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14.1 Introduction

Notation and terminology used in this paper are entirely adopted from Part I of
this study [1].

We begin with the following lemma which gives the combinatoric charac-
terization of divergent permutations used throughout the current paper.

Lemma 14.1. If p € D then, for any k,n € N, there exists an interval I such
that

(i) I>kandp(l)>k,
(ii) the set p(I) is a union of at least n MSI,
(iii) the set p(I) contains an interval J having the cardinality > n.

Proof. Let k,n € N. Let us choose some ¢ € N such that
(1) p(T) >k,

2 p ' ([minp(T), +)) > k,

where T := [t,4oo).
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Since p € ® then there exists an interval U* C N such that the set p(U™) is
a union of at least (r — 1 4+n(2n — 1)) MSI. Hence, the set p(U) is a union of
at least n(2n — 1) MSI, where U :=TNU*.

Suppose that the set p(U) does not contain any interval having the cardinal-
ity > n. Then there exists an interval [ satisfying the conditions:

(3) minU = minl,

(4) the set p(I) includes an interval having the cardinality > n,

(5) for any proper subinterval J of the interval I, if U C J then the set p(J)
does not contain any interval of the cardinality > n.

Notice that the set p(I) includes precisely one interval having the cardinality
> n. At worst, this interval could be constructed inserting a natural number
between two intervals, both having the cardinality (n — 1). Hence, any interval
contained in p(I) has the cardinality < 2n— 1. On the other hand, we have

card p(I) > card p(U) > n(2n—1).

This clearly implies that the set p(I) is a union of at least » MSI. Moreover,
we obtain

1CT Cp ! ([minp(T),+ee)) > (by (2)) > k
and
p(I) > minp(T) > (by (1)) > k,

i.e.I > kand p(I) > k. So, I is the desired interval which terminates the proof.
O

Remark 14.1. There exists a permutation p € © such that, for any interval /,
the set p(I) contains at most one interval J having the cardinality > 1 (see
Example 1.3 in Part I).

Remark 14.2. More subtle, than the one given in Lemma 14.1, combinatoric
characterizations of the divergent permutations are given in papers [2] and [3].

14.2 The description of the families 2 o *5 for 2,8 = ¢¢, €D, DC
or DD

In this section three main theorems of this study will be presented.
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Theorem 14.1. The product D€ o D¢ is equal to DCE.
Proof. Let p,q € ©¢. Then

p gt e and (pg)'=q 'plec
because € is a semigroup. Suppose that pg € €. Then also
(pa)g~ ' =pec,
which is impossible. So pg € D¢ and the inclusion below holds true

DCoDC C DC.

Now let p € ©€. We show that there exist permutations pi, py € D€ such
that pop; = p. Let us start with choosing two sequences I, and Ji, k € N, of
intervals of N, satisfying, for every k € N, the following assumptions:

D) Tk <Jiey1,

@) L <p~ () <lisr,

(3) the set p(Ix) is an union of at least k MSI,

(4) there exists an interval Gy C p~!(Ji) such that the set p(Gy) is an union
of at least kK MSL

Next we define the permutation p;. Let p; be an increasing map of the set

U p~'(Jx) onto the set |J Ji and let p; (n) = p(n) outside the set |J p~'(Ji).
keN keN keN

Then the permutation p; is given by p; = ppfl.
By assumption (2), we have

P () < p (i),

for every k € N. Therefore, from assumptions (1) and (4) and from the defini-
tion of p;, we see that the set p;(Gy) is an interval for every k € N. Further-
more, from assumption (2) and from the definition of p;, we have

pl(lk) :p(lk)v ke N.

From this and from assumptions (3) and (4) we conclude that any of the fol-
lowing sets:

p1(Ily) and papi(Gi) = p(Gy)

is a union of at least k MSI, for every k € N. This shows that the permutations
p1 and p, are both divergent.
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Now, let s € N be given so that the set p~!(I) is a union of at most s MSI
for any interval . Then, by the definition of p; and by the equality

prl ) =p (), keN,

the set pl_1 (1) is a union of at most s MSI, whenever [ is a subinterval of Jj for
some k € N. Moreover, in view of the definition of p; we have

py (D) =p~ (1),

for each interval I such that

either I C (N\ U Jk> or [ = J; for some k € N.
keN

As the result we have that the set Pfl (I) is a union of at most 3s MSI, for every
interval /. Thus pfl ec.
To prove that p, '€ ¢ let us notice that

(i) p,'(n)=nforeverync <N\ U Jk> ,
keN

(i) the set p;'(I) = p1p~'(I) is a union of at most s MSI whenever [ is
a subinterval of J; for some k € N,
(iii) p,'(Jx) = Ji foreach k € N.

Hence we easy deduce that p, Y(I) is a union of at most (2s+ 1) MSI for every
interval 1. So p;, I € ¢. The proof is completed. a

Corollary 14.1. We have €9 o €D = €. More precisely, from the above proof
it follows that for every p € €3 there exist permutations p1, p» € €9 such that
p=pip2, c(p2) <3c(p) and c(p1) < 1+2c¢(p), where, for every convergent
permutation q €33, we set

c(q) :=sup{c(g;I): I CN is an interval},

where ¢(q;A) := card(J), J is the family of MSI defined by the relation g(A) =
UJ for every A C N.

Theorem 14.2. We have
DCoDD =DDoDE=2
and

CDoDD=DDoCD =CDUDD.
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Proof. First of all we note that if p € DD and g € D¢ then pg,gp € D. Indeed,
suppose that either pg € € or gp € €. Then

p=(pg)g ' =q '(qgp) e€oC=C¢ ie. peC.
This is a contradiction. So, both pg and gp are elements of 2. In other words,
the following conclusions hold:

DCoDDCPDand®D D DD oDC
and
CDoDD CEDUDD and CDUDD D DD o D).

To prove the converse inclusions we consider four cases.

First, suppose that p € 2. We shall show that p = p,p1, for some permu-
tations p; € ©¢€ and p; € 9. Suppose that the intervals I; and Ji, k € N, are
chosen so that:

(1) minl; =1,

(2) 1+ maxly =minJ;, and 1+ maxJ;=minl,,

(3) cardJ, = 2k,

(4) there exist intervals Ej, C I; and F; C p(Iy) such that any of the two fol-
lowing sets:

p(Ey) and p '(F)
is a union of at least X MSI.

Let us put p;(n) = n, for n € Ugen Ir, and

(i+minJy) — 2i+minJ; fori=0,1,....k—1,
P YT 20— k) + 1+ mindy fori =kk+1,...,2k— 1,
for k € N, and let p; = ppl_l.
From this definition it results easily that p; € ©¢ and that p,p; = p. More-
over, from conditions (2) and (3) we get that any of the two following sets:

p2(Ex) = p(Ex) and py'(F)=p ' (F)

is a union of at least k MSI, for every k € N. Hence, we have p, € D9 as it
was claimed.

Let us set again that p € ©%. We will construct two permutations p; €
DD and py € D€ such that pyp; = p. Assume that sequences I, and Ji, k €
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N, of intervals obey the conditions (1)-(3) from above and, additionally, the
following one:

(5) foreach k € N, there exist intervals
Gy Cl and H,Cp '(I)
such that any of the two sets

p(H) and p~'(Gy)
is a union of at least k MSI.
Let us set

2i+minJ; fori=0,2,....k—1,

p2(1+m1an) = {2(l-k>+1+mank fori:k’k—i—l,...,Zk_la

for k € N and p,(n) = n, for every n € Upen k-

The permutation p; is given by pap1 = p. The verification that p; € D9 and
p2 € ®€ may be peformed in a similar way as previously and will be omitted
here.

Let us consider now the case p € €9. We shall express p as the product
p2p1 of members p; € €D and p, € DD. We start by choosing the intervals
I,, J, and K,,, n € N, which form a partition of the set N and are such that

(6) In < Jn < Kn < In+1,
(7) minp~'(I,) < minp~'(J,) < minp~!(K,)
and
max p~'(I,) < max p~'(J,) < max p~!(K,),
(8) maxp~!(J,) <minp~! (L11)
and
maxp_l (Kn) < maxp_l (JrH-l)’
(9) cardJ, > 2n,
(10) moreover, there exist the subintervals G, of I, and H,, of K, such that any
of the following sets:

p (G, and pT'(H,)

is a union of at least » MSI and, additionally, the inclusion holds:
(11) [minp~!(G,),maxp~'(G,)] C p~'(I,),

for every n € N. Next, we define the permutations p; and p;.
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Let us assume that p; is an increasing map of the following sets:

p '({2i+minJ,:i=0,1,...n—1}),
p '\ {2i+minl,:i=0,1,...n—1})

and

P_I(In)

onto the intervals [minJ,,n—14+minJ,], [n-+minJ,, maxJ,] and I,, respectively,
for every n € N. Moreover, we set pi(m) = p(m) for each m € |J p~!(K,).
neN

Since p; € B, we may define the permutation p;, by putting

p2(n) = ppfl(n), neN.

First we show that p; € €. Let L be an interval. In view of the conditions (7)
and (8) we may write

L=LNp ' (JUJURUE),

where any of the following sets J and J is a union of at most three elements of
the sequences {I,} and {J, }, respectively. The set £ is a union of at most four
elements of the sequence {K,}, and £ is an interval of N, which is a union of
the successive elements of the sequence {1, UJ, UK, } such that p~'(£) C L.

Since p1p~!(U) = U, for any interval U = I,,, J, or K;,, n € N, then the set
pi1(L) may be expressed in the form

(12) pi(L)=LUp (LNp ' (3)Upi (LNp~' () Upt (LOp 1 (R)).

The following facts are the direct consequence of the definition of p;. If
U is an interval then the set p; (U N pil(In)) is a subinterval of ,. The set
D1 (U Nnp~! (J,,)) is a union of at most two subintervals of J,, and

pi(UNp ' (Ky) = p(U)NK,

for every n € N. Hence, the set p; (LN p~!(J)) is a union of at most 3 MSI and
the set py (LN p~'(J)) is a union of at most 6 MSIL. On the other hand, if m € N
is chosen so that the set p(U) is a union of at most m MSI for any interval U,
then p; (LN p~'(K)) is a union of at most 4m MSL. Taking these observations
together, by (12), we see that p;(L) is a union of at most (4m + 10) MSL. So,
p1 € €. By (10), each set p; ' (H,) = p~'(H,),n € N, is a union of at least n
MSI and hence, Pfl belongs to ©. Therefore p; € €D as it was claimed.
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Now we have to show that p, € ©D. Take a look at the following equality:

p2 ([minJ,,n — 1+ minJ,])
=p2 (pip ' ({2i+minJ,: i=0,1,...,n—1}))
={2i+minJ,: i=0,1,....n— 1} (by the definition of p).

We get that the set ps ([minJ,,n — 1 +minJ,]) is a union of n MSI, for every
n € N, and consequently p, € ©. By using the conditions (10), (11) and the
definition of p; we receive easily that the set p, ' (G,) = p1p~!(G,) is a union
of at least » MSI. This implies that p, lem.

Let us set again p € €®. Now, our goal will be to construct the permutations
p1 € DD and p, € €D satisfying pop; = p. Before we define p; and p, we
need some basic assumptions. Let /,, and J,,, n € N, be the increasing sequences
of intervals such that the family {Z,: n € N} U{J,: n € N} forms the partition
of N. Furthermore, we assume that the following conditions hold:

(13) In < Jn < In+17

(14) minp~!(J,) < p~' (1) <maxp~! (Jus1),

(5) p' () < P~ (Jur1),

(16) there is a subinterval ,, of I, such that the set p_1 (€,) is a union of at
least n MSI,

(17) there exist four intervals:

E,.G,Cp'(J,) and F,H,CJ,
such that

P (Fy) <Ex < p~'(Hp) < Ga,
card(E,) = card(p~!(F,)) and card(G,) = card(p~'(H,))

and, additionally, any of the two following sets:
P_1 (F») and P_I(Hn)

is a union of at least » MSI,

for every n € N.
It follows from (17) that p; may be defined to be the increasing map of the
following three sets:

E,, p '(H,) and p'(J)\(p ' (F)UG,)

onto the sets:
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p ' (F), G, and p '(J)\ (p ' (H:)UE,),

respectively, for every n € N. Furthermore, we set
pi(i)=i foranyic [ p (1)
neN

Since p; €L, then the permutation p, is well defined by the equation p,p; = p.
First, let us notice that, in view of the condition (17) and the definition of
D1, the permutation p; belongs to ©D. Next, since

p2(i) = p(i) forie U p (1)

neN

we receive, from (16), that p, '€ ©. We need only to show that p, € €. The
proof of this fact is based on the following observations. If A C N is an interval
then we have

p2(Anp N (1) =p(Anp (L)) = p(A) NI,
and if I, := AN G, then
p2(I) = ppy (1) = p (p~" (Hy) N [min p; {(I7,), max py ! (I3)])

(by the definition of the restriction to p*I (H,) of py)
=H,Np ( [minpl_1 (171),maxpl_1 (Fn)]) .

Furthermore, if &, := AN p_1 (F,) then, by the definition of the restriction to
E, of p1, we get

p2(Pn) = ppy (®a) = p ([P (min®,), p; ' (max B,)]) .

Hence, if we choose m € N in such a way that for every interval I the set p([)
is a union of at most m MSI then any of the following three sets:

PZ(Aﬁpil(In)) or pa(Iy) or pa(Py)

is a union of at most m MSI, for every n € N.
Let again A be an interval of N. Then we have

P2 (AN (P~ )\ (P (Hi) UEy)))
= ppl_l (A N (p_l(-]n)\ (p_l(Hn) UE")))
=p (A* N (p_l(«]n) \ (p_l(Fn) UG")))
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(by the definition of the restriction to the set p~'(J,) \ (p~' (F,) UG,) of the
permutation pi, where A* is some interval of N)

=p(p~ ' (p(A*)NI)\ (P H(F)UG,)) = (p(A*)NJ)\ (p(Gn) UF,).

The following set:

(p(A")NI)\ (p(Ga) UF,)

is a union of at most (2m + 1) MSI, because the set p(A*)NJ, is a union of
at most m MSI and the set p(G,) UF, is a union of at most (m+ 1) MSI for
every n € N. Therefore, the set p, (AN p~'(J,)) is a union of at most (4m+1)
MSI.

According to the conditions (14) and (15), any bounded interval A may be
written in the form

A=TUJUR,

where the set £ is a union of successive elements of the sequence
{p~'(1,UJ,): n € N},

and the set J is an intersection of A and at most four sets of the form p~'(I,)

satisfying the following relations:

p M I)NA#0 and p ' (I,UJ,)\ A #0.

The set J is also an intersection of A and at most three elements of the sequence
p~1(J,),n €N, such that

pU)NA#0 and p'(I,UJ,)\A #0.

From the definition of p; and the above considerations it follows that p»(R)
is an interval and that the set p»(3J) is a union of at most (4m) MSI and p>(J)
is a union of at most 3(4m+ 1) MSI. Hence, the set p,(A) is a union of at most
(16m+4) MSI. Thus, p; € € as it was desired. O

Remark 14.3. Some parts of the above proof can be strengthen and, in conse-
quence, the obtained conclusions can be stronger.
For example, if we replace the condition (3) with

(3’) cardJy =kt, keN,

and we set
p1(i+sk+minJy) =it + s+ minJ,
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forevery i =0,1,....k—1,5s=0,1,....t — 1, k € N, then coo(pl_l) =t, where
for any g € € we define

Ceo(q) 1= r}i_r}gmax{c(q;]) : I C Nis an interval such that / > n}.

Consequently we receive the following result:
Forevery p € 99 andt € N, t > 2, there exist permutations p; € D&, pr, p3 €
DD, such that p = pyp; = pip3 and coo(p; ') =1.

Theorem 14.3. We have
HolC =CCol =4,
forany U =CC €D DC or DD.

Proof. In view of the equality € o ¢ = € and the fact that the identity permuta-
tion on N belongs to €€, it is easy to check that

CColC=CC and CDol€C=CColD =C(CD.
Hence, we get
DColC=CCoDC=DC and (CCoDD)U((DDolC)CD.

Now, if (€€oDD)NDC +# 0 then also DD N (ECoDCE) #0,i.e. DDNDE #0,
which is impossible. So, €€ o0 DD = D). Similarly, we show that D3 o €€ =
0. O
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