f is not

continuous at x.

Now the second notion of similarity of functions will be defined. In [8] the
notion was defined in a way, that the domain X of f and g was supposed to
be a topological space. But the topological structure on X was not used in the
definition. Therefore, we will suppose, that X is simply a set.

Definition 9.2. Let X be a nonempty set, let Y , Z be topological spaces. Let
f : X → Y, g : X → Z be functions.

Let A be a subset of X . We say that g is f -constant on A if for every net
{xγ}γ∈Γ of elements from A the following holds

If the net { f (xγ)}γ∈Γ converges in Y then the net {g(xγ)}γ∈Γ converges in
Z. We denote this by cA

s (g)≥ cA
s ( f ). If A = X we write also cs(g)≥ cs( f ).

Let A be a subset of X . We say that f and g are strongly similar on A if
cA

s (g) ≥ cA
s ( f ) and cA

s ( f ) ≥ cA
s (g) is true at the same time. We denote this

situation by writing cA
s (g) = cA

s ( f ). If A = X we write also cs(g) = cs( f ) or,
for the sake of simplicity, f ≈ g and we say that f and g are strongly similar.
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Remark 9.2. To sum up, f ≈ g means that for every net {xγ}γ∈Γ from X
{ f (xγ)}γ∈Γ converges in Y if and only if the net {g(xγ)}γ∈Γ converges in Z. In
our first definition we considered only some nets {xγ}γ∈Γ from X , namely the
convergent ones. Now, the same relationship between f and g must be verified
- for all nets from X .

In particular, we can see that if X is a topological space and if the function
f has values in a complete metric space (Y,d) and g has values in a complete
metric space (Z,ρ) and if there exist two positive constants K and L such that
for all points t, s from an open neighborhood of x (for all points t and s from a
set A),

d( f (t), f (s))≤ K·ρ(g(t),g(s))≤ L·d( f (t), f (s))

is true, then f and g are continuously similar at x ( f and g are strongly
similar on A).

The following example should help the reader to get a first insight into the
new notions.

Example 9.1. a) Let Y = [0,1], X = Z = (0,1). Define f : X→Y and g : X→ Z
by

for all x from X , f (x) = x and g(x) = x.
Although f and g are very similar (only Y and Z differ a little bit), we can

see that they are not strongly similar. Indeed, the net { f (1
n)}n∈N converges but

the net {g(1
n)}n∈N does not converge. Only the relation cs( f )≥ cs(g) is true. It

is easy to check that f ∼ g - i. e. f and g are continuously similar.
b) When X , Y , Z are arbitrary topological spaces and f : X→Y and g : X→

Z are functions, if g is continuous at a point x from X then cx
t (g)≥ cx

t ( f ) is true.
If both f and g are continuous on X , then we can see that f ∼ g is true.

c) When X , Y , Z are arbitrary topological spaces and f : X→Y and g : X→
Z are functions, if f is constant on X , then cs( f )≥ cs(g) holds. If both f and g
are constant then f ≈ g is true.

Now we present a simple application of the previous notions. First we need
the definition of a subcontinuous function. Subcontinuity has been studied by
many authors for almost 40 years (see e. g. [7], [16]). A function from a topo-
logical space X to a topological space Y is called subcontinuous at x from
X if for every net {xγ}γ∈Γ converging to x there is a convergent subnet of
{ f (xγ)}γ∈Γ ([7]). Now, it is easy to prove the following lemma:

Lemma 9.1. Let X, Y , Z topological spaces. Let g : X→Y , f : X→ Z be func-
tions. Let f be subcontinuous at a point x from X. If g is f -continuous at x, g
is subcontinuous at x too.
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Proof. Let {xγ}γ∈Γ be a net converging to x. Since f is subcontinuous at x,
there is a convergent subnet of { f (xγ)}γ∈Γ . This is equivalent to the fact that
for a certain subnet {xα}α∈A of {xγ}γ∈Γ the net { f (xα)}α∈A converges in Z.
Since g is f -continuous at x, the net {g(xα)}α∈A converges (in Y ) too. But this
means the net {g(xγ)}γ∈Γ has a convergent subnet in Y . So g is subcontinuous
at x. ut

We have defined some "relations of continuity" and "relations of constancy"
between functions and we were using symbols "≥" and "=". Of course, the
use of these symbols does not automatically turn these relations into relations
of order or equality. However, it is easy to see that these relations would be
able to create some kind of preorder or some kind of equivalence relations on
concrete sets of functions. The following lemma describes the situation.

Lemma 9.2. Let X, Y , Z, S be topological spaces, let f : X→Y , g : Y → Z and
h : X→ S be functions. Let A be a subset of X. Then the following implications
are true:

(1) If cA
t ( f )≥ cA

t (g) and cA
t (g)≥ cA

t (h) then cA
t ( f )≥ cA

t (h).
(2) If cA

s ( f )≥ cA
s (g) and cA

s (g)≥ cA
s (h) then cA

s ( f )≥ cA
s (h).

(3) If cA
t ( f ) = cA

t (g) and cA
t (g) = cA

t (h) then cA
t ( f ) = cA

t (h).
(4) If cA

s ( f ) = cA
s (g) and cA

s (g) = cA
s (h) then cA

s ( f ) = cA
s (h).

(5) If f ∼ g and g∼ h then f ∼ h.
(6) If f ≈ g and g≈ h then f ≈ h.

Proof. (1) and (2) follow from the definition,(3)-(6) follow from (1) and (2).
ut

The following two lemmas will be useful when proving some optimization
results.

Lemma 9.3. Let X be a topological space, let Y and Z be Hausdorff topologi-
cal spaces. Let f : X → Y, g : X → Z be functions. Let f ≈ g. Let x be from X.
Then the sets f−1( f (x)) and g−1(g(x)) are equal.

Proof. Since the relation between f and g is "symmetrical", it suffices to show
that if a point z is from f−1( f (x)) then it is from g−1(g(x)). Suppose z ∈
f−1( f (x)) is true. Define a sequence {an}n∈N by

an =

{
x if n is even,

z if n is odd.

Since f (x) = f (z) we can see that the sequence { f (an)}n∈N converges. This
means the sequence {g(an)}n∈N converges too. Since one of its subsequences
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converges to g(x) and another one converges to g(z), we obtain g(x) = g(z).
The point z is proven to be from g−1(g(x)). ut

The above results imply that the relation "≈" preserves periodicity.

Corollary 9.1. Let Y , Z be Hausdorff topological spaces, let f : R→Y , g : R→
Z be functions. If f ≈ g and f is periodic with a period p, then g is periodic
with the same period p.

The following lemma illustrates some useful properties of the relations "≈"
and "∼".

Lemma 9.4. Let X, Y , Z1, Z2 be topological spaces, let h : X →Y , f : Y → Z1,
g : Y → Z2 be functions. Define f : X → Z1, g : X → Z2 by
∀x ∈ X : f (x) = f (h(x)),g(x) = g(h(x)).
If f ≈ g then f ≈ g.
If h is continuous and ( f ∼ g) then ( f ∼ g).
If p : Z1→ Z1 is a homeomorphism then f ≈ p( f ).

Proof. Trivial. ut

9.4 Similarity and limits

The following assertion has a very standard proof and it will help us to stop
repeating this kind of proof again and again - as it has been done in many
classical theorems.

Lemma 9.5. Let X be a topological space, (Z,ρ) a metric space. Let f : X→ Z
be a function. Let { fγ}γ∈Γ be a net of functions from X to Z. Let { fγ}γ∈Γ

converges uniformly to f . Let s = {xδ}δ∈∆ be a net in X. Let for each γ ∈ Γ ,
{ fγ(xδ )}δ∈∆ is Cauchy in Z. Then the net { f (xδ )}δ∈∆ is Cauchy in Z.

Proof. Be ε a positive real number. Denote t = ε

3 . Since { fγ}γ∈Γ converges
uniformly to f there exists γ from Γ such that for all x from X we have
ρ( f (x), fγ(x))< t. The net { fγ(xδ )}δ∈∆ is Cauchy in Z so there exists an index
δ0 such that for all α,β that are greater than δ0 the inequality

ρ( fγ(xα), fγ(xβ ))< t
holds. Using the triangle inequality we obtain

ρ( f (xα), f (xβ ))<ρ( f (xα), fγ(xα))+ρ( fγ(xα), fγ(xβ ))+ρ( f γ(xβ ), f (xβ ))<

<3t = ε.

This ends the proof. ut



134 Ivan Kupka

The preceding lemma helps us to prove the following "continuity preserv-
ing" theorem. In fact, the theorem says that after a uniform limiting process the
degree of continuity and the degree of constancy is preserved, or can become
higher. So the limit is never "uglier" than the approaching functions. Of course,
the functions fγ have to be all "equally nice", i. e. h-continuous or h-constant
with respect to a function h.

Theorem 9.1. Let X a topological space, (Y,d) and (Z,ρ) complete metric
spaces. Let h : X→Y, f : X→ Z be functions. Let { fγ}γ∈Γ be a net of functions
from X to Z. Let { fγ}γ∈Γ converges uniformly to f . Let x be a point of X, let A
be a subset of X. Then

(i) If for all γ from Γ , cA
t ( fγ)≥ cA

t (h) then cA
t ( f )≥ cA

t (h).
(ii) If for all γ from Γ , cx

t ( fγ) ≥ cx
t (h) and if h is continuous at x then f is

continuous at x.
(iii) If for all γ from Γ , cA

s ( fγ)≥ cA
s (h) then cA

s ( f )≥ cA
s (h).

(iv) If for all γ from Γ , cA
s ( fγ) ≥ cA

s (h) and if h is constant on A then f is
constant on A.

Proof. (i) Take an arbitrary net s = {xδ}δ∈∆ of points of X converging to a
point a from A. Suppose the net {h(xδ )}δ∈∆ converges in Y . We have to prove
that the net { f (xδ )}δ∈∆ converges in Z. Since for every γ from Γ we have
cA

t ( fγ) ≥ cA
t (h) this means that for every γ from Γ the net { fγ(xδ )}δ∈∆ con-

verges in Z, so it is Cauchy. Then, according to the preceding lemma the net
{ f (xδ )}δ∈∆ is Cauchy in Z, so it is convergent in Z.

(ii) Take an arbitrary net {xδ}δ∈∆ converging to x. The continuity of h at
x means that the net {h(xδ )}δ∈∆ converges in Y . According to (i) (just put
A = {x}) the net { f (xδ )}δ∈∆ converges in Z. But this means f is continuous
at x.

(iii) The proof is the same as the proof of (i), but instead of a net converging
to a point from A we just consider an arbitrary net s = {xδ}δ∈∆ of points of A
and we replace the degree of continuity by the degree of constancy.

(iv) First realize that because of (iii) we have cA
s ( f )≥ cA

s (h). If h is constant,
we have A ⊂ h−1(h(x)) for all x from A. To prove that f is constant on A it
suffices to prove, that A ⊂ f−1( f (x)) for all x from A. The end of the proof is
very similar to the proof of Lemma 9.2 and is omitted. ut

In what follows, we are going to work with special nets ("alternate" nets),
constructed from other nets. First we will modify the indexed set of a net in
the following way:
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Let Γ be a directed set. By Γ ‘ we will mean a set defined as follows
(*) Γ ‘ = {(γ,1) : γ ∈ Γ }∪{(γ,2) : γ ∈ Γ } and Γ ‘ is equipped with a pre-

order defined by
∀α,β ∈Γ if α < β then (α,1)< (α,2)< (β ,1)< (β ,2). It is easy to check

that Γ ‘ is a directed set.
In the proof of the following theorem we need a special kind of net, that we

are going to define now. Suppose {(xγ)}γ∈Γ is a net of points of a set X . Be a
a point from X . By the symbol {xγ ,a} we will denote this special net:
{xγ ,a} = {yγ ‘}γ ‘∈Γ ‘ where Γ ‘ is defined as in (*) and for all γ from Γ we

have y(γ,1) = xγ , y(γ,2) = a. We can see immediately that the net {xγ}γ∈Γ is a
subnet of {xγ ,a} and that the constant net {y(γ,2)}γ∈Γ is a subnet of {xγ ,a} =
{yγ ‘}γ ‘∈Γ ‘ too.

Moreover, we can see, that if {(xγ)}γ∈Γ converges to a, then {xγ ,a} con-
verges to a too. And vice versa: if {xγ ,a} converges to a, then {(xγ)}γ∈Γ (being
a subnet of {xγ ,a}) converges to a.

Theorem 9.2. Let X, Y , Z be Hausdorff topological spaces. Let f : X → Y ,
g : X → Z be functions. Let g be f -constant on X (equivalently expressed:
let cs(g) ≥ cs( f )). Let {xγ}γ∈Γ be a net in X. Let A ⊂ X (be a a point
from X). Suppose lim

γ∈Γ
f (xγ) ∈ f (A) (lim

γ∈Γ
f (xγ) = f (a)). Then lim

γ∈Γ
g(xγ) ∈ g(A)

(lim
γ∈Γ

g(xγ) = g(a)).

Proof. First of all, since g is f -constant on X the limit l = lim
γ∈Γ

g(xγ) exists in Z.

Let a∈ A be such that lim
γ∈Γ

f (xγ) = f (a). Consider the net {yγ ‘}γ ‘∈Γ ‘ := {xγ ,a}.

We can see that lim
γ ‘∈Γ ‘

f (yγ ‘) = f (a). Since g is f -constant on X this means there

exists m∈ Z such that m= lim
γ ‘∈Γ ‘

g(yγ ‘). Now we are going to use the fact that the

nets {xγ}γ∈Γ and {a}γ∈Γ (by this we mean the net {aγ}γ∈Γ where for all γ from
Γ , aγ = a) are both subnets of the net {yγ ‘}γ ‘∈Γ ‘ . This gives us the following
equalities: lim

γ ‘∈Γ ‘
g(xγ ‘) = lim

γ∈Γ
g(xγ) = l and lim

γ ‘∈Γ ‘
g(xγ ‘) = lim

γ∈Γ
g(a) = g(a). So

l = g(a) and this means also l ∈ g(A). (If we put A = {a}, we see that the
"bracket" part of this theorem has been proven too.) ut

The proof of the following theorem is very similar to the proof of the pre-
ceding theorem. It suffices to use the net {xγ ,a} again. That is why we omit
the proof.

Theorem 9.3. Let X, Y , Z be Hausdorff topological spaces. Let f : X → Y ,
g : X → Z be functions. Let a be an element of X. Let g be f -continuous at a.
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Let {xγ}γ∈Γ be a net in X, that converges to a. Suppose lim
γ∈Γ

f (xγ) = f (a). Then

lim
γ∈Γ

g(xγ) = g(a).

9.5 Preserving generalized continuity

The notions defined below were examined for example in [2], [3], [14], [15]
and [17].

Definition 9.3. Let (X ,T ) be topological space. We say, that a set V ⊂ X is
α-open, if and only if there exist an open set O ∈ T and a nowhere dense set S
such that V = O\S. The system of all α-open sets in (X ,T ) is denoted by Tα .
Tα defines a new topology on X .

Let (Y,τ) be a topological space. Let x be from X . We say, that a function
f : (X ,T )→ (Y,τ) is α-continuous at x if for each W ∈ τ such that f (x) ∈W
there exists an V ∈ Tα such that x ∈V and f (V )⊂W is true.

Let X , Y be topological spaces. A function f : X→Y is said to be quasicon-
tinuous at x from X if and only if for any open set V such that f (x) ∈ V and
any open set U such that x ∈U , there exists a nonempty open set O⊂U such
that f (O)⊂V .

Let X = R, let Y be a topological space. A function f : X → Y is said to be
left (right) hand sided quasicontinuous at a point x from R if for every δ > 0
and for every open neighborhood V of f (x) there exists an open nonempty set
W ⊂ (x−δ ,x) (W ⊂ (x,x+δ )) such that f (W )⊂V . A function f is bilaterally
quasicontinuous at x if it is both left and right hand sided quasicontinuous at
this point.

Now we will show that the relation "being continuously similar" preserves
the α-continuity of functions. The following theorem shows even more.

Theorem 9.4. Let X, Y , Z be topological spaces, let g : X → Y , f : X → Z
be functions. Let g be α-continuous at x. If f is g-continuous at x, then f is
α-continuous at x.

Proof. Denote by T the topology on X and by Tα the α-topology induced by
T . Let {xγ}γ∈Γ be an arbitrary net that converges in X to x with respect to the
topology Tα . To prove the α-continuity of f in x we need to prove, that the net
{ f (xγ)}γ∈Γ converges in Z.

Since the function g is α-continuous at x, the net {g(xγ)}γ∈Γ converges in
Y (to g(x)). Moreover, since the topology Tα is finer than T , the net {xγ}γ∈Γ
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converges to x also with respect to the topology T . These facts, and the fact that
f is g-continuous at x imply, that the net { f (xγ)}γ∈Γ converges in Z. It has to be
proved that this net converges to f (x). But we can see, that the net {g(xγ),g(x)}
converges (to g(x)). So the net { f (xγ), f (x)} converges too because f is g-
continuous at x. But the convergence of { f (xγ), f (x)} implies the convergence
of { f (xγ)}γ∈Γ to f (x). This ends the proof. ut

Definition 9.4. ([12]) Let X , Y be topological spaces. Let A be a system of
nonempty subsets of X . A function f : X → Y is said to be A -continuous at x
from X if and only if for any open set V such that f (x) ∈ V and any open set
U such that x ∈U , there exists a set S from A such that S⊂U and f (S)⊂V .

As we will see later, the following theorem says, that many generalized
continuity properties are inherited by functions, similar to a nice function. In
the proof of this theorem we are going to work with "alternate" nets again.

Theorem 9.5. Let X, Y , Z be Hausdorff topological spaces. Let f : X → Y ,
g : X→ Z be functions. Let x be a point from X. Let A be a system of nonempty
subsets of X and let f be A -continuous at x. If g is f -continuous at x, then g
is A -continuous at x too.

Proof. We proceed by contradiction. Suppose that g is not A -continuous at
x. Because of this, there exists an open neighborhood W of g(x) and an open
neighborhood U of x such that for any subset S of U such that S ∈ A there
exists a point s from S such that g(s) ∈ Y \W . In other words no set A ∈A is
a subset of the set g−1(W )

⋂
U . Denote by

Γ := {O : O is an open neighborhood of x, O⊂U},
A := {S : S is an open neighborhood of f (x)}.

Define B = Γ ×A. Define a partial order "≤" on B by:

∀(γ1,α1),(γ2,α2) ∈ B : (γ1,α1)≤ (γ2,α2) iff γ2 ⊆ γ1 and α2 ⊆ α1.

It is easy to see that B such equipped is a directed set.
For each β ∈ B, β = (γ,α) the following holds (since γ is an open neigh-

borhood of x and α is an open neighborhood of f (x) and f is A -continuous
at x): There exists a set Sβ ∈ A such that Sβ ⊂ γ

⋂
U and f (Sβ ) ⊂ α . Since

Sβ cannot be a subset of g−1(W )
⋂

U there exists a point xβ from Sβ such that
g(xβ ) ∈ Y \W . At the same time f (xβ ) ∈ α .

We have just constructed a net of points {xβ}β∈B. It is easy to see that this
net has the following properties:
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(1) lim
β∈B

xβ = x;

(2) lim
β∈B

f (xβ ) = f (x);

(3) ∀β ∈ B : g(xβ ) ∈ Y \W .
Now consider the "alternate" net {xβ ,x} and the corresponding nets

{ f (xβ ), f (x)} and {g(xβ ),g(x)}. Because of (1), the net {xβ ,x} converges to
x. Because of (2), the net { f (xβ ), f (x)} converges to f (x). But the conver-
gence of this net and the fact, that g is f -continuous at x imply that the net
{g(xβ ),g(x)} is convergent too. Of course, the net {g(xβ ),g(x)} has the same
limit as any of its subnets. We see, that it has a constant subnet, with constant
values equal to g(x), so the net {g(xβ ),g(x)} converges to g(x). By the same
reasoning we obtain that the net {g(xβ )}β∈B converges to g(x).

But this is a contradiction, because for each point xβ we have g(xβ )∈Y \W ,
on the other hand W is an open neighborhood of the "would be limit" g(x). ut

The previous theorem implies the validity of a result, that was proved for the
first time in [8]. That assertion stated, that if X ,Y,Z are Hausdorff topological
spaces and f : X → Y, g : X → Z are functions and x be a point from X such
that cx

t ( f ) = cx
t (g) is true, then f is quasicontinuous at x if and only if g is

quasicontinuous at x. To see this, it suffices to consider A as a system of all
nonempty open subsets of X .

We are almost ready to give a characterization of some spaces of A -
continuous functions. All we need is to combine the result of the preceding
theorem with the results of our Theorem 9.1. The following assertion is a corol-
lary of these two theorems.

Corollary 9.2. Let X be a topological space, let (Y,d), (Z,ρ) be complete met-
ric spaces. Let h : X → Y , f : X → Z be functions. Let { fγ}γ∈Γ be a net of
functions from X to Z. Let { fγ}γ∈Γ converge uniformly to f . Let x be a point
of X, let A be a subset of X. Let h be A -continuous at x (A -continuous at all
points from A). Then if for all γ from fγ is h-continuous at x ( fγ is h-continuous
on A) then f is A -continuous at x ( f is A -continuous at all points from A).

9.6 On the structure of some function spaces

Let X be a topological space and let (Y,d) be a Fréchet space. Examining the
results from the previous section we can see, that if f from X to Y is a function
then for any f1, f2 from X to Y such that f1 and f2 are f -continuous at a point
x, any linear combination of these two function is f -continuous at x too. (This
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is just because of the "continuous behavior" of linear combination in Fréchet
spaces. More concretely, if two nets { f1(xγ)}γ∈Γ and { f2(xγ)}γ∈Γ converge in
Y , then every net of the form {c1 f1(xγ)+ c2 f2(xγ)}γ∈Γ converges in Y too.)

This means, that if f is A -continuous at a point x, any linear combination
of two f -continuous functions f1 and f2 is A -continuous at x too. Moreover,
as we have proved, the property "being f -continuous at a point x" is preserved
under the uniform convergence. This means, that all functions from X to Y , that
are f -continuous at x, form a linear subspace of the space of all functions from
X to Y . Moreover, this subspace is closed with respect to the operation of the
uniform convergence. We will formulate this result in the following theorem.

In what follows, if f is a function from a topological space X into a topolog-
ical space Y , by C f we will denote the set of all f -continuous functions from
X to Y .

Theorem 9.6. Let X be a topological space, let (Y,d) be a Fréchet space.
(i) Let f : X → Y, be a function. Then the set C f is a nonempty linear sub-

space of the linear space of all functions from X to (Y,d). Moreover, C f is
closed with respect to the uniform convergence.

(ii) Let A be a system of nonempty subsets of X. Then the set of all functions
from X to Y that are A -continuous at x from X (at all points s from a subset
S⊂ X) is a union of a system of nonempty linear spaces of functions such that
each of these spaces is containing all continuous functions from X to Y and it
is closed with respect to the uniform convergence.

Proof. (i) C f is nonempty, because f ∈ C f . For the rest see the preceding re-
mark.

(ii) Put
CA ,S = { f : X → Y : f is A -continuous at all points s from S}.

Then CA ,S =
⋃

f∈CA ,S
C f . ut

Because of the generality of A -continuity we have just characterized a wide
range of systems of functions. Concretely, if X ,Y are topological spaces and A
a system of nonempty subsets of X , if a function f : X → Y is A -continuous
at a point x (at all points of a set S⊂ X) then it is

(1) continuous at x if A = {U : U is open in X and x ∈U};
(2) α-continuous at x if A = {O : O is α-open in X and x ∈ O};
(3) quasicontinuous at x (or on (S)) if A = {U : U is open in X}.
Suppose moreover, that X = R then f is
(4) left (right) hand sided quasicontinuous at x if

A = {V : V = (a,b) and a < b < x} (A = {V : V = (a,b) and x < a < b});
(5) bilaterally quasicontinuous at x if
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A = {V : V = (a,b)∪ (c,d) and a < b < x < c < d}.
Now we can see that our last theorem implies the validity of the following

assertions:

Corollary 9.3. Let X be a topological space, let (Y,d) be a Fréchet space. Let
S⊂X, S 6= /0. Then the set of all functions from X to Y that are quasicontinuous,
(α-continuous, left (right) hand sided quasicontinuous, bilaterally quasicon-
tinuous) at all points of S is a union of a system of nonempty linear spaces of
functions such that each of these spaces is containing all continuous functions
from X to Y and it is closed with respect to the uniform convergence. More
concretely, each of these spaces can be of the form C f , where f : X → Y, is a
function that is quasicontinuous (α-continuous, left (right) hand sided quasi-
continuous, bilaterally quasicontinuous) at all points of S.

Open question: Does there exist a noncontinuous, quasicontinuous func-
tion f from R to R such that the linear space C f is consisting only of the
elements of the form: c1 f + c2h where h ( an arbitrary continuous function
from R to R) and c1,c2 ∈ R are variable?

9.7 Optimization applications

In what follows we are going to use some connectedness properties. We will
say that a topological space X is locally arcwise connected at a point x if every
neighborhood U of x contains a neighborhood V of x such that any two points
a,b from V can be joined by an arc in V , i. e. there exists a function h : [0,1]→
V such that h : [0,1]→ h([0,1]) is a homeomorphism and h(0) = a, h(1) = b
holds.

The following lemma shows that strongly similar continuous functions de-
fined on an interval attain local extrema at the same points. In a way, it shows
a possibility how to investigate a nondifferentiable function for extrema.

Lemma 9.6. Let [a,b] be an interval in R. Let f : [a,b]→ R, g : [a,b]→ R be
continuous functions. Let f ≈ g. Then the following assertions hold

(1) If [c,d] ⊂ [a,b] then f is monotonous on [c,d] if and only if g is
monotonous on [c,d].

(2) If [c,d] ⊂ [a,b] then f is strictly monotonous on [c,d] if and only if g is
strictly monotonous on [c,d].

(3) A point x from (a,b) is a point of a global (local) extremum of f on [a,b]
if and only if x is a point of a global (local) extremum of g on [a,b].
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(4) A point x from (a,b) is a point of a strict global (local) extremum of f
on [a,b] if and only if x is a point of a strict global (local) extremum of g on
[a,b].

Proof. (1) It suffices to show that if g is not monotonous, then f is not
monotonous. Suppose g is neither nondecreasing nor nonincreasing on [c,d].
Then one of the two following assertions has to be true

(i) There exist t1, t2, t3 from [c,d] such that t1 < t2 < t3 and g(t1)< g(t2) and
g(t3)< g(t2) is true.

(ii) There exist t1, t2, t3 from [c,d] such that t1 < t2 < t3 and g(t1) > g(t2)
and g(t3)> g(t2) is true.

We are going to work with (i), (ii) can be reduced to (i) by working with
the function −g, because −g ≈ f holds too. Supposing (i) is true, denote I =
g([t1, t2]), J = g([t2, t3]). Of course I and J are closed intervals and

[max{g(t1),g(t3)},g(t2)]⊂ I∩ J.
Pick an arbitrary point c from [max{g(t1),g(t3)},g(t2)]. We can see that there
exists two points o1 ∈ (t1, t2), o2 ∈ (t2, t3) such that c = g(o1) = g(o2). Since
g≈ f we obtain f (o1) = f (o2) and since g(t2) 6= g(o1), we have f (t2) 6= f (o1)

too. Now remembering that o1 < t2 < o2 we see that f is not monotonous on
[c,d].

(2) If f is strictly monotonous on [c,d] then it is monotonous on this interval
and according to (1) g is monotonous too. Now it suffices to show that g is
injective on [c,d]. But this has to be true because f ≈ g is true and f is injective
on [c,d].

Before proving (3) and (4) we should realize that only the case of global ex-
tremum on an interval needs to be treated. This is so because a local extremum
on an interval is a global extremum on a subinterval.

(3) Suppose x from (a,b) is a point of a global extremum of f . Without loss
of generality we are going to assume that f has a global maximum at x. Notice
that since f ≈ g the sets f−1( f (x)) and g−1(g(x)) are identical. If f is constant
on [a,b], then g is constant on [a,b] too and we are done.

Now we examine the second case - the case when the set g−1(g(x)) does not
coincide with ]a,b]. Choose a point t from [a,b] such that g(t) 6= g(x). Suppose
g(t) > g(x) (the case g(t) < g(x) is similar and therefore omitted). We will
show that for all z from < a,b > we have g(z)≥ g(x). Suppose this is not true.
Then there exists a point s from [a,b] such that g(s)< g(x). Suppose t < x < s
( other cases, for example t < s < x etc can be treated with the same reasoning
that we use for our chosen case). Since the sets g−1(g(t)) , g−1(g(s)) and
g−1(g(x)) are pairwise disjoint, the sets f−1( f (t)), f−1( f (s)) and f−1( f (x))
are pairwise disjoint too. Examine the case f (s)< f (t)< f (x) (the case f (t)<
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f (s) < f (x) is similar). Define c = inf{e : f ([e,s]) ⊂ (−∞, f (t)]}. Since f is
continuous we obtain x < c < s. We remind the reader that because of the
continuity of f we have < f (s), f (x)>⊂ f ([x,s]). Because of the definition of
c and the continuity of f we obtain f (c) = f (t). This means g(c) = g(t). Since
g is continuous the set g([c,s]) contains the closed interval [g(s),g(c)]. Since
g(s)< g(x)< g(t) = g(c) is true, there exists a point r from the open interval
(c,s) such that g(r) = g(x). This implies f (r) = f (x). But r is from (c,s) and
because of the definition of c the point f (x) = f (r) is not from f ([c,s]). This
is a contradiction. We have just proved that for all z from [a,b] the inequality
g(z)≥ g(x) holds. The function g is proven to have a global extremum at x.

(4) Suppose f has a strict global maximum at x from (a,b). The (3) proven,
we can claim that g has a global extremum at x. If this extremum of g would not
be strict, there would exist a point c from [a,b] with the property g(c) = g(x).
Since f ≈ g this would imply f (c) = f (x), but this is not possible. ut

Now we are ready for the main result of this section.

Theorem 9.7. Let X be a topological space, let x be from X. Let X be locally
arcwise connected at x. Let f : X→R, g : X →R be continuous functions. Let
f ≈ g. Then

(j) x is a point of a local extremum of f if and only if x is a point of a local
extremum of g

(jj) x is a point of a strict local extremum of f if and only if x is a point of a
strict local extremum of g

Proof. If x is an isolated point the theorem is true. Suppose x is not isolated.
(j) We will prove that if f has a local extremum at x then g has an extremum

at x too. Suppose f has at x a local maximum. This means there exists an
arcwise connected open neighborhood U of x such that for all t from U the
inequality f (t)≤ f (x) takes place.

Choose an arbitrary point u from U \ {x}. Suppose g(u) ≥ g(x). We are
going to prove that for all s from U the inequality g(s) ≥ g(x). Choose an
arbitrary s from U , suppose s is different from x and u. Since U is arcwise
connected, there exists an arc connecting the points u, x and s. More concretely
there exists a continuous function h : [0,2]→U such that h(0) = u,h(1) = x
and h(2) = s. Define functions f : [0,2]→R and g : [0,2]→R in the following
way

for all z from [0,2], f (z) = f (h(z)) and g(z) = g(h(z)).
According to Lemma 9.4 the functions f and g satisfy f ≈ g. Since f has

a local extremum on U at the point x, we can see that f has a local extremum
on [0,2] at the point 1. This means (according to Lemma 9.6) that g has a local
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extremum on [0,2] at the point 1. We know that g(0) = g(u) ≤ g(x) = g(1)
so g has at 1 a local minimum. Therefore g(2) ≥ g(1) must be true. Since
g(2) = g(s) and g(1) = g(x) we have just proved that for an arbitrary s from U
we have g(s)≥ g(x).

The next example shows that without connectedness of X our theorem need
not be true.

Example 9.2. Define a subset X of R by

X =
[
−1,−1

2

]
∪
[
−1

4 ,−
1
8

]
∪·· ·∪{0}∪

[1
2 ,1
]
∪ . . .

More concretely, X = {0}∪A∪B where

A =
∞⋃

i=0

[
− 1

22i ,−
1

22i+1

]
=

∞⋃
i=0

Ii, B =
∞⋃

i=0

[
1

22i+1 ,
1

22i

]
=

∞⋃
i=0

Ji.

We define two functions f : X → R and g : X → R by

f (x) =


− 1

22i , x ∈ Ii,

0, x = 0,

− 1
22i+1 , x ∈ Ji,

g(x) =


− 1

22i , x ∈ Ii,

0, x = 0,
1

22i+1 , x ∈ Ji.

The functions f and g coincide on A∪{0}. Globally, it is easy to see that
f ≈ g is true. The function f has a strict global maximum at 0, but g is nonde-
creasing on its domain and has no extremum at 0.

The following theorem will enable us to prove easily two optimization the-
orems.

Theorem 9.8. Let X be a nonempty set, Y and Z be Hausdorff topological
spaces. Let f : X → Y , g : X → Z be functions. Let f ≈ g. Then for any subset
A of X the following is true:

f (A) is closed (compact) in Y if and only if g(A) is closed (compact) in Z.

Proof. First we will prove the "closedness" part of our assertion. It suffices to
show that if f (A) is closed in Y then g(A) is closed in Z. Let {zγ}γ∈Γ be a net
of points from g(A), which is convergent in Z. Denote its limit by z. We have to
prove that there exists a point a in A such that g(a) = z is true. Since each point
zγ is from g(A), for every γ from Γ there exists xγ from A such that g(xγ) = zγ .
We see that {g(xγ)}γ∈Γ = {zγ}γ∈Γ converges in Z. Together with f ≈ g this
implies the net { f (xγ)}γ∈Γ converges in Y . We will denote its limit by y. The
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set f (A) is closed, so y ∈ f (A). Consider a point a ∈ A such that f (a) = y.
Now let us consider the net {pγ ‘}γ ‘∈Γ ‘ := {xγ ,a}. We can see that lim

γ ‘∈Γ ‘
f (pγ ‘)=

y = f (a). Since f ≈ g this means there exists m ∈ Z such that m = lim
γ ‘∈Γ ‘

g(pγ ‘).

But the nets {xγ}γ∈Γ and {a}γ∈Γ (by this we mean the net {aγ}γ∈Γ where
for all γ from Γ aγ = a) are both subnets of the net {pγ ‘}γ ‘∈Γ ‘ . This implies:
lim

γ ‘∈Γ ‘
g(pγ ‘) = lim

γ∈Γ
g(xγ) = z and lim

γ ‘∈Γ ‘
g(pγ ‘) = lim

γ∈Γ
g(a) = g(a). So z = g(a) and

this means also z ∈ g(A). The closedness of g(A) is proven.
Now, for "compactness" part of out assertion, again, it suffices to prove, that

if f (A) is compact, then g(A) is compact too. Suppose f (A) to be compact.
Then it is closed so g(A) is closed too. Consider an arbitrary net {g(xγ)}γ∈Γ

in g(A), we have to prove now, that it has a convergent subnet. But the net
{ f (xγ)}γ∈Γ in f (A) has a convergent subnet, say { f (xδ )}δ∈∆ and because of
strong similarity of f and g the net {g(xδ )}δ∈∆ is convergent (in g(A)) too.

ut

Now, the following theorems will be easy corollaries of the preceding the-
orem. Let us observe that we do not need any topological structure on the
domain set X in the following theorem.

Theorem 9.9. Let X be a set. Let f : X → R, g : X → R be functions. Let A be
a subset of X such that the set f (A) is closed. Let f achieve its maximum and
minimum on A. Let f ≈ g. Then g achieves its maximum and minimum on A
too.

Proof. Under the conditions of our theorem the set f (A) must be compact. So
the set g(A) is a compact too. ut

Now we present an optimization result concerning functions, that are strongly
similar with Darboux functions.

Theorem 9.10. Let X be a topological space. Let f : X → R, g : X → R be
functions. Let f be a Darboux function (an image of each connected set un-
der f is connected). Let f achieve its maximum and minimum on a connected
subset A of X. Let f ≈ g. Then g achieves its maximum and minimum on A too.

Proof. Under the conditions of our theorem the set f (A) must be connected
and bounded. Moreover it contains its supremum and infimum. So f (A) is
a compact interval. This means the set g(A) is compact too. Therefore g
achieves a global maximum and a global minimum on A. ut
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To conclude this section, let us remark, that all results presented here
showed some possibilies how to investigate a nondifferentiable function for
extrema. Namely, some nondifferentiable functions are strongly similar to dif-
ferentiable ones and these can be investigated in a classical way. For the same
reason it is also worth investigating which continuous functions defined on
convex sets are strongly similar to convex functions.
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