Recenzja
pracy doktorskiej mgr. Jana Demeško
na temat „Zróżnicowanie ekotypów sarny (Capreolus capreolus): badanie porównawcze zawartości pierwiastków śladowych w tkankach twardych i plastywności fenotypowej grubości szkliwa.”

Praca przedstawiona do oceny stanowi podsumowanie badań zaprezentowanych w cyku trzech publikacji dotyczących zagadnień związanych z zawartością pierwiastków śladowych w tkankach twardych ssaków, a także poszukiwania zmienności w tym zakresie w zależności od środowiska życia i wieku zwierząt. Jako gatunek wskaźnikowy wybrano sarnę europejską, ssaka w przypadku którego – od co najmniej stu lat, wyodrębnia się dwa ekotyppy: leśny i polny. Zasiedlają one biotopy podlegające presji ze strony gospodarczej działalności człowieka – ale o zdecydowanie różnej skali, a ponadto mają zróżnicowany dostęp do preferowanych źródeł pokarmu. Sarna może więc być bioindykatoraem stanu środowiska, w tym występowania pierwiastków śladowych informujących o jego skażeniu.

Artykuły naukowe wchodzące w skład rozprawy stanowią przemysłany cykl, prezentujący rzadziej opisywany aspekt, jakim jest obecność pierwiastków śladowych w tkankach twardych u zwierząt. Zostały opublikowane w czasopismach naukowych z listy A – łączny IF to 5,59, a punktacja MNiSW – po korekcji błędu w przypadku pracy nr 2 (pierwotna była mniej korzystna dla Autora) wynosi 135.
W pierwszej publikacji Autorzy, w tym Doktorant, opisali stężenie siedmiu pierwiastków śladowych (baryt, miedzi, żelaza, ołowiu, manganu, strontu i cynku), a także fluoru, w zębach trzonowych i kości żuchwy saren w centralnej Polsce. Średnie stężenia większości z nich (miedź, ołów, mangan, stronc i cynk) różniły się między kośćmi żuchwy a żebami. Równocześnie w przypadku pięciu – bar, żelazo, ołów, mangan, stront i cynk, wykazano istotną zależność ich akumulacji od wieku badanych osobników. Różnice w bioakumulacji pierwiastków wzrastały wraz z wiekiem w przypadku zębów, natomiast badając kości żuchwy nie odnotowano takiego trendu. Słusznie podkreślono w konkluzji, że „istnieje potrzeba uwzględnienia zmienności związanej z wiekiem w badaniach ekotoksykologicznych u dziko żyjących zwierząt”.

Warto podkreślić, że wybrane elementy kości są znajduj się w wielu przyrodniczych kolekcjach muzealnych, w tym w licznych zbiorach myśliwskich, gdyż sarna jest najpowszechniej rządu ssakiem młodym w Europie środkowej. Tym samym od ponad stu lat – od kiedy preparuje się poroża jeleniowatych wraz z czaszką, szeroki jest dostęp do materiału badawczego, który pozwala precyzyjnie – z uwzględnieniem wieku zwierząt (na co wskazuje obraz zębów), śledzić zmiany skąpania środowiska na przestrzeni lat.

Kolejna publikacja prezentuje badania koncentrujące się na oszacowaniu poziomu zanieczyszczenia środowiska w dwóch typach biotopów – o dużej i małej leśności. Określono zawartość pierwiastków śladowych w tkankach roślin stanowiących w obu środowiskach pokarm saren (liście brzozy brodawkowej, igły sosny zwyczajnej oraz całe rośliny w przypadku jeżyn i borówki czarnej), a także zestawiono uzyskane wyniki z obecnością metali ciężkich i fluoru w tkankach twardych tych zwierząt. Dla wszystkich roślin wykazano mniejszy poziom obecności trzech pierwiastków (miedź, żelazo, ołów) w tkankach gatunków z terenów o większej leśności. Te same pierwiastki były w mniejszym stopniu obecne w zębach i kośćach żuchwy saren z terenów leśnych, aniżeli z łowisk z dominacją pól. Słusznie podkreślono, iż stwierdzone
różnice mogą wynikać ze stopnia skażenia badanych środowisk, ze specyfiki akumulacji pierwiastków śladowych w lasach i na polach, z różnica w diecie saren z łowisk leśnych i polnych, oraz z wielkości areałów osobniczych dwóch ekotypów. Te ostatnie są wyraźnie większe na polach, zwłaszcza zimą, bowiem wówczas w tym środowisku powstają duże ugrupowania saren.

Trudno natomiast zgodzić się z ze stwierdzeniem w konkluzji końcowej, sugerującym, iż liczebność saren polnych wzrosła w ostatnich dziesięcioleciach, m.in. w następstwie fragmentacji terenów leśnych. Sarnie polnej sprzyjało obserwowane w przeszłości kurczenie arealu lasów (Pielowski 1999), natomiast ich fragmentacja jest korzystna dla saren leśnych i stąd liczebność saren polnych w Polsce na przełomie XX i XXI wieku nie tylko nie rosła, ale lokalnie wręcz zmniejszyła się (Kamieniarz 2014). To oczywiście nie zmienia faktu, iż badanie ekotoksykologiczne saren z różnych środowisk są ważne i mogą pomóc, np. w wyjaśnieniu mniejszej rozrodczości w populacjach żyjących wśród pól.

Ostatni artykuł omawia badania zmierzające do określenia wskaźników pomocnych w ocenie przynależności saren do dwóch ekotypów, które przeprowadzono w oparciu o materiał zebrany w środkowej Polsce, a także w południowo-wschodniej części Litwy. Predykatorem okazała się grubość szkliwa, która była mniejsza u saren z terenów małolesistych, zwłaszcza u starszych osobników. Mogło to być wynikiem adaptacji budowy morfologicznej zębów do łatwostrawnego pokarmu dostępnego na polach uprawnych i/lub konsekwencją częstszego obecności stresu u saren żyjących w tym anthropogenicznym środowisku, okresowo ubogim w osłony.

Wyniki ostatniej z prac dostarczyły wskaźnika pomagającego w powiązaniu saren ze środowiskiem życia. Może być bardzo przydatny, bowiem dotyczy elementów kościca czaszki, które jak wspomniałem powyżej, często stanowią element kolekcji przyrodniczych i stąd mogą być wykorzystywane w długoterminowych analizach ekotoksykologicznych. Jego zastosowanie
w badaniach, w których jako bioindykator będzie wykorzystana sarna, jest wręcz niezbędne dla doboru materiału do analiz zmian w skażeniu metalami ciężkimi środowiska leśnego i polnego. Wskaźnik ten może być również pomocny w łowieckim gospodarowaniu gatunkiem pospolitym w Europie, a jednocześnie specyficznym, bowiem wykształcił dwa ekotypy – żyjące w dwóch środowiskach. Istotność tych różnic potwierdziły także opiniowane badania. Aby stało się to możliwe, konieczna byłaby ocena grubości szkliwa u saren sensu stricto polnych, czyli cały rok żyjących na polach. Wśród saren bytujących na terenach o niewielkiej lesistości są bowiem również sarny leśne – żyjące w lasach śródpolnych.

Piśmiennictwo przedstawione przez Doktoranta zawiera 71 pozycji dotyczących głównie aspektu ekotoksykologii, ale także ekologii sarny, w tym jej dwóch ekotypów. Większość z nich (39) została opublikowana w XXI wieku i opisuje badania w różnych krajach Europy, czyli w areale sarny europejskiej. Niestety w przypadku badań nad ekologią sarny leśnej i polnej Doktorant nie wykorzystał wszystkich prac, stąd i krytyczna uwaga zawarta w ocenie publikacji numer 2. Od lat jednym z liderów w badaniach nad sarną, a zwłaszcza ekotypem polnym, jest Stacja Badawcza PZŁ w Czempiniu w Wielkopolsce. Publikacje tam powstałe są przywołane przez Doktoranta, ale tylko te z lat 70. i 80. XX wieku. Szkoda, bo na stronie internetowej tej placówki można znaleźć także późniejsze. Mimo tej uwagi moja ocena wykorzystanego piśmiennictwa jest pozytywna.

Jednym z podstawowych elementów dysertacji doktorskiej powinien być jasno postawiony cel badań, zwykle połączony z prezentacją zakresu prac. Na wstępie podkreślilem, iż zbiór artykułów przedstawiony jako praca doktorska mgr Jana Demeško wskazuje na przemysłany ciąg badań. Prezentowane publikacje zawierają cele badawcze. Szkoda więc, że Doktorant nie przedstawił tego na wstępie swojego opracowania przesłanego do recenzji.
Materiał i metody wykorzystane w publikacjach stanowiących rozprawę doktorską zostały właściwie opisane. Analiza składu zespołów badawczych i udziału poszczególnych osób – przedstawionego w oświadczeniach, wskazuje na duże zaangażowanie Doktoranta, a także na umiejętność współpracy, co w przypadku naukowca stanowi cenne – wręcz niezbędne, predyspozycje. Jako badacz saren dokonałbym jednak innego wyboru roślin spośród występujących w diecie sarny, wprowadzając rośliny zielne, nawet kosztem rezygnacji z liści brzozy lub krzewinek borówki (sosna i jeżyna to niewątpliwie ważne gatunki). Być może bioakumulacja badanych pierwiastków w roślinach jednorodznych jest inna, ale to one stanowią podstawowy pokarm saren.

Wyniki zostały w prezentowanych publikacjach klarownie opisane i odpowiednio zilustrowane. Nieco gorzej wypada ich omówienie zawarte w opracowaniu przedstawionym do oceny jako praca doktorska (Doktorant nie ułatwił pracy Recenzentom). Konsekwencją może być niższy poziom niektórych wniosków. Skoro istotne lub prawie istotne różnice w zawartości pierwiastków śladowych w tkankach roślin stanowiących pokarm saren, a pochodzących z terenów o różnej lesistości, dotyczyły miedzi, żelaza i ołowiu, to po co w konkluzji nadal wspominać o stronie? Podobnie w przypadku fluoru, którego przydatność poddano w wątpliwość w pracy nr 2. Kolejna uwaga – pytanie, skąd we wniosku nr 5 pojawia się dzicyzna, skoro jej skażenie metalami ciężkimi nie było przedmiotem badań?

W obszernych rozprawach doktorskich trudno uniknąć potknięć. Przytoczone powyżej uwagi i propozycje nieco innego podejścia do ekotypów sarny w kolejnych badaniach, nie zmieniają faktu, że praca stanowi oryginalne rozwiązanie problemu naukowego. Jednocześnie potwierdza, że Doktorant, którego udział w artykułach stanowiących rozprawę doktorską wynosi łącznie 120%, ma wiedzę teoretyczną i umiejętności do samodzielnego prowadzenia pracy naukowej.
Uważam, że praca doktorska Pana mgr Jana Demeško zawiera nowe elementy naukowe i wzbogaca wiedzę o sarnie oraz jej ekotypach – jako bioindykatorach stanu środowiska, a zwłaszcza jego skażenia metalami ciężkimi. Praca spełnia wymogi stawiane rozprawom doktorским, zgodnie z obowiązującym prawem i dlatego do Komisji Uniwersytetu Łódzkiego ds. stopni naukowych w dyscyplinie nauki biologiczne kieruję wniosek o dopuszczenie mgr Jana Demeško do dalszych etapów przewodu doktorskiego.

Robert Komenda