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Abstract

In several applications of sequent calculi going beyond pure logic, an introduction

of suitably defined rules seems to be more profitable than addition of extra ax-

iomatic sequents. A program of formalization of mathematical theories via rules

of special sort was developed successfully by Negri and von Plato. In this paper a

general theorem on possible ways of transforming axiomatic sequents into rules in

sequent calculi is proved. We discuss its possible applications and provide some

case studies for illustration.
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1. Introduction

We consider the problem of extending sequent calculus (SC) with arbitrary
number of rules in a way which allows for preservation of good proof-
theoretical properties, in particular, cut elimination. This is a vital ques-
tion for many, apparently diverse, areas like formalization of mathematical
theories, building uniform SC for families of logics, expressing hypothet-
ical reasoning or some other specific discourses which may be expressed
by means of collections of atomic sequents (Horn clauses, Post rules) in
the setting of SC. The problems mentioned above were often investigated
rather separately but it seems that they can be treated in a unified way
described below.

In the most systematic way the problem was considered in the context
of formal mathematical theories. Negri and von Plato [26] described four
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approaches to the question of how (axiomatic) formal theory T can be
expressed in the setting of SC:

1. Addition of axiomatic sequents of the form ⇒ ϕ for each axiom ϕ
of T.

2. Addition of “mathematical basic sequents” which consist of atomic
formulae obtained from axioms by some kind of decomposition elim-
inating logical constants.

3. Addition of axioms of T as a context in the antecedents of all provable
sequents.

4. Addition of new rules corresponding to axioms of T.

All these approaches were applied in proof theoretic works on math-
ematical theories which use SC. For example, the second and the third
approach were already applied by Gentzen [9, 10], the last one was applied
first by Curry [7]. We may apply them also if we want to extend SC ade-
quate for some basic logic to obtain its strengtenings. For example let us
consider some SC for modal logic K and its extensions to some stronger
(normal) modal logic like T or S4. In fact, approaches 1 – 3 are rarely ap-
plied and the standard solution is to provide suitable rules1. In some cases
it is simply an addition of new rules to SC for K (standard SC formaliza-
tions of T provide good example) but very often it is just a modification of
the original rules (like for S4). Unfortunately, no general unified method is
available, at least in the case of standard SC, and most solutions are made
ad hoc, sometimes with bad impact on proof theoretical properties. For
example, there is no constructive proof of cut elimination for standard SC
for S5 and only indirect ways of providing such results are known (see e.g.
[15]). In case of other families of non-classical logics the situation is simi-
lar, only for the family of a few substructural logics it looks better since we
obtain strengtenings in a modular way by means of addition/modification
of some structural rules2. A lot of work was done in the framework of
generalised SC, like display or hypersequent calculi, to provide procedures
for automatic generation of rules from axioms in different families of non-

1See for example surveys in Fitting [8], Wansing [34, 35], Indrzejczak [11] or Poggiolesi
[30].

2But even here one may notice several irregularities in case of relevance and many-
valued logics, see in particular, Chapter 4 of Paoli [29] and Chapter 5–6 of Bimbo [1].
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classical logics3. In fact, some of the provided solutions were devised also
for standard SC but with rule constraints, like in Lellmann and Pattinson
[22].

Formal representation of hypothetical reasoning was investigated by
Schroeder-Heister [31]. He provided a general account of the problem and
distinguished three main approaches:

1. Placeholder view in two variants:

(a) elimination by discharge of hypotheses;

(b) elimination by substitution of proofs of hypotheses.

2. No-assumption view.

3. Bidirectional view.

The lack of space makes a detailed presentation rather difficult hence
we direct the reader to [31] and only briefly point out the most important
things from the standpoint of this work. These approaches, perhaps with
the exception of the last, are not necessarily dependent on the specific kind
of formal system although the first (in both versions) is considered in the
setting of natural deduction (ND) and the second most naturally arise from
the consideration of Hilbert systems. Apparently, only the last approach
is based on the specific features of SC. However, if we put all of them in
the setting of SC we may observe that this issue shows close relationship
to the problem of handling theories in the framework of SC and expressing
definitions by means of rules. Again it is connected with the possibility
of decomposition of complex assumptions into their (atomic) parts, finally
formalised either as sequents or as different kinds of rules.

Certainly, also other areas may be found where it is vital to apply SC
beyond logic in a satisfactory way. But which kind of application may be
claimed to be satisfactory? From the four approaches listed by Negri and
von Plato the first two do not admit full elimination of cut. The third
one allows for cut elimination but, similarly as the first approach, does not
allow for proof theoretic analysis of added machinery of axioms. The last
approach provides the most attractive solution. As we mentioned, it was
used in the formalization of non-classical logics from the very beginning
of the application of SC in this field (see e.g. Ohnishi and Matsumoto
[28]). This area of investigation also shows that not all types of rules

3Perhaps the earliest work in this field is Kracht [18], more recent ones include Cia-
battoni, Galatos, Terui [4], Ciabattoni and Ramanayake [6] or Lellmann [21, 20].
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are well-behaved and that in many cases one must look for some more
general solutions, especially if cut elimination is wanted. In case of the
formalization of mathematical theories Curry [7] initiated the approach
based on the application of rules expressing axioms but a systematic study
of the rule-based approach was developed much later by Negri and von
Plato [26, 27] who demonstrated its usefulness. They have shown that cut
elimination, generalised subformula property, and other important results
hold for SC enriched with particular kind of nonlogical rules. One specific
strategy was developed in [26] and enriched with more examples and other
complementary strategies in [27].

In what follows we consider the problem in full generality and ask how
many equivalent rules of different shape may be defined for arbitrary se-
quent. Some partial result of this sort was mentioned in Indrzejczak [11]
whereas the general result was presented in Indrzejczak [12]. We restrict
considerations to classical logic since it is most often used as a basis for ex-
tensions. A general result concerning generation of rules from sequents pro-
vided below describes in a combinatorial way the space of possible choices.
On the basis of this list we can, in case of any specific task, find such a set
of rules which is the best for our purposes. Clearly, the influence of the
chosen options on preservation of good proof-theoretical properties like cut-
elimination, subformula-property or proof-search strategies is particularly
important.

In section 2 we prove a lemma establishing equivalence between three
simple forms of sequents and the corresponding rules. Some examples are
provided to illustrate its usefulness. Despite the practical sufficiency of
this result we will formulate and prove a generalised version of this lemma
providing equivalent rules for any finite sequent in section 3. Eventually we
discuss some possible applications, extensions, and strategies for proving
cut elimination with the particular form of rules in the last section.

2. Useful Cases

Let us consider some standard SC for classical logic with primitive cut
rule like Gentzen’s LK but with sequents built from multisets to avoid
inessential complications. We also prefer to present all two-premiss rules
in the multiplicative (or with independent contexts) version but essentially
it is Gentzen’s LK. The calculus consists of the following structural and
logical rules:
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(AX) ϕ⇒ ϕ (Cut)
Γ⇒ ∆, ϕ ϕ,Π⇒ Σ

Γ,Π⇒ ∆,Σ

(W⇒) Γ⇒ ∆
ϕ,Γ⇒ ∆ (⇒W ) Γ⇒ ∆

Γ⇒ ∆, ϕ

(C⇒)
ϕ,ϕ,Γ⇒ ∆
ϕ,Γ⇒ ∆ (⇒C)

Γ⇒ ∆, ϕ, ϕ
Γ⇒ ∆, ϕ

(¬⇒)
Γ⇒ ∆, ϕ
¬ϕ,Γ⇒ ∆ (⇒¬) ϕ,Γ⇒ ∆

Γ⇒ ∆,¬ϕ

(∧⇒)
ϕ, ψ,Γ⇒ ∆
ϕ∧ψ,Γ⇒ ∆

(⇒∧) Γ⇒ ∆, ϕ Π⇒ Σ, ψ
Γ,Π⇒ ∆,Σ, ϕ∧ψ

(∨⇒)
ϕ,Γ⇒ ∆ ψ,Π⇒ Σ
ϕ∨ψ,Γ,Π⇒ ∆,Σ

(⇒∨) Γ⇒ ∆, ϕ, ψ
Γ⇒ ∆, ϕ∨ψ

(→⇒)
Γ⇒ ∆, ϕ ψ,Π⇒ Σ
ϕ→ψ,Γ,Π⇒ ∆,Σ

(⇒→)
ϕ,Γ⇒ ∆, ψ
Γ⇒ ∆, ϕ→ψ

(∀⇒)
ϕ[x/t],Γ⇒ ∆
∀xϕ,Γ⇒ ∆

(⇒∀)1
Γ⇒ ∆, ϕ[x/a]
Γ⇒ ∆, ∀xϕ

(∃⇒)1
ϕ[x/a],Γ⇒ ∆
∃xϕ,Γ⇒ ∆

(⇒∃)
Γ⇒ ∆, ϕ[x/t]
Γ⇒ ∆, ∃xϕ

1. where a is not in Γ,∆, ϕ.

How can we change arbitrary sequents added to LK into rules hav-
ing the same power of proving new sequents? We start with a lemma of
rather concrete character, concerned with generation of rules equivalent to
sequents of the form ϕ⇒ ψ, ϕ, ψ ⇒ χ and ϕ⇒ ψ, χ. Taking into account
that quite often we deal with sequents or axioms (with → instead of ⇒
and ∧ or ∨ added) of this form this lemma is practically sufficient for most
cases. It allows for fast establishing of equivalency of different SC formal-
izations of some logics/theories, and for quick generation of new variants
having desirable properties. For unification of results and simplification of
proofs we do not mention applications of structural rules, and formulate
all rules with many premisses in multiplicative version, but they may be
proved also for additive versions without any difficulties.

Lemma 1. The following schemata of sequents and rules collected in three
groups are interderivable in LK:
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A: for (1) ϕ⇒ ψ:

(2)
ψ,Γ⇒ ∆
ϕ,Γ⇒ ∆ (3)

Γ⇒ ∆, ϕ
Γ⇒ ∆, ψ

(4)
Γ⇒ ∆, ϕ ψ,Π⇒ Σ

Γ,Π⇒ ∆,Σ

B: for (1) ϕ, ψ ⇒ χ:

(2)
χ,Γ⇒ ∆
ϕ, ψ,Γ⇒ ∆

(3)
Γ⇒ ∆, ϕ
ψ,Γ⇒ ∆, χ

(4)
Γ⇒ ∆, ψ
ϕ,Γ⇒ ∆, χ

(5)
Γ⇒ ∆, ϕ Π⇒ Σ, ψ

Γ,Π⇒ ∆,Σ, χ (6)
Γ⇒ ∆, ϕ χ,Π⇒ Σ

ψ,Γ,Π⇒ ∆,Σ

(7)
Γ⇒ ∆, ψ χ,Π⇒ Σ

ϕ,Γ,Π⇒ ∆,Σ (8)
Γ⇒ ∆, ϕ Π⇒ Σ, ψ χ,Λ⇒ Θ

Γ,Π,Λ⇒ ∆,Σ,Θ

C: for (1) ϕ⇒ ψ, χ:

(2)
Γ⇒ ∆, ϕ
Γ⇒ ∆, ψ, χ

(3)
ψ,Γ⇒ ∆
ϕ,Γ⇒ ∆, χ (4)

χ,Γ⇒ ∆
ϕ,Γ⇒ ∆, ψ

(5)
ψ,Γ⇒ ∆ χ,Π⇒ Σ

ϕ,Γ,Π⇒ ∆,Σ (6)
Γ⇒ ∆, ϕ χ,Π⇒ Σ

Γ,Π⇒ ∆,Σ, ψ

(7)
Γ⇒ ∆, ϕ ψ,Π⇒ Σ

Γ,Π⇒ ∆,Σ, χ (8)
Γ⇒ ∆, ϕ ψ,Π⇒ Σ χ,Λ⇒ Θ

Γ,Π,Λ⇒ ∆,Σ,Θ

Proof: We prove it for A and B. For A.
1. =⇒ 2.: It is suficient to apply (Cut) to 1 and to the premiss in 2.
2. =⇒ 3.: From axiom ψ ⇒ ψ by 2 we obtain ϕ ⇒ ψ which by (Cut)

with premiss in 3 yields the conclusion.
3. =⇒ 4.: the following schema schows derivability:

Γ⇒ ∆, ϕ

ϕ⇒ ϕ
(3.)

ϕ⇒ ψ ψ,Γ′ ⇒ ∆′

(Cut)
ϕ,Γ′ ⇒ ∆′

(Cut)
Γ,Γ′ ⇒ ∆,∆′

4. =⇒ 1.: From ϕ⇒ ϕ and ψ ⇒ ψ by 4 we get 1.

For B.
1. =⇒ 2.: It is enough to apply (Cut) to 1 and to premiss 2 to obtain

the conclusion.
2. =⇒ 3.: From χ ⇒ χ by 2 we get ϕ, ψ ⇒ χ which by (Cut) with

premiss 3 yields the conclusion.
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3. =⇒ 4.: analogous, with 3 applied to ϕ⇒ ϕ.
4. =⇒ 5.: analogous, but 4 is applied not to axiom but to premiss 5 of

the shape Γ′ ⇒ ∆′, ψ in order to get the conclusion by (Cut) on the second
premiss.

5. =⇒ 6.: the following schema schows derivability:

Γ⇒ ∆, ϕ ψ ⇒ ψ
(5.)

ψ,Γ⇒ ∆, χ χ,Γ′ ⇒ ∆′

(Cut)
ψ,Γ,Γ′ ⇒ ∆,∆′

6. =⇒ 7.: the following schema schows derivability:

Γ⇒ ∆, ψ

ϕ⇒ ϕ χ,Γ′ ⇒ ∆′

(6.)
ψ,ϕ,Γ′ ⇒ ∆′

(Cut)
ϕ,Γ,Γ′ ⇒ ∆,∆′

7. =⇒ 8.: the following schema schows derivability:

Γ⇒ ∆, ϕ

Γ′ ⇒ ∆′, ψ χ,Π⇒ Σ
(7.)

ϕ,Γ′,Π⇒ ∆′,Σ
(Cut)

Γ,Γ′,Π⇒ ∆,∆′,Σ

8. =⇒ 1.: From ϕ⇒ ϕ, ψ ⇒ ψ and χ⇒ χ by 8 we deduce 1. �

In principle, we are interested in the application of these results to
formalization of extralogical contexts. However, their character is general
enough to cover also logical applications. Let us pause for a moment to
provide some examples of the possible applications of this lemma.

We start with the case of formalizing ∨. One can easily recognize
that the rule (⇒ ∨) for (additive) disjunction is captured by schema A.3.
Hence, by the lemma, we can use instead either the sequent ϕ⇒ ϕ ∨ ψ or
the following rules:

(2∨) ϕ ∨ ψ,Γ⇒ ∆
ϕ,Γ⇒ ∆ (4∨) Γ⇒ ∆, ϕ ϕ ∨ ψ,Π⇒ Σ

Γ,Π⇒ ∆,Σ

On the other hand, (∨ ⇒) is captured by the schema C.5. (with ϕ :=
ψ∨χ) which is equivalent to sequents of the form ψ∨χ⇒ ψ, χ and generates
the following equivalents:

(∨2) Γ⇒ ∆, ψ ∨ χ
Γ⇒ ∆, ψ, χ

(∨3) ψ,Γ⇒ ∆
ψ ∨ χ,Γ⇒ ∆, χ

(∨4) χ,Γ⇒ ∆
ψ ∨ χ,Γ⇒ ∆, ψ

(∨6) Γ⇒ ∆, ψ ∨ χ χ,Π⇒ Σ
Γ,Π⇒ ∆,Σ, ψ

(∨7) Γ⇒ ∆, ψ ∨ χ ψ,Π⇒ Σ
Γ,Π⇒ ∆,Σ, χ
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(∨8) Γ⇒ ∆, ψ ∨ χ ψ,Π⇒ Σ χ,Λ⇒ Θ
Γ,Π,Λ⇒ ∆,Σ,Θ

A good illustration of the case B is provided by Substitution Principle
which is often used to formalize identity relation (in addition to reflexivity
law). In the framework of SC it is of the form t1 = t2, ϕ[x/t2] ⇒ ϕ[x/t1]
and was used e.g. by Troelstra and Schwichtenberg [33], or in a slightly
modified way by Takeuti [32] and Buss [3]. By the lemma we can generate
the following equivalents:

(2 =)
ϕ[x/t2],Γ⇒ ∆

t1 = t2, ϕ[x/t1],Γ⇒ ∆
(3 =)

Γ⇒ ∆, ϕ[x/t1]
t1 = t2,Γ⇒ ∆, ϕ[x/t2]

(4 =)
Γ⇒ ∆, t1 = t2

ϕ[x/t1],Γ⇒ ∆, ϕ[x/t2]
(5 =)

Γ⇒ ∆, t1 = t2 Π⇒ Σ, ϕ[x/t1]
Γ,Π⇒ ∆,Σ, ϕ[x/t2]

(6 =)
Γ⇒ ∆, t1 = t2 ϕ[x/t2],Π⇒ Σ

ϕ[x/t1],Γ,Π⇒ ∆,Σ

(7 =)
Γ⇒ ∆, ϕ[x/t1] ϕ[x/t2],Π⇒ Σ

t1 = t2,Γ,Π⇒ ∆,Σ

(8 =)
Γ⇒ ∆, t1 = t2 Π⇒ Σ, ϕ[x/t1] ϕ[x/t2],Λ⇒ Θ

Γ,Π,Λ⇒ ∆,Σ,Θ

From these variants Negri and von Plato applied (2 =) (but with the
repetition of active formulae in the premiss to save admissibility of con-
traction) and (4 =) in [27]), Manzano [23] used (3 =), Nagashima [25]
used (7 =); to mention just a few examples. Another example of the ap-
plication of schema B is provided by the rule of elimination of ∀ in free
logics. Let E denote the existence predicate, suitable sequent is of the
form: ∀xϕ,Et ⇒ ϕ[x/t]. The reader can easily provide 7 equivalent rules.
Note that in SC formalizations of free logics either rules of type B2 or of
type B7 are used.

3. Rule-Generation Theorem

Now the main result. We can generalise Lemma 1 in the following way:

Theorem 1. For any sequent Γ ⇒ ∆ with Γ = {ϕ1, ..., ϕk} and ∆ =
{ψ1, ..., ψn}, k ≥ 0, n ≥ 0, k + n ≥ 1 there are 2k+n − 1 equivalent rules
captured by the general schema:
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Π1,⇒ Σ1, ϕ1, ..., Πi ⇒ Σi, ϕi ψ1,Πi+1 ⇒ Σi+1, ..., ψj ,Πi+j ⇒ Σi+j

Γ−i,Π1, ...,Πi,Πi+1, ...,Πi+j ⇒ Σ1, ...,Σi,Σi+1, ...,Σi+j∆
−j

where Γ−i = Γ−{ϕ1, ..., ϕi} and ∆−j = ∆−{ψ1, ..., ψj} for 0 ≤ i ≤ k, 0 ≤
j ≤ n.

A comment on the schema may be helpful before we provide a proof.
In general, we define rules taking arbitrary number of formulae from the
antecedent or succedent, and for every such formula we create a premiss-
sequent where an item from the antecedent (ϕi) is put in the succedent,
and the element of the succedent (ψj) is put in the antecedent of a premiss-
sequent. The remaining formulae from input sequent are collected into sets
Γ−i and ∆−j of the conclusion-sequent. Extreme cases are empty sets Γ−k

and ∆−n. A rule has k+n premisses, each one for every formula from input-
sequent, and conclusion contains only unions of parameters from premisses.
On the other hand, if we consider a situation with Γ−0 and ∆−0, then our
schema covers also a case with no premisses at all, i.e. our input sequent.

Proof: A proof goes by induction on k + n. For basic cases with k =
1, n = 0 or k = 0, n = 1 (sequents of the form ϕ⇒ and ⇒ ψ) there is only
one equivalent rule: Γ ⇒ ∆, ϕ / Γ ⇒ ∆ and ψ,Γ ⇒ ∆ / Γ ⇒ ∆, i.e. we
have 21 − 1 rules. Also the case of n = k = 1 (as well as two cases for
k + n = 3) was shown above to satisfy the claim.

For the inductive step we assume that for some S = ϕ1, ..., ϕk ⇒
ψ1, ..., ψn the claim holds and we will show that it holds if we add some χ
to the antecedent or succedent of S. First consider the addition of χ to the
antecedent which we schematize as χ, S. Let i = 2k+n, so we have S and
k − 1 equivalent rules by assumption. From each rule we generate 2 new
rules in the following way: (a) either add χ to the antecedent of the con-
clusion or (b) add the additional premiss Π⇒ Σ, χ with arbitrary Π,Σ. So
if the rule equivalent to S has the shape: S1, ..., Sj / Sj+1 for i ≥ j ≥ 1, we
got either: (a) S1, ..., Sj / χ, Sj+1 or (b) Π ⇒ Σ, χ, S1, ..., Sj / Π, Sj+1,Σ.
In case of S we do the same so we obtain (a) a sequent χ, S and (b) a
rule Π ⇒ Σ, χ / S. In total we obtain 2i− 1 rules and a sequent χ, S, i.e.
2k+n+1 − 1 rules.

It is easy to show that the new rules are interderivable with χ, S in
the way illustrated in the proof of the preceeding lemma. First, if we take
χ, S, then by j applications of (Cut) to all premisses of (a) we will get
χ, Sj+1. This is because j elements of S are distributed as active formulae
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in premisses in the following way: all active formulae from antecedents
of premisses are in the succedent of S and all from succedents are in the
antecedent. After j applications of (Cut) the remaining elements of S (if
any, i.e. if k+n > j) with the union of all parameters from j premisses are
in χ, Sj+1. This way we demonstrate the provability of (a) on the basis of
χ, S.

(b) is derivable from (a) by one application of (Cut) in the following
way:

Π⇒ Σ, χ

S1, ..., Sj
(a)

χ, Sj+1
(Cut)

Π, Sj+1,Σ

Eventually, we derive χ, S by means of (b) from axiom χ ⇒ χ and j
axioms of the form ϕl ⇒ ϕl, ψm ⇒ ψm, for l ≤ k,m ≤ n.

If we add χ to the succedent, i.e. we consider a sequent S, χ, the
procedure is symmetric: (a) either addition of χ to the succedent of the
conclusion or (b) addition of the extra premiss χ,Π⇒ Σ. �

4. Benefits

We already mentioned that this theorem just delimits the space of possible
choices in building concrete calculi. The actual choices may depend on
different factors. We comment on two, possibly the most important, the
shape of the rules and the structure of active formulae.

The variety of forms is fine but not all of them have nice proof-theoretic
features. In particular, not all solutions yield cut elimination theorem, but
this will be explained later. Of course, not only cut elimination matters,
other factors may be decisive since a choice of suitable rules depends on
the aims of research. For example, if we are interested in the calculus well
suited for (root-first) proof search, a branching factor may be important in
the sense that rules with smaller number of premisses may be preferable.
Also – for the same reason – we may prefer the rules in which the number
of active formulae in premisses is smaller than in the conclusion or, if active
formulae are of different complexity, we may prefer rules where they are of
lower complexity in premisses. But other needs may force other choices.

A general approach due to Negri and von Plato [26] is based on the
application of rules where all active formulae are displayed in antecedents
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(rules of type A.2., B.2., C.5.). It works nicely with Dragalin’s strategy
of proving cut admissibility for invertible logical (i.e. with no primitive
structural rules) calculus G3. The disadvantage of this approach is that
we must provide numerous preliminary results concerning invertibility of
rules, admissibility of contraction e.t.c. (hence G3 is needed). Moreover,
such kind of rules may seem not necessarily the most natural. The same
authors in [27] are using SC with rules working only on succedents (A.3.,
B.5., C.2.,), and even with both kind of rules (theory of linear lattices). It
is shown there that some other choices may be more natural for proving
different kinds of results.

We prefer to work with rules having all active formula in succedents.
Such an approach was first developed by Curry [7] who proved also cut
admissibility for systems with rules of this kind. This solution seems to be
more proof-construction directed and work nicely with any kind of rules
(additive, multiplicative). The choice of LK is also natural in this context
since there is no necessity for proving preliminary results on admissibility
of structural rules which are crucial for proving the Rule-Generation The-
orem. Such choice may be also easily mixed with the strategy of proof of
cut elimination based on the approach originally provided for hypersequent
calculi by Metcalfe, Olivetti and Gabbay [24] and later extensively used in
this framework (see, e.g. Ciabattoni, Metcalfe, Montagna [5], Indrzejczak
[13], Kurokawa [19]). However, it is applicable also to standard sequent
calculi (e.g. Indrzejczak [14, 16, 17]) and allows for elegant proof which
helps to avoid many complexities inherent in other methods of cut elim-
ination proof. In fact this general strategy of proof is somewhat similar
to Curry’s [7] proof of cut admissibility but simpler in some respects and
still based rather on local transformations of proof instead of global ones
characteristic for Curry’s proof. The proof of cut elimination theorem is
based on two lemmata which make a reduction first on the right and next
on the left premiss of cut.

Lemma 2 (Right reduction). Let D1 ⊢ Γ ⇒ ∆, ϕ and D2 ⊢ ϕk,Π ⇒ Σ
with dD1, dD2 < dϕ, and ϕ principal in Γ ⇒ ∆, ϕ, then we can construct
a proof D such that D ⊢ Γk,Π⇒ ∆k,Σ and dD < dϕ.
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Lemma 3 (Left reduction). Let D1 ⊢ Γ ⇒ ∆, ϕk and D2 ⊢ ϕ,Π ⇒ Σ with
dD1, dD2 < dϕ, then we can construct a proof D such that D ⊢ Γ,Πk ⇒
∆,Σk and dD < dϕ.

In both lemmata dϕ denotes a degree (complexity) of ϕ and dDi denotes
a cut-degree of a derivation Di which is a maximal degree of cut formula
in this derivation. So the proof is based on the strategy of elimination of
the maximal cuts not the highest ones like in Gentzen’s original strategy.
Cut elimination follows easily from the Left Reduction Lemma. Since all
additional rules have active formulae on the right only, then the Right
Reduction Lemma goes without any changes. All we need is the additional
work for the Left Reduction Lemma. But here the problem of the structure
of active formulae is vital. Although it is neither necessary nor sufficient
for cut elimination, it is important to have rules which consists only of
atomic active formulae. Why is this important? Notice that in proofs of
cut elimination usually one of the inductive parameters is the complexity
of cut formula. If both occurrences of the (complex) cut formulae were
introduced immediately above the application of cut on them, we would
have to be able to show that this part of the proof may be replaced with
series of cuts made on subformulae of this complex cut formula since the
latter are eliminable by the induction hypothesis. It is the beauty and
strength of the standard rules for logical constants that they are reductive
in this sense. However, if some additional rule also generates a complex
formula in the conclusion, we must consider also a situation when one
complex cut formula was deduced by this nonlogical rule, and the other
by suitable logical rule. In such cases a reduction may be not possible4.
Clearly, in the case of propositional level it is not problematic. In classical
logic every formula may be transformed into equivalent conjunctive normal
form and each conjunct may be transformed into a basic sequent. Even
in intuitionistic logic, despite the failure of normal form theorem, we can
obtain suitable reductions, as is shown in Negri and von Plato [26].

With quantified statements we can proceed generally by transforming
them into prefix normal form where matrix is again in conjunctive normal
form. However, the elimination of quantifiers is generally connected with
skolemization and losing equivalence between input formulae and output

4Indrzejczak [17] presents SC for modal logic with definite descriptions where such
problems lead to suitable changes of rules involving identity.
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basic sequents. Since preservation of satisfiability is for many cases suffi-
cient it is not a big problem. Note also that there is a variety of classes
of quantified formulae which are especially suitable for generation of rules.
We illustrate the point with two examples.

One may easily obtain rules for the class of universal implications of
the form ∀x1 . . . xk(ϕ1∧· · ·∧ϕn → ψ1∨· · ·∨ψm), where all ϕ’s and ψ’s are
atomic formulae. For each such universal implication, the general schema
of SC rule in our favourite form will be:

Γ⇒ ∆, ϕ1 . . . Γ⇒ ∆, ϕn

Γ⇒ ∆, ψ1, . . . , ψm

It may be strenghtened to the class of basic geometric formulae of the
form:

∀x1 . . . xk
(
ϕ1 ∧ · · · ∧ ϕn → ∃y1 . . . yl(ψ1 ∨ · · · ∨ ψm)

)
,

where k > 1, l, n,m > 0, ϕ’s are atomic formulae and ψ’s are either atomic
formulae or finite conjunctions of atoms.

It seems that this class may be better treated by other approaches.
For example, in Braüner [2], for every such basic geometric formula there
corresponds a rule of the following form:

Γ⇒ ∆, ϕ1 . . . Γ⇒ ∆, ϕn Ψ1,Γ⇒ ∆ . . . Ψm,Γ⇒ ∆

Γ⇒ ∆

where no variables of y1, . . . , yl occur in Γ, ∆, ϕ1, . . . , ϕn, and for each
i = 1, . . .m: Ψi is a set of atoms that form conjunction ψi.

Also in case of Negri and von Plato approach we can provide suitable
rules of the form:

ϕ1 . . . ϕn,Ψ1,Γ⇒ ∆ . . . ϕ1 . . . ϕn,Ψm,Γ⇒ ∆

ϕ1 . . . ϕn,Γ⇒ ∆

where no variables of y1, . . . , yl occur in Γ, ∆, ϕ1, . . . , ϕn, and for each
i = 1, . . .m: Ψi is a set of atoms that form conjunction ψi.

For our preferred format of rules it is harder, but still possible, to
express geometric formulae. Obviously, we can use rules of the form:
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Γ⇒ ∆, ϕ1 . . . Γ⇒ ∆, ϕn

Γ⇒ ∆, ψ1, . . . , ψm

but this time ψ-s may be not atomic and the Right Reduction Lemma
may fail. Fortunatelly, we may transform every Braüner’s rule into finite
set of rules of the form:

Γ⇒ ∆, ϕ1 . . . Γ⇒ ∆, ϕn

Γ⇒ ∆, χ1, . . . , χm

where for each i ≤ m,χi is a selected (atomic) element of Ψi, for every
combination of these atoms. Thus the number of such rules is

∏m

i=1 | Ψi |,
where | Ψi | is the number of atoms in Ψi. For example, a Braüner’s style
rule:

Γ⇒ ∆, ϕ ψ1, ψ2,Γ⇒ ∆ ψ3, ψ4,Γ⇒ ∆

Γ⇒ ∆

is equivalent to four rules of the form:

Γ⇒ ∆, ϕ

Γ⇒ ∆, ψi, ψk

where i = 1 or i = 2 and k = 3 or k = 4.
It is easy to show that each of these 4 rules is derivable by Braüner’s

rule:

Γ⇒ ∆, ϕ
(W )

Γ⇒ ∆, ψ1, ψ3, ϕ

ψ1 ⇒ ψ1

ψ1, ψ2,Γ⇒ ∆, ψ1, ψ3

ψ3 ⇒ ψ3

ψ3, ψ4,Γ⇒ ∆, ψ1, ψ3

Γ⇒ ∆, ψ1, ψ3

The other direction is harder but conceptually easy. We can derive:

Γ⇒ ∆, ϕ

Γ⇒ ∆, ψ1, ψ4

Γ⇒ ∆, ϕ

Γ⇒ ∆, ψ2, ψ4 ψ1, ψ2,Γ⇒ ∆
(Cut)

ψ1,Γ,Γ⇒ ∆,∆, ψ4
C

ψ1,Γ⇒ ∆, ψ4
(Cut)

Γ,Γ⇒ ∆,∆, ψ4, ψ4
C

Γ⇒ ∆, ψ4
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and

Γ⇒∆,ϕ

Γ⇒∆,ψ2,ψ3

Γ⇒∆,ϕ

Γ⇒∆,ψ1,ψ3 ψ1,ψ2,Γ⇒∆
(Cut)

ψ2,Γ,Γ⇒∆,∆,ψ3
C

ψ2,Γ⇒∆,ψ3
(Cut)

Γ,Γ⇒∆,∆,ψ3,ψ3
C

Γ⇒∆,ψ3 ψ3,ψ4,Γ⇒∆
(Cut)

ψ4,Γ,Γ⇒∆,∆
C

ψ4,Γ⇒∆

By cut and contraction we obtain Γ ⇒ ∆. One may easily notice
that all four rules are necessary to prove derivability of Braüner’s rule.
In a similar way we can provide proofs of equivalence for any k, n and
for conjunctions of any length. In this way we can also cover any such
theory over LK (or any other SC for classical logic) with our general cut
elimination theorem.
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