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1. Introduction

Modeling with survival regression models is nearly always susceptible to omis-
sion of influential explanatory variables. In some cases this may cause inferential 
perturbations that are out of researcher’s control. Robust estimation procedures, 
as they were for instance proposed in Bednarski (1993) and Sasieni (1993) for the 
Cox model, Cox (1972), were aimed at making estimation resistant to occasional 
outliers and they could not cope with oversimplified modeling. A common reme-
dy to the estimation problem was to include a frailty variable to allow heterogene-
ity in longevity endowment. Vaupel, Manton and Stallard (1979) proposed to use 
a gamma distributed frailty to improve biased estimation for the life tables. There 
are numerous applications and extensions on using the gamma distributed frail-
ty. Murphy (1994) shows, under very general conditions, consistency of the par-
tial likelihood estimator for cumulative baseline and the variance of frailty. Aalen 
(1992) suggested a compound Poisson frailty model. Henderson and Oman (1999) 
tried to quantify the bias which may occur in estimated covariate effects and fit-
ted marginal distributions when frailty effects are present in survival data. Aalen, 
Borgan and Gjessing (2008) give a good review of inference for unobserved het-
erogeneity in survival modeling and their treatment for counting processes.

The usual approach to statistical inference with unobserved frailties assumes 
a parametric family of distributions for frailties and then uses maximum likeli-
hood for the marginal densities. The approach taken here assumes no distribution-
al structure on frailty but a natural parametric family for the cumulated hazard. 
It is shown that the maximum likelihood estimator for the regression parameters 
in the linear exponential model is scaled Fisher consistent for the extended model. 
The estimates then allow for the measuring of a relative risk between units or be-
tween strata equipped with different regressors.

There are general results on consistent scaled estimation (Ruud, 1983; Stock-
er, 1986) and some of them could possibly be adapted to survival analysis. Our 
objective here however, is to study a particular method which seems very simple 
in applications. A simulation study compares efficiency of the method with par-
tial likelihood estimation.

2. The method

Two statistical models are defined below. The first one, the exponential regression 
model, will give the estimation method, while the second one, with a frailty var-
iable, will presume a distributional structure of the data generating mechanism. 
Since the properties of the estimation method are studied via Fisher consistency 
condition, it will be necessary to state and consistently use densities for the two 

http://www.czasopisma.uni.lodz.pl/foe/


Scaled Consistent Estimation of Regression Parameters in Frailty Models 135

www.czasopisma.uni.lodz.pl/foe/ FOE 5(338) 2018

models. To make the presentation more adapted to event history studies we add 
the corresponding hazard functions.

In the sequel, the following notation for the considered models is used. 
If T is the time variable, X = (X1, …, Xk) is a vector of explanatory variables 
and β = (β1, …, βk) is the corresponding vector of regression parameters, then

 ( ) [ ] ( ) [ ]
( )

'' log , 1, 00log , 1, xx tee e g x
λ βλ β     −    (1)

is the conditional density of the exponential model with intensity parameter λ0 
multiplied by g(x), a density of covariates. Therefore, the hazard function in this 
model, given the covariates X = x, is constant and has the form

 ( )0exp xλ β ′ .

The second model, the one generating observations, is defined by the density

 ( ) ( ) ( ) ( )Ë ,
xt zext e ze g x f z

γγλ
′−′   (2)

where z is the frailty variable, γ = (γ1, …, γk) indicates the true parameter value 
while f(z) and g(x) are respectively frailty and covariates densities. The cumulat-
ed baseline hazard Λ (t) is assumed a power function tα for some α > 0. This mod-
el is of course more general, compared to (1): it contains frailty and its cumulated 
baseline hazard depends on time. Its hazard function, given the covariates x and 
frailty z, has then the form

 ( ) ( )exp .z t xλ γ ′

Notice that in model (2), the observed regressors and the frailty variable are 
assumed independent.

Suppose now that a statistician observes a random sample of survival times 
and the corresponding covariates vectors from the second model:

 ( ) ( )1 11 12 1 1 2, , , , , , , , , , .k n n n nkT X X X T X X X… … …

He does not observe frailties, he neither knows their distribution nor the dis-
tribution of covariates. All he knows is the structure of the second model generat-
ing these data. He would not know how to estimate the true values of the regres-
sion parameters γ.

What we show here is that the maximum likelihood method for the first mod-
el (the exponential one), applied to the observed data, yields scale consistent es-
timates of the regression parameters γ. The consistency means here that, as the 
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sample size increases, estimators converge to the true parameter vector, multiplied 
by an unknown constant. It is a standard approach in statistics to prove such as-
ymptotic consistency by verifying so called Fisher consistency condition. In our 
case it can be stated as follows.

If instead of λ0 we take log(λ0) as parameter of the exponential model, then 
the Fisher consistency holds if the equation

 [ ] [ ] ( ) [ ]( )'
0log , 1,1, 1, 0XE X X Te λ β  − =   (3)

is satisfied for β = cγ for some scaling factor c > 0. The expected value is taken 
with respect to the true distribution from the second model. Notice that the expres-
sion under the expectation (3) is equal to the gradient of the log density (1):

 ( ) [ ] [ ][ ] ( )
'

0' log( ), 1,
0log , 1, log( ) ,xx te g xλ βλ β  − + 

with respect to β and log(λ0). The second derivatives of the log densities (1) with 
respect to the parameters yield hessian

 [ ] [ ] ( ) [ ]'0' [log , ] 1,1, 1, .XX X Te λ β−

Its expectation is negative definite, implying strict concavity of the objective 
function

 ( ) [ ] ( ) [ ]( )'
0' log , 1,

0log , 1, XE X Te λ βλ β     − 

under very mild formal assumptions and lead to a unique solution of (3). There-
fore, if there exist parameters maximizing the objective function, they are unique-
ly given. Further on, it will be assumed that all the integrals involved in formal 
calculations exist and are finite.

If the expectation in (3) is taken with respect to empirical distribution func-
tion, we obtain the estimation method, which in this case is equivalent to the max-
imum likelihood estimation for the exponential model. Estimates are then solu-
tions to equation

 [ ] [ ] ( ) [ ]( )'
0[log , ] 1,

1

1, 1, 0i
n

X
i i i

i

X X T e λ β

=

− =∑

with respect to β and log(λ0).
Before the main result is stated, it is convenient to split equation (3) into two 

parts: the one corresponding to parameter λ0 and resulting in explicit formula
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( )0

1
XE Teβ

λ
′

=

and the other one related to regression parameters

 ( )0 0XEX E XT eβλ ′− =

giving

 
( )
( )

0.
X

X

E XTe
EX

E Te

β

β

′

′
− =

The theorem stated below shows that the scaled Fisher consistency condition 
for the maximum likelihood method, resulting from the exponential regression 
model, is always satisfied under the extended model for the regression parameters 
γ. Moreover, explicit relation between the scaling constant and the exponent in the 
cumulated baseline hazard is given.

Theorem (Scaled Fisher consistency)

If Λ(t) = ta then for 1β γ
a

=

 ( )
( )

0.
X

X

E XTe
EX

E Te

β

β

′

′
− =

Proof. A crucial step in establishing the scaled Fisher consistency consists 
in computing the value of ( )XE XTeβ ′ . We have

 ( ) ( ) ( ) ( ) ( )Ë

0
.

xt zeX x xE XTe xte z t e e dtg x dxf z dz
γβ β γλ
′′ ′∞ −′= ∫ ∫ ∫

The change in variable t yields

 ( ) ( ) ( )1

0
,

xx x tzex t e ze e dtg x dxf z dz
′′∞ − −′Λ∫ ∫ ∫

γβ γ

where Λ–1 denotes the inverse of Λ. Therefore plugging ta  for Λ leads to

 
( ) ( ) ( )1/

0

xx tzexe z t e dtg x dxf z dz
γβ γ a ′−′ ∞+∫ ∫ ∫

and again, change in variable t  results in integral
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Taking 
1 , β γ
a

=  by independence of X and Z, we obtain
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This completes the proof of the theorem.

3. Simulation results

A Monte Carlo experiment was conducted to compare results of maximum likeli-
hood estimation for the exponential regression model with the Cox partial likelihood 
estimator. The reference to the Cox model is clear as it is frequently applied in time 
to event data analysis. The R programming language was used and a general pur-
pose optim procedure from the “stats” package for the maximum likelihood estima-
tion (mle) in the exponential regression model with censored data was applied. The 
partial likelihood estimation was done with cohph procedure from the “survival” 
package. Two cumulated baseline intensities were used, Λ(t) = t2 and Λ(t) = t1/2, for 
the generating of data distribution (2). The choice was motivated by comparison 
of estimation differences between convex and concave cumulated hazard Λ.

Table 1. Results of the simulation experiment with a continuous frailty variable

Λ(t) = t2 Λ(t) = t1/2

Parameter value (1, –0.5, 0.5) (1, –0.5, 0.5)
Scaled parameter value (0.8165, –0.4082, 0.4082) (0.8165, –0.4082, 0.4082)

n = 50
Scaled mle exponential (0.7860, –0.3956, 0.3913) (0.7868, –0.3909, 0.3913)

(0.1134, 0.1728, 0.1727) (0.1168, 0.1753, 0.1750)
Scaled partial likelihood (0.7919, –0.3985, 0.3949) (0.7872, –0.3913, 0.3911)

(0.1006, 0.1538, 0.1561) (0.1154, 0.1746, 0.1744)
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Λ(t) = t2 Λ(t) = t1/2

n = 100
Scaled mle exponential (0.8030, –0.3998, 0.3988) (0.8031, –0.3987, 0.4011)

(0.0775, 0.1228, 0.1237) (0.0776, 0.1207, 0.1211)
Scaled partial likelihood (0.8065, –0.4012, 0.4014) (0.8032, –0.3994, 0.4013)

(0.0675, 0.10704, 0.1070) (0.0767, 0.1191, 0.1194)
n = 300

Scaled mle exponential (0.8129, –0.4049, 0.4046) (0.8120, –0.4058, 0.4064)
(0.0435, 0.0692, 0.06996) (0.0429, 0.0675, 0.0669)

Scaled partial likelihood (0.8141, –0.4057, 0.4056) (0.8123, –0.4055, 0.4066)
(0.0366, 0.0585, 0.0581) (0.0416, 0.0661, 0.0652)

Source: own elaboration

Table 2. Results of the simulation experiment with a discrete frailty variable

Λ(t) = t2 Λ(t) = t1/2

Parameter value (1, –0.5, 0.5) (1, –0.5, 0.5)
Scaled parameter value (0.8165, –0.4082, 0.4082) (0.8165, –0.4082, 0.4082)

n = 50
Scaled mle exponential (0.7831, –0.3944, 0.3887) (0.7830, –0.3933, 0.3939)

(0.1202, 0.1804, 0.1821) (0.1184, 0.1775, 0.1780)
Scaled partial likelihood (0.7912, –0.3974, 0.3939) (0.7838, –0.3907, 0.3941)

(0.1039, 0.1575, 0.1593) (0.1189, 0.1775, 0.1791)
n = 100

Scaled mle exponential (0.8001, –0.4020, 0.3985) (0.8013, –0.4002, 0.4018)
(0.0805, 0.1267, 0.1296) (0.0803, 0.1222, 0.1222)

Scaled partial likelihood (0.8047, –0.4035, 0.4014) (0.8012, –0.4001, 0.4023)
(0.0687, 0.1090, 0.1093) (0.0798, 0.1221, 0.1221)

n = 300
Scaled mle exponential (0.8105, –0.4057, 0.4063) (0.8107, –0.4072, 0.4071)

(0.0481, 0.0743, 0.0746) (0.0436, 0.0689, 0.0676)
Scaled partial likelihood (0.8126, –0.4061, 0.4068) (0.8112, –0.4068, 0.4067)

(0.0399, 0.0620, 0.0617) (0.0429, 0.0683, 0.0671)

Source: own elaboration

The explanatory variable X was three dimensional standard normal and the 
true parameter γ = (1, –0.5, 0.5). Three dimensions seem to be a minimum for 
this sort of studies as this gives sufficient flexibility for the regression parameters 
choice. The frailty variable was either squared standard normal plus 1 (Table 1) 
or three times binomial plus 1 with success probability 0.5 (Table 2), thus cover-
ing continuous and discrete case. The time variable was censored by an independ-
ent standard exponential variable, yielding about 15% and 30% rates of censoring 
in models with cumulated intensities Λ(t) = t2  and Λ(t) = t1/2 respectively, the rea-
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sonable proportions in practical studies. Estimations were repeated 5000 times 
for moderate sample sizes of 50, 100 and 300. Results are summarized in the ta-
ble above.

Every section of the tables shows the mean values of the estimates scaled 
to length 1 (first row) and the corresponding standard deviations below. Simula-
tion results indicate rapid bias decrease as the sample size increases and slightly 
smaller variability of the partial likelihood estimates. Analogous simulations for 
samples without censoring show smaller variability of exponential maximum like-
lihood estimation for binomial frailty and Λ(t) = t1/2.

Another example presented here compares the two estimation methods for the 
Veteran’s Administration lung cancer data – a data set described in detail in Kal-
bfleisch and Prentice (1980), used frequently to test different estimation methods. 
Interest in this particular data comes from the fact that it originates from a con-
trolled clinical trial. There are a number of continuous covariates: Karnofsky rat-
ing, disease duration and age. The binary variables are prior therapy (yes = 1/
no = 0) and treatment (standard = 1/test = 0). There are four cell types (adeno, 
large, small, squamous) which were coded as binary variables (squamous, small 
and adeno versus large).

Table 3. Comparison of partial likelihood and maximum likelihood exponential estimation results 
for the Veteran’s Administration lung cancer data

Regressors ple z scaled exp z scaled
Karnofsky –0.0328 –5.958 –0.0314 –0.0307 –6.044 –0.0316
Disease duration 0.0001 0.009 0.0000 0.0002 0.031 0.0003
Age –0.0087 –0.936 –0.0083 –0.0063 –0.695 –0.0065
Prior therapy 0.0072 0.308 0.0068 0.0051 0.224 0.0052
Squamous –0.4013 –1.420 –0.3839 –0.3672 –1.347 –0.3788
Small 0.4603 1.729 0.4403 0.4495 1.719 0.4637
Adeno 0.7948 2.624 0.7604 0.7438 2.527 0.7673
Treatment 0.2946 1.419 0.2818 0.2204 1.110 0.2274

Source: own elaboration

Minder and Bednarski (1996) have shown that a robust modification of the 
partial likelihood estimator leads to essentially different clinical conclusions there. 
Table 3 shows our estimation results. As in the simulated examples, the differenc-
es in estimates are relatively small. Moreover, the scaled and non‑scaled values 
are quite close. There is no difference in significance for the explanatory regres-
sion variables. It is not however possible to determine, on the basis of this anal-
ysis, whether there is a non‑constant frailty for the Veteran’s Administration pa-
tients.
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4. Conclusions

It is shown that the maximum likelihood method for the exponential regression 
model satisfies scaled Fisher consistency property for a large class of frailty mod-
els given by power cumulated baseline hazard function and arbitrary frailty dis-
tribution. The efficiency of the method is comparable in bias and variability of es-
timates to partial likelihood method for the Cox regression model. Estimation for 
the Veteran Administration lung cancer data shows also high consistency with 
Cox estimator. Extensions of the presented method to larger families of statistical 
models are under study.
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Zgodna z dokładnością do skali estymacja parametrów w modelach regresji ze zmienną 
„frailty”

Streszczenie: W artykule omówiono atrakcyjną obliczeniowo metodę estymacji parametrów dla 
klasy modeli regresyjnych z nieobserwowaną zmienną „frailty”. Dowiedziono, że estymator najwięk‑
szej wiarygodności stosowany w klasycznym wykładniczym modelu regresji jest Fisherowsko zgodny 
z dokładnością do skali w rozważanym modelu „frailty”. Przeprowadzone badania symulacyjne oraz 
analiza rzeczywistych danych wskazują na dobre własności asymptotyczne prezentowanej metody 
estymacji.

Słowa kluczowe: modele frailty, estymacja największej wiarygodności, Fisherowska zgodność
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