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ON PREDICTION OF DOMAIN TOTAL
BASED ON BALANCED PANEL DATA

Abstract. In the paper we analyze the accuracy of the best linear unbiased predictor (BLUP)
of the domain total (see Royall, 1976) assuming a model for longitudinal data with subject specific
(element specific) random components (i.e. Verbeke, Molenberghs (2000), Hedeker, Gibbons
(2006)) which is a special case of the general linear model (GLM) and the general linear mixed
model (GLMM). To estimate the mean square error (MSE) of the BLUP we use the results
obtained by Datta and Lahiri (2000) for the predictor proposed by Henderson (1950) and adopt
them for the predictor proposed by Royall (1976) what was shown in some general case by Zadto
(2007). Considerations are supported by simulation study including some problem of model
misspecification in the case of predicting future domain totals.
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I. BASIC NOTATIONS

We analyze balanced longitudinal data in M periods. Number of periods for
which observation are available is denoted by m. Hence, if prediction of future
domain totals is considered m < M, otherwise (when current or past domain
totals are predicted) m = M . The finite population € (which does not change it

time) consists of N units. The population is divided into D domains €,

(d=1...., D), each of size¢ N, (d=1,..,D) and we assume that they do not

change in time. For the domain of interest we add a star to the subscript d, for
example the domain of interest is denoted by € ,. and its size by N .. Let the

set of population elements for which observations are available in period j be
denoted by s; and its size by n. The set of domain elements for which

observations are available in period j is denoted by s, and its size by ng. Let:

Q

balanced panel data are available, hence for these periods: V

rdj.ZQd—de, N,;,=N,—n,. Because we assume that for m periods

je{l ,,,,, m}Sj =5,
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n_‘ =n, V {1 m}sc_li =S4 vje{l ..... m}ndj =n,, vje{l,...,m}gzrdi = Qrd >

A N,; =N, If t is the number of future period (for which we may

=, n,=0,,

it

je{l,...,m}
predict the domain totals) we have: s, =, n =0, s,

Qrdr :de Ny=N,.

Values of the variable of interest are realizations of Y, g random variables

for the population element 7 (i=1,...,/N) which belong to the domain d (d=1,...,D)
in the period j (j=1,...,M). The vector of size M x1 of random variables Y,

for the ith population element which belong to the dth domain is denoted by
Y, = ':Yl dj] ,where j=1,..., M . Let us consider population elements for which

1
observations are available in the sample. Vector of random variables Y, .
(where i=l,...,n, j=l,..m, d=1,..,D) of size mx1 is denoted

by Y;q = Yidjl,where j=L...m.

II. SUPERPOPULATION MODELS

We consider superpopulation models used for longitudinal data (e.g.
Verbeke, Molenberghs (2000), Hedeker, Gibbons (2006)). The following two-
stage model is assumed. Firstly:

Yy =ZBy +e4 (D

where i=1,...,N; d=1,....D, Y,; is random vector of size M x1, Z,, is known
matrix of size M xq, B,, is vector of unknown parameters of size gx1, e, is

random component vector of size M x1. Vectors e, (i=1,...,N; d=1,...,D) are
independent with 0 vector of expected values and variance-covariance
matrix R,;. Although R,;, may depend on i it is often assumed that

R, =o.1,,, where I, is identity matrix of rank M . Secondly, we assume
that:

B =KiB+ vy ()
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where i=1,...,N; d=1,....D, K,; is known matrix of size gx p, B is vector of
unknown parameters of size px1, v,, is vector of random components of size

gx1. It is assumed, that vectors v,; (i=1,...,N; d¢=1,...,D) are independent with
0 vector of expected values and variance-covariance matrix, Giq = H, what
means that G,; does not depend on i.

Similar assumption to (1) and (2) are presented by Verbeke, Molenberghs
(2000) p. 20 but there are 2 differences. Firstly, in the book the domain
subscripts are omitted but the sense of (1) and (2) is the same. Secondly, in the
book assumptions are made only for sampled elements (i.e. i=1,...,n), in this
paper they are made for all of population elements (i=1,...,N). Based on (1) and
(2) it is obtained that:

Yy =XiB+Zyvi, ey (3)

where i=1,....N; d=1,...D, X, =7Z,,K,; is known matrix of size M xp. Let
Vi = DZ(Y,) . Hence, V,y = D;(Y,) =Z,HZ +R,,.

Let A; be a column vector and B; be a square matrix. Then,

COllsng(Ad):[Al . A, AD]T is a column vector obtained by
B .. 0

stacking A, vectors and diag,_,.,(B,)=| ... .. .. | is a block-diagonal
0 .. B,

matrix. Note that by stacking Y,; vectors (i.e. Y =col_,., (COII<'<N (Ym ))
<d< <i<N,

from (3) we obtain the formula of the GLMM. Let us introduce additional
notations. Let the subscript s be used for elements observed in the sample and
subscript » for elements unobserved in the sample. If the population elements are
rearranged so that the first nm elements of Y and the first nm rows of X are for
observations in the sample, we may use inter alia following notations:

YS Xs . . VSS VS!‘
v L{ } = {X} Hrsaco g, Vo) =V = [VH VJ '

r

Let us consider the following special case of (3):

Yidj =B, +va)i+ g = BiJ+Vii+ € “4)
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where i=1,...,N; d=1,...,D, j=1,...,M. Similar model is considered by Verbeke and
Molenberghs (2000) p. 25 but instead of domains they consider groups, they
include random constant in the model and they make assumptions only for
available observations (i=1,...,n).

In the considered model we assume (Verbeke and Molenberghs (2000)) that

— 2 . 2
R,, =0’ 1,,. Whatis more H = 0o . Hence,

0 if i#i'
COV(Idj’ ldj): 0-62+J203 lf l=l'/\J=J' (5)
Jloy  if i=iaj# )

It is very important for further considerations to note that for balanced data
under (5) we obtain V, =0.

All of the presented models — what is important for further considerations
— are special cases of the GLM and the GLMM. Let us introduce assumptions of
the GLM which will be studied in the next section. We assume that:

E.(Y)=Xp
{ DX(Y)=V’ (©)

where X is a N X p matrix of values of p auxiliary variables, p is a px1

vector of unknown parameters and V is a variance-covariance matrix depending
on some 0 vector of unknown in practice parameters .

II1. BLUP, ITS MSE AND MSE ESTIMATOR

In the paper the BLUP proposed by Royall (1976) is studied but some
comments on Henderson’s (1950) BLUP will be presented. Under the GLMM

Henderson studied the BLUP of the form 6° :aTY +b to predict

o -tlgsm! T8l

B+m" v. He obtained the BLUP: HE,LU B+m

v are some predictors of B and v (its precise formulae are not essential for the

VvV, where [3 and

considerations). For prediction of the total in domain d* in the (past, current or
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future) period ¢ we have lT = 'yTX and mT = yTZ, where the element & of y
1 if keQ,,
0 if keQ,,

For the considered model v is Ng x1, hence V is also Ngx1 what means

vector is given by y, :{

that it impossible to estimate v based only on observations from the sampled »
elements. Hence, in practice Henderson’s BLUP and EBLUP cannot be used
under the discussed model.
Royall (1976) proposed the BLUP and presented its MSE for the GLM.
Theorem 1. (Royall (1976)). Assume that the population data obey the

general linear model. Among the linear, model-unbiased predictors 0= g;rYs of

linear combination of random variables @ =y’ Y (where y = [y:,y: :IT) the

MSE is minimized by:
éBLU = V:Ys + YIT |:Xrl§ + VrsVs;] (Ys - Xsﬁ):| H (7)

A -1
where B =(X[V.'X,) XIV.'Y,
The MSE of 8y, is given by

MSE, (0,,,) =Var.(6,,, —0)= g, (8)+£,(3), )
where
& (6) = PYI (Vrr _VrsVs;IVsr )Yr 5 (9)

£:@®)=7" (X, -V, VJX)(X'VIX,) (X, -V, VX)) y, (10)

rs °ss rs °ss

In the paper we derive the formula of the BLUP and its MSE for the model
with assumption (4) and (5) based on the Royall’s results. In the unbalanced case
(which is not studied in this paper), the formula of the BLUP will depend on
some unknown in practice variance parameters. Replacing them by the
appropriate estimators gives the formula of the EBLUP which remains unbiased
under some assumptions (Zadlo (2004)). Then based on results presented by
Zadto (2007) for the GLMM with block-diagonal variance-covariance matrix the
formulae of MSE of the EBLUP and estimators of MSE may be derived
assuming the considered model with assumptions (4) and (5).
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In the considered case (i.e. for balanced data) where V=0, the BLUP will

not depend on unknown parameters. Let s = Z i = m(m + lé(Zm 1) . Hence
j=1
the BLUP and its MSE are as follows:
éBLU = z Y, +tNm’*z:Bd* (11)
where ﬁd =(n,s)" ZYidjj
i=l j=1
MSE(6y,,) =Var.(0y,, —0) = g,(8)+ g,(9), (12)
where
g®) =N, (0] +t'c7) (13)
g,(8)=(0l +0ls)* N n,'s”! (14)

To estimate MSE (12) unknown parameters should be replaced by some
estimates. In this paper we consider widely used in practice: biased maximum
likelihood (ML) estimators under normality assumption, and approximately
unbiased restricted maximum likelihood (REML) estimators under normality
assumption. In this case (under some more general assumptions see Zadto
(2007)):

E(,6) = 8,0)+ Bl &) 1 o(p ) (15)
E.(g,(8) = g,(8)+o(D™) (16)
E. {Bg ) ag;;f’)} - B! (3) aggéa) +o(D™) (17)

where B (8)is vector of biases of 5.
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Hence (based on the results presented by Zadto (2007)) we obtain the
following, approximately unbiased MSE estimators. For REML variance
estimators:

MSE,(0510(8)) = g,(8) + g, (8) (18)

and for ML variance estimators:

MSE, (Do (8)) = g,(3) + g,(3) — BT () 5.0 8& (5) (19)

where g, (8) and g, (8) are given by (13) and (14) respectively where o is

()

replaced by & ; BT(S) gl is given by

1
-B.(3) %, ?) S DN, (15410 (s +22) +s271C0 )
where 10" =2b,'a”ns*, 1" =-2b'a’ns, 10" = 2b;1n((m ~Vo.*+a” ),

b, =n’s’a”*(m—1)c." and & is replaced by 5.
IV. SIMULATION STUDY

In the Monte Carlo simulation study 50 000 iterations were made using R
language (R Development Core Team (2008)) based on the following (arbitrarily

chosen) values of parameters: =10, o> =1, o =3. In the simulation we
study special case of the considered model (assuming V J= 1,V,B,=p)and

hence special cases of the presented equations:

Opy = Z Y, + N, 1 (20)
and
lD b 2 2
f=n"m > Y, 8®)=N,.(c)+0)),

d=1 i=l j=1
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g,(8)= (aj + c)'fm)Nfd*,nf];f1 ,

-B; (5)—‘9%;5) = %alNrd*t (25" + 100 (m+ )+ mI"),
where a=o’ +o'm, 1" =2b,'a*nm’, 1" =-2b,'a*nm,

I," :2@;]”((’"_1)0';4 +a_2), b, =n’m’a”(m-1)o,".

We consider 9 cases of different distributions of random components (with
values of variances presented above):

NN — normal distribution of v,, , normal distribution of e, g

NU — normal distribution of v,, , uniform distribution of e, g

NE — normal distribution of v, , shifted exponential distribution of e,

UN — uniform distribution of v,, , normal distribution of e,

EN — shifted exponential distribution of v,, , normal distribution of e,

UU — uniform distribution of v,, , uniform distribution of e, "

EE — shifted exponential distribution of v,,, shifted exponential distribution
of e,

UE — uniform distribution of v,, , shifted exponential distribution of e,

EU - shifted exponential distribution of v,, , uniform distribution of e,

In the simulation we study the BLUP predictor (20) with MSE estimated
using ML variance estimators (given by the general equation (19)) and using
REML variance estimators (given by the general equation (18)). We study
population of size 2500 divided into 20 domains, balanced sample in 9 periods
and we predict domain totals in period 10 (see table 1).

The considered predictors are model unbiased what does not depend on
distribution of random components. Relative RMSEs are from 3,127% to
3,972% in 20 domains (for all of considered distributions of random
components). The relative biases of approximately unbiased MSE estimators are
not large — from about —2% to 6% for all of domains and different distributions
of random components. The relative biases of MSE estimators are presented on
the graph 1.
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Table 1. Description of the population, domains and samples

d |1({2(3|4|5/6 |7 |89 |10(11|12|13 (1415|1617 |18|19 |20 |sum

Nq |50({50(50(|50({50({100{100|100{100{100|150{150|150(150(150|200{200{200/|200(200|2500
ng [0(312{0(1 |3 (2|3 (2[2|3 (5|01 [1]|2|4[2]|2]|2] 40
ng [0(312(0(1 |3 (2|3 (223 (5|01 |1]|2|4[2]|2]|2] 40
ng [0(312{0(1 |3 (2|3 (2[2|3 (5|01 |1]|2|4[2]|2]|2] 40
ng [0|3(2(0|1 |3 (2|3 |2 (2|3 |5]0|1|1[2]|4|2]2]|2]|40
ngs [0|3(2(0|1 |3 (2|3 |2 (2|3 |5]0|1|1[2]|4|2]2]|2]|40
ng [0|3(2(0|1 |3 (2|3 |2 (2|3 |5]0|1|1[2]|4|2]2]|2]|40
ng [0|3(2(01|3 (2|3 |2 (2|3 |5]0|1|1[2]|4|2]2]|2]|40
ngg [0|3(2(0(1 |3 (2|3 |2 (2|3 |5]0|1 |1 [2]|4|2]2]|2]|40
ng [0|3(2(01 |3 (2|3 |2 (2|3 |5]0|1 |1 [2]|4|2]2]|2]|40
sum | 0 (27|18| 0 (9|27 [ 18|27 |18 |18 |27 |45 0| 9 | 9 | 18|36 | 18|18 |18 | 360

R

T T T T T T T T T T T T T T T T T T
NE UN EN UU EE UE EU NN NE UN EN UU EE UE EU

e

Graph 1. Biases of MSE estimators for REML (on the left) and ML (on the right)
method of estimation for 20 domains

V. CONCLUSION

In the paper the BLUP of domain total in the case of some longitudinal data
has been proposed with approximately unbiased MSE estimator. It has been
shown in the simulation study that the predictor and MSE estimator may be used
even in some cases of model misspecification.
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Tomasz Zqdlo

O PREDYKCJI WARTOSCI GLOBALNEJ W DOMENIE NA PODSTAWIE
ZBALANSOWANYCH DANYCH PANELOWYCH

W pracy rozwaza si¢ predyktory wartosci globalnej wykorzystujace do predykcji wartosci
globalnej w pewnym (obecnym, przesztym a nawet przyszlym) okresie dane z innych okresow.
Model nadpopulacji jest szczegdlnym przypadkiem ogolnego liniowego modelu mieszanego — jest
to model zspecyficznymi dla elementéw populacji sktadnikami losowymi mozliwy do
zastosowania dla danych wielookresowych. Posta¢ predyktora typu BLU wyprowadzono w
oparciu o twierdzenie Royalla (1976) — szeroko stosowane w literaturze podejscie Hendersona
(1950) nie jest mozliwe do zastosowania dla rozwazanego modelu nadpopulacji. W rozwazanym
przypadku wyprowadzono posta¢ MSE w oparciu o twierdzenie Royalla i zaproponowano jego
estymatory wykorzystujac rezultaty uzyskane przez Zadto (2007). W przypadku estymacji MSE
rozwazano dwie metody estymacji wariancji sktadnikow losowych — metode najwigkszej
wiarygodnosci oraz metode najwigkszej wiarygodnosci z ograniczeniami. W analizie symulacyjnej
uwzgledniono problem doktadnosci predyktora oraz obciazen estymatorow MSE dla réznych
rozktadow sktadnikoéw losowych.



