ACTA UNIVERSITATIS LODZIENSIS
FOLIA OECONOMICA 235, 2010

. *
Mariusz Kubus

THE ANALYSIS OF SOME PROPERTIES OF SLIPPER
ALGORITHM

Abstract. Rules induction has significant position among nonparametric and adaptive
methods of discrimination. Description of classes has a form of conjunctions of features’ values.
To learn every single rule, heuristic search of class description space and function of criterion are
used. The great number of rules induction algorithms follow the separate-and-conquer manner
(Michalski 1969). SLIPPER uses boosting instead of separate step (Cohen, Singer 1999). In this
paper we discuss the stability of model generated by SLIPPER and we compare the error rate
obtained in SLIPPER and classical AdaBoost where classification trees are combined. The
comparison with other discrimination methods also is given.

Key words: rules induction, boosting, SLIPPER.

I. INTRODUCTION

With predictive learning one is given a training set of cases with observed
values of response variable Y

(X005 (X50,) X € X = (X500, X),y €Y i€l m}))

The purpose is to design the model (using training set) so as to predict the
value of response variable Y on unseen cases. When Y is nominal we deal with
discrimination task.

The rules induction is a nonparametric and adaptive method of
discrimination which can be perceived as an alternative to classification trees.
The method as well as classification trees can deal with nonmetric data and
missing values of variables. Also the assumption about distribution of variables
is not required. Classifier has a form of set of conjunctive rules. Let S; be the set
of all possible values for input variable Xj, s, be a specified subset of those

* Ph.D., Department of Mathematics and Computer Science Application, Opole University of
Technology.

158 Mariusz Kubus

values (s, <S;) and x; be the realisation of variable X; for a case

X =(x},...,x,). The conditional part of the rule takes the form:

R0 =] [1x, €5, @

where /(-) is an indicator of the truth of its argument. Note that for the special
case when s, =S, the corresponding factor can be omitted from the logical

product. We can express the formula (2) in the simpler form:

R(x)=[]I(x;es,). 3)

Sjt =S J

Practically, for the purpose of interpretation it is desirable that model
consists of “simple” rules each defined by a small number of variables. All
possible products (2) will be called class description space and the factors of
conjunction (3) will be called conditions. In the simplest case the conditions take
one of the following forms: x; =v for nominal variables (v is a category) or

x; 21 (x;</) for metric variables (/ is any value which is not necessarily

present in training set). Such representation is known as disjunctive normal form
(DNF) but other forms are also possible (see Fiirnkranz 1999).

The great number of rules induction algorithms follow the separate-and-
conquer manner that was proposed for the first time by Michalski (1969). Set of
rules is generated by learning one rule at a time. After each rule is learned
(conquer step), the algorithm removes from the training set the cases covered' by
the rule (separate step). Usually, only cases from the class which description we
are generating are removed. The process is then iterated on the remaining
training cases. It can be continued until no cases remain or some stopping
criteria are fulfilled. To generate single rule, heuristic search of class description
space and function of criterion are used. The function (i.e. entropy or precision)
evaluates quality of rules found in the search space. It can be seen as estimation
of classification accuracy on unseen data. The most common search strategies in
rules induction are hill climbing and beam search. The list of candidate rules is
initialized with the most general rule which describes all cases in training set.
Then conditions are added to conjunction to optimize the function of criterion. It
is so called search from general to specific (or top-down search). Finally, the
decision regions corresponding to the rules can overlap and they do not have to

! The cases for which the rule is true.

The Analysis of Some Properties of Slipper Algorithm 159

include all cases. These features differentiate this method from classification
trees. One of the most effective algorithm representing this approach is RIPPER
(Cohen 1995). SLIPPER that uses boosting (Cohen, Singer 1999), is it’s
modification and is presented below.

I1. BOOSTING

Boosting is known mainly from aggregated tree-based models (Breiman
1998; Freund, Schapire 1997; Gatnar 2008). It was proposed as an answer to
instability of classification trees. Significant improvement of the model stability
and classification accuracy can be obtained by learning a lot of trees and
combining them into one aggregated model. Every single tree is learned on
different training sample. There are used the system of weights for cases as well
as for component models. The weights of cases misclassified by component
model are increased. It gives higher probability that such cases will be sampled
in the next iteration. One disadvantage of boosted trees is that classifier has a
form of black box, so it does not give a possibility of interpretation.

Cohen and Singer (1999) used boosting for inducing rules. In a contradiction
to ensemble tree-based classifier the application of boosting in rules induction
conducts to comprehensible model. They proposed a replacement of the
separation step with boosting. Cases are not removed but their weights are
reduced so that to cover rather other cases in the next iteration. In such approach
every rule is generated using entire training set. Rules get also weights what
gives the possibility of ranking their importance, what is desirable with respect
to interpretation.

ITI. SLIPPER ALGORITHM

The algorithm will be presented in version of binary classification. We are
given a training set (1) where categories of the nominal response variable Y are
coded with {-1,+1}. The weights of cases are initialized with equal values

D(i)=1/m. The algorithm iteratively repeats two steps. Number of iterations

can be set arbitraly or via cross validation. In the first step it learns single rule
using procedure from RIPPER (Cohen 1995) and then, in the second step the
weights of cases are updated. So boosting is used instead of separation used in
classical rules induction. The covered cases are not removed from training set
but they obtain weights according to the generalized version of AdaBoost
(Schapire and Singer 1998):

160 Mariusz Kubus

D (l) . e’YICR, (i)
ST

D, ()= , 4)
1+ Z[
where:
1, W
C, =—In— 5
=500y Q)
is a weight of rule R, and
Z, =Wy +W.e ™ + W e, (6)
is a normalization factor where:
Wo=2, . D0 7
W= o, DO, ®)
wo=> -])

Note that symbol x € R means that x satisfied the rule R. When the rule
covers only cases from the class we are learning the description, W_ is equal to
0. Therefore formula (5) is modified as below:

_ 1 W++L

Cy :—1n—2{". (10)
2 W +—
2m

Schapire and Singer (1998) showed that to minimize the resubstitution error
the weak learning algorithm (here RIPPER), on each round of boosting, should
pick the weak model (here single rule) and its weight which lead to the smallest
value of normalization factor Z, (6). Hence, the weight of the rule is given with
formula (5) and we can come to a conclusion that function of criterion in
RIPPER procedure of generating a single rule should take a form:

Z=\w_-Jw_. (11)

The Analysis of Some Properties of Slipper Algorithm 161

With respect to original version of algorithm RIPPER, the only differences
are applied criteria which base on weights (of cases and rules). Generally
RIPPER consists of three steps. First the primary training set (1) is randomly
divided into two subsamples: training and test. Training subsample is used to
learning rule corresponding to homogeneous region in the feature space. The
heuristic search uses hill climbing strategy in direction from general to specific.
After single rule is learned it is pruned at once using test subsample. Some final
sequences of conditions are deleted so that to minimize (6). Now weights (7-9)
are counted on test subsample and weight of rule has a form (10).

Finally, classification is made on the basis of sum of rules weights that cover
the case x:

H(x)=sign(».Cp). (12)

R,:xeR,

As in many rules based models, the order of class’ descriptions can affect on
the classification or not. Unordered set of rules in SLIPPER leads to smaller
error rate but the complexity of model® is much higher (see Kubus 2008).

IV. EXPERIMENTS

For empirical experiments we used well known datasets from UCI
Repository (Blake, Keogh, Merz 1989). The computations have been done in
original Cohen’s implementation of SLIPPER and RIPPER and in a few
packages of R (adabag,class,MASS).

The first experiment concerns the problem of stability. Using boosting for
tree-based models guarantees the improvement of stability, so we ask whether
SLIPPER also does it in comparison to its predecessor RIPPER which learns the
rules following the separate-and-conquer manner. We chose three datasets:
credit australian, ionosphere, hepatitis. Each of them was randomly divided into
training and test sample thirty times in proportion 2:1. Then, using training
samples, the models were learned running both SLIPPER and RIPPER thirty
times and error rates were estimated using test samples. Having thirty errors for
each dataset and for two algorithms we compared standard deviations and run
the test for variances. Results are shown in Table 1. Two times SLIPPER obtains
higher standard deviations then RIPPER and variances differ significantly (for
the level of significance equal to 0,05) for hepatitis dataset. After this
experiment we cannot say that SLIPPER improves stability in comparison to
RIPPER.

2 Number of rules and conditions.

162 Mariusz Kubus

Table 1. Standard deviations and test for variances for thirty estimations of error rate

Datasets stand.dev. stand.dev. F P
RIPPER SLIPPER
credit australian 1,190874 0,417229 8,14671 0,066490
ionosphere 0,667323 1,248807 3,50202 0,252194
hepatitis 1,023269 3,437666 11,28620 0,037591

Source: own research.

The goal of the next experiment was to compare the error rates obtained by
SLIPPER and classical AdaBoost in which classification trees are combined. We
sampled 20 datasets from UCI Repository. They differ with number of classes,
cases and variables. There are both metric and nominal variables. A few of
datasets have missing values of variables. When original test set was not
available we randomly divided original data into training and test sample. The
number of iterations in AdaBoost that we set was 100 (see Breiman 1998). In
SLIPPER, number of iterations was set via cross validation (precisely, numbers
from 1 to 100 were checked and chosen this one for which error rate was the
lowest). To obtain lower error rate in SLIPPER we used the version of algorithm
that generates unordered set of rules (Kubus 2008). Results are presented in Table 2.

Table 2. Error rates (%) estimated on test samples

Datasets SLIPPER AdaBoost Datasets SLIPPER AdaBoost
adult 13,02 15,47 ionosphere 9,40 7,69
breast cancer 5,26 2,11 lymphography 10,20 6,12
car 434 9,38 nursery 5,12 2,89
credit australian 12,61 13,91 pima 24,22 24,22
credit german 23,72 20,72 satellite 11,05 11,60
echocardio 29,55 27,27 sonar 25,71 18,57
ecoli 19,64 13,39 vehicles 26,60 25,89
glass 39,06 21,88 vowel 17,27 6,36
heart-disease C 22,77 20,79 wine 0,00 1,69
hepatitis 13,46 13,46 Z00 26,47 8,82

Source: own research.

SLIPPER obtains lower error rate only 5 times. AdaBoost outperforms
SLIPPER on 13 datasets. To become convinced if the differences between error
rates are significant we have done the Wilcoxon test for matched pairs. We obtained
the p-value equal to 0,0187 (the value of statistic T was equal to 42). We also
compared the time of run for three largest datasets (see Table 3). The times of run
were comparable when we used cross validation to set the number of iterations in
SLIPPER but it distinctly outperforms AdaBoost when we set number of iterations
arbitraly as 40 (in such case error rates are not much higher (see Kubus 2008)).

The Analysis of Some Properties of Slipper Algorithm

163

Table 3. The comparison of run time (in seconds) on largest datasets used in research

number of number of SLIPPER run | AdaBoost run
Datasets . . .
cases variables time time
adult 48842 14 24,74 308,51
nursery 12960 8 2,99 69,51
satellite 6435 36 21,36 174,10

Source: own research.

In the third experiment we compared SLIPPER with other popular
discrimination methods like LDA (linear discriminant analysis) and kNN (k
nearest neighbours) in respect to the error rate. Results are presented in Table 4
where 11 metric datasets are exploited. SLIPPER’s won-loss-tied record (“won”
means that SLIPPER achieved lower error rate) versus LDA is 5-5-1 and versus
kNN is 7-3-1. Applying LDA in ecoli dataset was impossible because of the
presence of the classes with only one case. Three “losses” with kNN were obtained
in datasets with many classes (ecoli, satellite, vowel). In binary classification task
SLIPPER mostly obtained lower error rates in comparison to KINN.

Table 4. Error rates (%) estimated on test samples

Datasets SLIPPER LDA kNN
breast cancer 5,26 32 6,8
echocardio 29,55 273 31,8
ecoli 19,64 - 17
glass 39,06 39,1 453
ionosphere 9,4 15,4 19,7
pima 24,22 19,9 26,6
satellite 11,05 17,2 10,4
sonar 25,7 24,3 25,7
vehicles 26,60 19,1 41,5
vowel 17,27 35,5 9,7
wine 0 1,7 30,5

Source: own research.

To summarize our results we can say that SLIPPER does not improve
stability of model in comparison to RIPPER. It obtains significantly worse error
rates then AdaBoost for tree-based models but there is an advantage that
weighted ruleset learned by SLIPPER can be interpretable. SLIPPER is also
faster if the number of iterations is set arbitraly. The comparison in respect to
error rate with popular discrimination methods used in research shows that
SLIPPER outperforms kNN in binary classification task but there are no distinct
differences with LDA. Note however that rules enable easier interpretation,

164 Mariusz Kubus

moreover SLIPPER handles with nonmetric data and missing values of variables
(without any pre-processing actions).

REFERENCES

Blake C., Keogh E., Merz C.J. (1998), UCI Repository of Machine Learning Databases.
Department of Information and Computer Science, University of California, Irvine.
www.ics.uci.edu/~mlearn/MLRepository.html

Breiman L. (1998), Arcing Classifiers. ,,Annals of Statistics”, No 26.

Cohen W.W. (1995), Fast effective rule induction. In Prieditis A., Russell S. (Eds.) Proceedings of
the 12th International Conference on Machine Learning.

Cohen W.W., Singer Y. (1999), A Simple, Fast, and Effective Rule Learner. In Proceedings of
Annual Conference of American Association for Artificial Intelligence (p.335-342).

Freund Y., Schapire R. E. (1997), A Decision-Theoretic Generalization of On-Line Learning and
an Application to Boosting. ,,Journal of Computer and System Sciences”, No 55.

Fiirnkranz J. (1999), Separate-and-Conquer Rule Learning. Artificial Intelligence Review 13(1).

Gatnar E. (2008), Podejscie wielomodelowe w zagadnieniach dyskryminacji i regresji. PWN,
Warszawa.

Kubus M. (2008), Zastosowanie metody boosting w indukcji regul. [in:] K. Jajuga, M. Walesiak
(red.), Taksonomia 15, Klasyfikacja i analiza danych — teoria i zastosowania, Prace Naukowe
Uniwersytetu Ekonomicznego we Wroctawiu, No 7 (1207), p.470-477, UE Wroctaw.

Michalski R.S. (1969), On the quasi-minimal solution of the covering problem. In Proceedings of
the 5™ International Symposium on Information Processing (FCIP-69), Vol. A3 (Switching
Circuits), p.125-128 Bled, Yugoslavia.

Schapire R.E., Singer Y. (1998), Improved boosting algorithms using confidence-rated
predictions. In Proceedings of the Eleventh Annual Conference on Computational Learning
Theory, p. 80-91.

Webb A.R. (2002), Statistical Pattern Recognition. 2™ Edition, John Wiley & Sons.

Mariusz Kubus
ANALIZA WYBRANYCH WEASNOSCI ALGORYTMU SLIPPER

Indukcja regutl jest nieparametryczna i adaptacyjng metoda dyskryminacji. Moze by¢
stosowana dla zmiennych niemetrycznych, regiony decyzyjne nie musza by¢ rozlaczne, a model
jest tatwy w interpretacji. Opis klas ma posta¢ koniunkcji wartosci cech. Kazda pojedyncza reguta
generowana jest za pomocg heurystycznego przeszukiwania przestrzeni opisow klas z
wykorzystaniem funkcji kryterium. Wiele algorytmow indukcji regut wykorzystuje schemat
separuj-i-zwycig¢zaj (Michalski 1969). Algorytm SLIPPER (Cohen, Singer 1999) zamiast kroku
separuj stosuje metode boosting, znang gtéwnie z agregacji drzew klasyfikacyjnych. W artykule
zbadana bedzie stabilno§¢ modelu generowanego przez SLIPPER. Dokonane tez bedzie
poréwnanie z klasycznym AdaBoost agregujacym drzewa klasyfikacyjne oraz z popularnymi
metodami dyskryminacji.

