
Bulletin of the Section of Logic
Volume 48/2 (2019), pp. 117–135

http://dx.doi.org/10.18778/0138-0680.48.2.03

Juan M. Cornejo
and Hanamantagouda P. Sankappanavar

SEMI-HEYTING ALGEBRAS AND IDENTITIES
OF ASSOCIATIVE TYPE

Abstract

An algebra A = 〈A,∨,∧,→, 0, 1〉 is a semi-Heyting algebra if 〈A,∨,∧, 0, 1〉 is a
bounded lattice, and it satisfies the identities : x ∧ (x → y) ≈ x ∧ y, x ∧ (y →
z) ≈ x ∧ [(x ∧ y) → (x ∧ z)], and x → x ≈ 1. SH denotes the variety of
semi-Heyting algebras. Semi-Heyting algebras were introduced by the second
author as an abstraction from Heyting algebras. They share several important
properties with Heyting algebras. An identity of associative type of length 3 is a
groupoid identity, both sides of which contain the same three (distinct) variables
that occur in any order and that are grouped in one of the two (obvious) ways.
A subvariety of SH is of associative type of length 3 if it is defined by a single
identity of associative type of length 3.

In this paper we describe all the distinct subvarieties of the variety SH of aso-
ciative type of length 3. Our main result shows that there are 3 such subvarities
of SH.

Keywords: semi-Heyting algebra, Heyting algebra, identity of associative
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1. Introduction

Semi-Heyting algebras were introduced by the second author in 1983–84,
as a result of his research that went into [33] (which was still a preprint at
the time). Some of the early results were announced in [35].
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A closer look at the proofs of results proved in [33] led him to the
following rather interesting observation:

The arguments in [33], for the most part, used only the following well
known properties of Heyting algebras:
(1) Their lattice-reducts are pseudocomplemented,
(2) Their lattice-reducts are distributive, and
(3) Congruences on them are determined by filters.
This observation led him to the following conjecture.

Conjecture A: There exists a variety V of algebras such that
• it has the same language as that of Heyting algebras,
• it contains Heyting algebras, and
• it possesses the following well known properties of Heyting algebras:

(1) The lattice reducts of the algebras in V are pseudocomple-
mented

(2) The lattice-reducts are distributive,
(3) Congruences on the algebras in V are determined by filters,

Around the same time (1983-85), he had also completed the research
for [36] (which was still in the preprint form). Led by the striking similar-
ities in the results and in the proofs of (the preprints of) the papers [33]
and [36], he formulated the following conjecture which appeared in print
much later in 1987:

Conjecture 1: There exists a varietyV of algebras of type 〈∨,∧,→,′ , 0, 1〉
which would provide a unifying framework to state and prove common
generalizations of strikingly similar results, proved in the above-mentioned
two papers.

The search for such a variety led him naturally to consider the following
conjecture and strengthened his belief in the validity of Conjecture A.

Conjecture 2: There exists a common generalization of (dually) pseudo-
complemented lattices and De Morgan algebras.

Conjecture 2 was easy to settle with the variety of semi-De Morgan al-
gebras, since they were already known to the author in 1979. The results
on these algebras, however, appeared in print in the paper [37].
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Conjecture A was settled in 1983–84 with the discovery of semi-Heyting
algebras. However, the first results on semi-Heyting algebras appeared in
print only in 2008 in the Proceedings of 9th A. Monteiro Conference in
Bahia Blanca, Argentina (see [38]), held in 2007. (It was predicted in [37]
that semi-De Morgan algebras might be useful in resolving Conjecture 1.
Indeed, it turned out to be the case. Conjecture 1 was settled later in [39],
with the help of both semi-Heyting algebras and (a subvariety of) semi-De
Morgan algebras.)

Definition 1.1. An algebra 〈A,∨,∧,→, 0, 1〉 is a semi-Heyting algebra if
the following conditions hold:

(SH1) 〈A,∨,∧, 0, 1〉 is a lattice with 0 and 1,
(SH2) x ∧ (x→ y) ≈ x ∧ y,
(SH3) x ∧ (y → z) ≈ x ∧ [(x ∧ y)→ (x ∧ z)],
(SH4) x→ x ≈ 1.

A semi-Heyting algebra is a Heyting algebra if it satisfies the identity

(H) (x ∧ y)→ x ≈ 1.

We will denote the variety of semi-Heyting algebras by SH and that of
Heyting algebras by H. It is clear that H ⊂ SH.

It turns out (see [38]) that semi-Heyting algebras share with Heyting
algebras some rather strong properties, besides the three mentioned ear-
lier. For example, semi-Heyting algebras share the following properties
with Heyting algebras:
(1) every interval in a semi-Heyting algebra is also pseudocomplemented,
(2) the variety SH is arithmetical, and
(3) The variety SH has EDPC (equationally definable principal congru-
ences).
Moreover, there is a rich supply of algebras in SH. It is known that there
are in SH, up to isomorphism, two 2-element algebras, ten 3-element alge-
bras, only one of which, of course, is a Heyting algebra and 160 algebras
on a 4-element chain (see [38] and [4]).

It is well-known that Heyting algebras form an equivalent algebraic se-
mantics for intuitionistic logic; and there is a vast literature on the lattice of
subvarieties of H (equivalently, on the lattice of intermediate logics), both
from algebraic and logical points of view. Recently, the first author, in
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[11], has introduced “semi-intuitionistic logic”, whose equivalent algebraic
semantics is the the variety of semi-Heyting algebras and which has the
intuitionistic logic and classical logic as extensions, thus implying that the
lattice of intermediate logics (extensions of the intuitionistic logic) is an
interval in the lattice of extensions of the semi-intuitionistic logic (see [13]
for a more stream-lined version). These observations led us naturally to
the following problem.

PROBLEM: Investigate the structure of the lattice of subvarieties of
the variety of semi-Heyting algebras, algebraically and logically.

It should perhaps be mentioned here that already Problem 14.2 of [38]
had called for an investigation into the structure of the lattice of subvarieties
of the variety of semi-Heyting algebras (algebraically).

There exists already some literature related to this problem. The pa-
pers that deal with this problem algebraically include [38], [2], [3], [4], [5],
[15] and [17]. The paper [4] investigates the properties of semi-Heyting
chains and the structure of the variety CSH generated by all semi-Heyting
chains. In [2], it is proved, among other things, that the variety of Boolean
semi-Heyting algebras (algebras with an underlying structure of Boolean
lattice) constitutes a reflective subcategory of SH, extending the corre-
sponding result for Heyting algebras (see [6, Corollary IX.5.4], and that the
free algebras in a subvariety V of SH are directly indecomposable if and
only if V satisfies the Stone identity, extending a known result for Heyt-
ing algebras. Article [3] presents two other subvarieties of semi-Heyting
algebras that are term-equivalent to the variety of Goedel algebras (linear
Heyting algebras), and that they are the only other subvarieties in L with
this property. The variety of semi-Nelson algebras is introduced in [17] so
that the well-known and well-exploited relationship between Heyting and
Nelson algebras extends to semi-Heyting and semi-Nelson algebras. It is
also proved that the variety of semi-Nelson algebras is arithmetical, has
equationally definable principal congruences, has the congruence extension
property, along with a description of the semisimple subvarieties. In [15] an
equivalence is exhibited between the category of semi-Heyting algebras and
the category of centered semi-Nelson algebras, extending Cignoli’s result
that the categories of Heyting algebras and centered Nelson algebras are
equivalent.
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[13] and [16]. In [10] the authors introduce a Gentzen style sequent calculus
LSJ for the semi-intuitionistic logic. The advantage of this presentation
of the logic is that they prove a cut-elimination theorem for LSJ that
allows them to check the decidability of the logic. As a direct consequence,
they also obtain the decidability of the equational theory of semi-Heyting
algebras. In [16], a propositional calculus called “semi-intuitionistic logic
with strong negation” is introduced and proved to be complete with respect
to the variety of semi-Nelson algebras. It has intuitionstic logic with strong
negation as an axiomatic extension.

The present paper is an addition to the above-mentioned papers. In the
quest for finding new varieties of semi-Heyting algebras, we systematically
investigate, in this paper, the identities of associative type.

1.1. Identities of Associative Type

A look at the associative law would reveal at least the following character-
istics:

(1) Length of the left side term = length of the right side term = 3,
(2) The number of distinct variables on the left = the number of distinct

variables on right = the number of occurrences of variables on either
side,

(3) The order of the variables on the left side is the same as the order of
the variables on the right side,

(4) The bracketings used in the left side term and in the right side term
are different from each other.

One way to generalize the associative law is to relax (3) and second
half of (1), while keeping (2), (4) and the first half of (1). So, we are led
to the following definition.

Definition 1.2. An identity of associative type of length n is an identity
of the form p ≈ q of length n such that

(a) each of p and q contains the same n (an integer ≥ 3) distinct vari-
ables,

(b) p and q are terms obtained by distinct bracketings of a permutation
of the n variables.

The papers that deal with the above problem logically include [10], [11],
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The above definition is taken from [14]. We do not know whether the
notion of “identities of associative type of length n” in such a generality as
given above has occurred in the literature earlier. However, we do know
that specific instances of the identities of associative type have already
appeared in the literature. We mention a few examples below, using · for
the binary operation instead of→. (The interested reader may refer to [14]
for more such examples.)
• The identity x·(y·z) ≈ (z·x)·y was considered in [42] by Suschkewitsch

(see also [40, Theorem 11.5]).
• Abbott [1] uses the identity x · (y ·z) ≈ y · (x ·z) as one of the defining

identities in his definition of implication algebras.
• The identities x · (y · z) ≈ z · (y · x), x · (y · z) ≈ y · (x · z), and
x · (y · z) ≈ (z · x) · y were investigated for quasigroups by Hossuzú in
[23].
• The identity x · (z ·y) ≈ (x ·y) ·z is investigated by Pushkashu in [30].
• The identities x · (z · y) ≈ (x · y) · z and x · (y · z) ≈ z · (y · x) have

appeared in [26] of Kazim and Naseeruddin.
The following problem was first mentioned in [14].

PROBLEM: Let V be a given variety of algebras (whose language includes
a binary operation symbol, say, ‘→′). Investigate the mutual relationships
among the subvarieties of V, each of which is defined by a single identity
of associative type of length n.

We will now consider the above problem for the variety SH. We begin a
systematic analysis of the relationships among the identities of associative
type of length 3 relative to the variety SH. For reader’s convenience we
repeat the special case of Definition 1.2, when n = 3.
Definition 1.3. An identity p ≈ q, in the groupoid language 〈→〉, is called
an identity of associative type of length 3 if p and q have exactly 3 (distinct)
variables, say x,y,z, and these variables are grouped according to one of the
following two ways of grouping:

(a) o→ (o→ o) (b) (o→ o)→ o.

A subvariety V of SH is called a subvariety of associative type of length
3 if it is defined by a single identity of associative type of lenth 3.
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In the rest of the paper, we refer to an “identity of associative type of
length 3” and a variety of associative type of lenth 3 as simply an identity
of associative type and a variety of associative type, respectively.

We wish to determine distinct subvarieties of associative type and their
mutual relationships, as well as their relationships with other known sub-
varieties of SH.

Our main theorem says that there are 3 such subvarieties of SH that
are distinct from each other and describes explicitly, by a Hasse diagram,
the poset formed by them.

2. Preliminaries

We refer to [9] for concepts and results in universal algebra and to [6] for
distributive lattices.

In this section, we recall some known subvarieties of SH and also recall
some results that will be useful in later sections.
Lemma 2.1. [38] Let A ∈ SH and a, b ∈ A.
(a) If a→ b = 1 then a ≤ b.
(b) If a ≤ b then a ≤ a→ b.
(c) 1→ a = a.
Theorem 2.2. [5, Theorem 1.8] Let A ∈ SH. The following conditions
are equivalent:
(1) A |= x→ y ≈ y → x,
(2) A |= x→ 1 ≈ x,
(3) A |= y ∧ (x→ y) ≈ x ∧ y.
The varieties of associative semi-Heyting algebras and commutive semi-

Heyting algebras, denoted, respectively, by A and C, are defined (see [38]),
relative to SH, by
(A) x→ (y → z) ≈ (x→ y)→ z,
(C) x→ y ≈ y → x.

In [5] it is proved that the identity x → (y → z) ≈ (x → y) → z
characterizes the variety V(L2), where V(L2) is the variety generated by
L2 (see bellow). The variety C has the interesting property that 0→ 1 = 0,
quite opposite to the behavior of Heyting algebras. The variety C is, we
think, also of interest from the philosophical point of view.
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Theorem 2.3. [5, Theorem 1.12] A = V(L2).

Lemma 2.4. [5, Lemma 1.10] If A ∈ A, then A satisfies x→ 1 ≈ x.

The following examples of semi-Heyting algebras will be useful in the
rest of the paper.

• Algebras defined on a 2-element chain {0, 1} with 0 < 1:

L1

→: 0 1
0 1 1
1 0 1

L2

→: 0 1
0 1 0
1 0 1

• Algebras defined on a 3-element chain {0, a, 1}, with 0 < a < 1:

L3

→: 0 1 a
0 1 a 1
1 0 1 a
a 0 1 1

L4

→: 0 1 a
0 1 0 0
1 0 1 a
a 0 a 1

L5

→: 0 1 a
0 1 1 1
1 0 1 a
a 0 a 1

• Algebras defined on a 4-element chain {0, a, b, 1}, with 0 < a < b < 1:

L6

→: 0 1 b a
0 1 1 1 b
1 0 1 b a
b 0 1 1 a
a 0 1 1 1
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• A 5-element algebra with the following lattice reduct and the → op-
eration:

t
t t

t
t

�
�
�
�
�

�
�
�
�
�

A
A
A
A
A

A
A
A
A
A

0

2 3

4

1

L7

→: 0 1 2 3 4
0 1 0 3 2 0
1 0 1 2 3 4
2 3 2 1 0 2
3 2 3 0 1 3
4 0 1 2 3 1

3. Identities of Associative Type

We now turn our attention to identities of associative type of length 3.
Recall that such an identity will contain three distinct variables that occur
in any order and that are grouped in one of the two (obvious) ways. The
following identities play a crucial role in the sequel.

Let Σ denote the set consisting of the following 14 identities of associa-
tive type in the binary language 〈→〉):

(A1) x→ (y → z) ≈ (x→ y)→ z,
(Associative law, )

(A2) x→ (y → z) ≈ x→ (z → y),
(A3) x→ (y → z) ≈ (x→ z)→ y,
(A4) x→ (y → z) ≈ y → (x→ z),
(A5) x→ (y → z) ≈ (y → x)→ z,
(A6) x→ (y → z) ≈ y → (z → x),
(A7) x→ (y → z) ≈ (y → z)→ x,

(A8) x→ (y → z) ≈ (z → x)→ y,
(A9) x→ (y → z) ≈ z → (y → x),

(A10) x→ (y → z) ≈ (z → y)→ x,
(A11) (x→ y)→ z ≈ (x→ z)→ y,
(A12) (x→ y)→ z ≈ (y → x)→ z,
(A13) (x→ y)→ z ≈ (y → z)→ x,
(A14) (x→ y)→ z ≈ (z → y)→ x.
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We will denote by Ai the subvariety of SH defined by the identity (Ai),
for 1 ≤ i ≤ 14. Such varieties will be referred to as subvarieties of SH of
associative type. Sometimes we will use (A) for (A1) and A for A1.

The following proposition, whose proof is routine, is crucial for the rest
of the paper.
Proposition 3.1. [14] Let G be the variety of all groupoids of type {→} and
Let V denote the subvariety of G defined by a single identity of associative
type. Then V = Ai, for some i ∈ {1, 2, · · · , 14}.

Our goal, in this paper, is to determine the distinct subvarieties of SH
associative type and to describe the poset of subvarieties of SH. It suffices
to concentrate on the varieties defined by identities (A1)-(A14), in view of
the above proposition.

3.1. Properties of subvarieties of SH of Associative type

In this section we present properties of several subvarieties of SH which
will play a crucial role in our analysis of the identities of associative type
relative to SH.

The proof of the following lemma is straightforward.
Lemma 3.2. If A ∈ SH satisfies the identities x → y ≈ y → x and
x→ (y → z) ≈ (x→ y)→ z then A ∈ Aj for all j ∈ {1, 2, . . . , 14}.
Lemma 3.3. If A ∈ Aj with j ∈ {1, 5, 8, 10, 12, 13, 14}, then A |= x →
1 ≈ x.
Proof: Let a ∈ A.
• j = 1: This case follows from Lemma 2.4.
• j = 5:

a→ 1 = a→ (a→ a) by (SH4)
= (a→ a)→ a by (A5)
= 1→ a by (SH4)
= a by Lemma 2.1 (c).

• j = 8:
a = (1→ 1)→ a by Lemma 2.1 (c)

= 1→ (a→ 1) by (A8)
= a→ 1 by Lemma 2.1 (c).
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• j = 10:

a→ 1 = a→ (1→ 1) by Lemma 2.1 (c)
= (1→ 1)→ a by (A10)
= 1→ a by Lemma 2.1 (c)
= a by Lemma 2.1 (c).

• j = 12: By Lemma 2.1 (b), a ≤ a→ 1. Also note that

(a→ 1)→ a = (1→ a)→ a by (A12)
= a→ a by Lemma 2.1 (c)
= 1 by (SH4).

Hence, using Lemma 2.1 (a), a→ 1 ≤ a.
• j = 13:

a = 1→ a by Lemma 2.1 (c)
= (1→ 1)→ a by Lemma 2.1 (c)
= (1→ a)→ 1 by (A13)
= a→ 1 by Lemma 2.1 (c).

• j = 14: By Lemma 2.1 (b), a ≤ a→ 1. Also note that

a→ 1 = (a→ 1) ∧ 1
= (a→ 1) ∧ ((a→ 1)→ 1) by (SH2)
= (a→ 1) ∧ ((1→ 1)→ a) by (A14)
= (a→ 1) ∧ a by Lemma 2.1 (c).

Therefore, a→ 1 ≤ a,
proving the lemma. �

Lemma 3.4. If A ∈ Aj for 1 ≤ j ≤ 14 and j 6= 4 then A ∈ C.
Proof: Let a, b ∈ A.
• If j ∈ {1, 5, 8, 10, 12, 13, 14} the result follows from Theorem 2.2 and

Lemma 3.3.
• j = 2:

a→ b = 1→ (a→ b) by Lemma 2.1 (c)
= 1→ (b→ a) by (A2)
= b→ a by Lemma 2.1 (c).
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• j = 3:
a→ b = 1→ (a→ b) by Lemma 2.1 (c)

= (1→ b)→ a by (A3)
= b→ a by Lemma 2.1 (c).

• j = 6:
a→ b = a→ (1→ b) by Lemma 2.1 (c)

= 1→ (b→ a) by (A6)
= b→ a by Lemma 2.1 (c).

• j = 7:
a→ b = a→ (1→ b) by Lemma 2.1 (c)

= (1→ b)→ a by (A7)
= b→ a by Lemma 2.1 (c).

• j = 9:
a→ b = a→ (1→ b) by Lemma 2.1 (c)

= b→ (1→ a) by (A9)
= b→ a by Lemma 2.1 (c).

• j = 11:

a→ b = (1→ a)→ b by Lemma 2.1 (c)
= (1→ b)→ a by (A11)
= b→ a by Lemma 2.1 (c),

proving the lemma. �

Lemma 3.5. If A ∈ Aj with j ∈ {3, 5, 6, 8, 9, 11, 13, 14} then A ∈ A.
Proof: If A ∈ A3, then

a→ (b→ c) = a→ (c→ b) by Lemma 3.4
= (a→ b)→ c by (A3).

If A ∈ A5, then

a→ (b→ c) = (b→ a)→ c by (A5)
= (a→ b)→ c by Lemma 3.4.

If A ∈ A6, then

a→ (b→ c) = a→ (c→ b) by Lemma 3.4
= c→ (b→ a) by (A6)
= c→ (a→ b) by Lemma 3.4
= (a→ b)→ c by Lemma 3.4.
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If A ∈ A8, then

a→ (b→ c) = a→ (c→ b) by Lemma 3.4
= (b→ a)→ c by (A8)
= (a→ b)→ c by Lemma 3.4.

If A ∈ A9, then

a→ (b→ c) = c→ (b→ a) by (A9)
= c→ (a→ b) by Lemma 3.4
= (a→ b)→ c by Lemma 3.4.

If A ∈ A11, then

(a→ b)→ c = (b→ a)→ c by Lemma 3.4
= (b→ c)→ a by (A11)
= a→ (b→ c) by Lemma 3.4.

If A ∈ A13, then

(a→ b)→ c = (b→ c)→ a by (A13)
= a→ (b→ c) by Lemma 3.4.

If A ∈ A14,

(a→ b)→ c = (c→ b)→ a by (A14)
= a→ (c→ b) by Lemma 3.4
= a→ (b→ c) by Lemma 3.4.

The lemma is now proved. �

Theorem 3.6. A = A1 = A3 = A5 = A6 = A8 = A9 = A11 = A13 = A14.
Proof: The proof follows directly from Lemma 3.2, Lemma 3.4 and Lemma
3.5. �

The proof of the following lemma is straightforward.
Lemma 3.7. If A ∈ C then A ∈ Aj with j ∈ {2, 7, 10, 12}.
Theorem 3.8. C = A2 = A7 = A10 = A12.
Proof: This result is easy to check by using Lemma 3.4 and Lemma 3.7.
�
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4. Main Theorem

We are now ready to present the main theorem of this paper.
Theorem 4.1. We have
(a) The following are the 3 subvarieties of SH of associative type that are

distinct from each other:

A, C and A4.

(b) They satisfy the following relationships:
1. T ⊂ A ⊂ C ⊂ SH, where T denotes the trivial variety,
2. A ⊂ A4 ⊂ SH,
3. C || A4,
4. H ⊂ A4.

Proof: Observe that, in view of Theorem 3.6 and Theorem 3.8 we can
conclude that each of the 14 subvarieties of associative type of SH is equal
to one of the following varieties:

A, C and A4.

We first wish to prove (b). By Lemma 3.2, A ⊆ A4. The algebra L1 shows
that the inclusion is proper using x = 0, y = 0, z = 0 in the identity (A). It
is clear that A4 ⊆ SH. The algebra L3 shows that the inclusion is proper
using x = 0, y = a, z = 1 in the identity (A4) proving b2.

Let us check item (b3). The algebra L4 shows that C 6⊆ A4 using
x = 0, y = a, z = 0 in the identity (A4). The algebra L1 shows that
A4 6⊆ C using x = 0, y = 1 in the identity (C).

The condition H ⊆ A4 is clear since if A ∈ H and a, b ∈ A then
a → (b → c) = (a ∧ b) → c = (b ∧ a) → c = b → (a → c), the latter being
well-known. Let us consider the algebra L2. It shows that A4 6⊆ H using
x = 0, y = 1 in the identity (H). Then the proof of item (b4) is done.

The inclusion A ⊆ C follows from Lemma 2.4 and Theorem 2.2. The
algebra L4 shows that the inclusion is proper since (A) fails in it at x = 0,
y = 0, z = a. The proof of the theorem is now complete since (a) is an
immediate consequence of (b). �

Further relationship between C, A4 and A is given in the following
theorem.
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Theorem 4.2. C ∩ A4 = A.

Proof: Let A ∈ A4 and a, b, c ∈ A. Notice that

a→ (b→ c) = a→ (c→ b) by (C)
= c→ (a→ b) by (A4)
= (a→ b)→ c by (C)

Hence C ∩ A4 ⊆ A. In view of Theorem 4.1, C ∩ A4 = A. �

The Hasse diagram of the poset (in fact, ∧-semilattice) of subvarieties
of SH of associative type, together with SH, T and H, is given below.

t
t t
t t

t
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�
�
�

�
�
�
�
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�
�
�

A
A
A
A
A

A
A
A
A
A

T

SH

A

C

H

A4

Next, we will study some relationships of this interesting new subvariety
A4 with some of the other earlier known subvarieties of SH.

In [38, Definition 8.1], Sankappanavar introduced the following subva-
rieties of SH by providing defining identities relative to SH for each of
them (where ∗ is the operation of pseudocomplementation):
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Subvariety Defining identity within SH
FT T (False implies True is True) 0→ 1 ≈ 1
FT D (False implies True is Dense) (0→ 1)∗ ≈ 0
QH (Quasi-Heyting algebras) y ≤ x→ y

SHS (Stone semi-Heyting algebras) x∗ ∨ x∗∗ ≈ 1
FT F (False implies True is False) 0→ 1 ≈ 0

Theorem 4.3. The variety A4 is incomparable to each of the subvarieties

FT T ,FT D,QH,SHS and FT F .

Proof: The algebra L2 shows that A4 6⊆ FT T , A4 6⊆ FT D and A4 6⊆
QH.
The algebra L3 shows that FT D 6⊆ A4 and SHS 6⊆ A4 using x = 0, y = a,
z = 1.
The algebra L5 shows that FT T 6⊆ A4 using x = 0, y = a, z = 0.
The algebra L6 shows that QH 6⊆ A4 using x = 0, y = b, z = a.
The algebra L7 shows that A4 6⊆ SHS with x = 2.
The algebra L1 shows that A4 6⊆ FT F .
The algebra L4 shows that FT F 6⊆ A4 using x = 0, y = a, z = 0. �
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