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Abstract

In this paper, we consider the class of four-valued literal-paraconsistent-para-

complete logics constructed by combination of isomorphs of classical logic CPC.

These logics form a 10-element upper semi-lattice with respect to the functional

embeddinig one logic into another. The mechanism of variation of paraconsis-

tency and paracompleteness properties in logics is demonstrated on the example

of two four-element lattices included in the upper semi-lattice. Functional prop-

erties and sets of tautologies of corresponding literal-paraconsistent-paracomplete

matrices are investigated. Among the considered matrices there are the matrix

of Puga and da Costa’s logic V and the matrix of paranormal logic P 1I1, which

is the part of a sequence of paranormal matrices proposed by V. Fernández.

Keywords: Four-valued logics, paraconsistent logics, paracomplete logics, isomor-

phisms, literal-paraconsistent-paracomplete logics, semi-lattice of logics.

1. Introduction

Literal-paraconsistent-paracomplete logics (or LPP logics) are logics in
which paraconsistency and/or paracompleteness occurs only at the level
of literals, that is, formulas that are propositional letters or their iterated
negations [13, p. 478].
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The class of LPP logics is well studied. Among the LPP logics consid-
ered in this paper, there are the logics described in [19], [18], [21], [16], [7],
[12], [5], [15].

There are several algorithms of constructing classes of such logics, for
example, we can note the following ones: (1) construction of LPP logics by
combination of isomorphs of classical logic CPC [11]; (2) construction of
LPP logics by using literal-paraconsistent-paracomplete matrices (or LPP-
matrices) [13]. But the classes of LPP logics constructed by these two
methods are not equal: the class obtained by (1) is a subclass of the class
obtained by (2).

It is known that Sette’s three-valued paraconsistent logic P 1 [19] and
three-valued paracomplete logic I1 [21] can be represented as combinations
of two three-valued isomorphs of classical propositional logic, contained in
three-valued Bochvar’s logic B3 [11].

The paper [23] briefly describes the result of the application of the first
method of constructing LPP logics to the four-valued case. So, the six-
teen LPP logics form the upper semi-lattice with respect to the functional
inclusion.

This paper is devoted to the study of four-valued propositional LPP
logics that form the above-mentioned upper semi-lattice. Some properties
of the class of four-valued paranormal logics constituting the supremum of
the said semi-lattice were regarded in paper [22]. In this paper, we consider
two interesting lattices of LPP logics that are included in the upper semi-
lattice.

As a result, it allows us to demonstrate some properties of the negation
operation in LPP logics, to compare LPP logics by functional properties
and classes of tautologies.

The paper is stuctured as follows.
In the next section, we introduce some basic definitions. In the third

section, we present the upper semi-lattice of four-valued LPP logics. In
the next, we select two four-element lattices of LPP logics included in that
semi-lattice, and consequently consider the properties of the logics that
constitute these lattices.
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2. Basic definitions

There are several approaches to the representation and analysis of logical
systems. In this paper, logical systems are represented by means of logical
matrices. Let us introduce some basic definitions.

Let L be a sentential language, i.e. L = 〈For, F1, . . . , Fm〉 is an algebra
generated by a set of variables V ar = {p, q, r . . . }. Elements of For are
generated from variables with the use of operations F1, . . . , Fm, represent-
ing sentential conectives.

Let A = 〈V, f1, . . . , fm〉 be an algebra similar to L, where V is the set
of truth-values and each fi is a function on V with the same arity as Fi.

Definition 2.1. A structure M = 〈A, D〉 with A being an algebra similar
to a propositional language L and D ⊆ V — a non-empty subset of the
universe of A is called a logical matrix for L. Elements of D are called
designated elements of M.

Throughout the paper we use the same symbols both for the proposi-
tional connective and the corresponding function on V .

Definition 2.2. A valuation v of the formula A in the matrix M for the
language L is a homomorphism from L into A = 〈V, f1, . . . , fm〉, such that

1. if p is a propositional variable, then v(p) ∈ V ;

2. if A1, A2, . . . , An are formulas and Fn is an n-ary connective of lan-
guage L, then v(Fn(A1, A2, . . . , An)) = fn(v(A1), v(A2), · · · , v(An)),
where fn is a function on V corresponding to Fn.

Definition 2.3. Some formula A is a tautology in M (abbreviated to
�M A), iff for every valuation v in M it is true that v(A) ∈ D.

Definition 2.4. The theory generated by M is the set of all tautologies
in M. It is denoted by E(M).

Definition 2.5. The formula B logically follows from the set of formulas
Γ = {A1, A2, . . . , An} in M (abbreviated to Γ �M B), iff there is no such
valuation v in M, such that v(Ai) ∈ D for each Ai ∈ Γ and v(B) /∈ D.

Definition 2.6. The consequence relation generated by M is the set Cn(M)
of ordered pairs 〈Γ, B〉, such that for every valuation v in M if v(Γ) ⊆ D,
then v(B) ∈ D.
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Let L1 be a logic represented by matrix M1 with the set of function F1

and L2 a logic represented by matrix M2 with the set of functions F2.

Definition 2.7. A logic L1 is functionally included in a logic L2 iff every
function of F1 can be expressed by a superposition of functions of F2.

Definition 2.8. A logic L1 is functionally equivalent to a logic L2 iff

(1) L1 is functionally included in L2 and

(2) L2 is functionally included in L1.

Definition 2.9. A logic L1 is a fragment of a logic L2 iff L1 is functionally
included in L2, but L2 is not functionally included in L1, i.e., the opposite
does not hold.

Definition 2.10. Some fragment of a logic L is said to be an isomorph of
classical propositional logic iff L has the classical set of tautologies and the
classical consequence relation.

Different formal criteria may be used for the construction of paralogics.
Jaśkowski’s criteria for constructing paraconsistent logic is considered in
some detail in [10]. In our investigation we use its “implicative-negative”
part:

Definition 2.11. In a system of paraconsistent logic, the Duns Scotus
law A ⊃ (¬A ⊃ B)1 is not valid, for some formulas A, B.

Definition 2.12. In a paracomplete logic system, the Clavius law (¬A ⊃
A) ⊃ A) is not valid, for some formula A (see [4]).

Definition 2.13. Logics, which are simultaneously paraconsistent and
paracomplete, are called paranormal logics.

If logical systems are represented as theories (as classes of tautologies),
this criteria best fits the scope.

In terms of logical consequence, logic is paraconsistent, iff its conse-
quence relation is not explosive (principle of explosion: A,¬A � B, see
[17]). The logic is paracomplete, iff there is a set of formulas Γ and for-
mulas A and B, such that Γ, A � B and Γ,¬A � B, but Γ 2 B (see [1,
p. 1092]).

1The implicational law of over-completeness in Jaśkowski’s notation (see [8]).
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3. An upper semi-lattice of LPP logics

In the book [12, pp. 56–79] a class of four-valued LPP logics obtained by
combining isomorphs of classical logic CPC is presented. These four four-
valued CPC isomorphs are the fragments of Bochvar’s four-valued logic
B4 [2, p. 289], which is determined by the matrix

MB
4 = 〈{0, 1/3, 2/3, 1},∼,∩,∪, J0, J1/3, J2/3, J1, {1}〉,

where ∼ x = 1− x, and J-operators, ∩ and ∪ are defined by the following
truth-tables (cf. [2, p. 294]):

x J0(x) J1/3(x) J2/3(x) J1(x)

1 0 0 0 1

2/3 0 0 1 0

1/3 0 1 0 0

0 1 0 0 0

∩ 1 2/3 1/3 0

1 1 2/3 1/3 0

2/3 2/3 2/3 1/3 1/3

1/3 1/3 1/3 1/3 1/3

0 0 1/3 1/3 0

∪ 1 2/3 1/3 0

1 1 2/3 2/3 1

2/3 2/3 2/3 2/3 2/3

1/3 2/3 2/3 1/3 1/3

0 1 2/3 1/3 0

Functional properties of Bochvar’s logic B3 are determined by the union
of two types of connectives – internal and external2. In the three-valued
case internal connectives can be translated into external ones in two dif-
ferent ways [9, pp. 212–213]. These two translations provide construction
of two fragments of B3 isomorphic with CPC. In the one isomorph the
truth-value 1/2 is identified with 0 and in the other – with 1.

In the four-valued case there are four translation functions: f1(x), f2(x),
f3(x) and f4(x). They have the following properties:

2A function f on V into V with arity n is called external iff for any values x1 . . . xn

we have either f(x1, . . . , xn) = 0 or f(x1, . . . , xn) = 1.
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(1) f1(x) is J1(x) and takes the truth-values 2/3 and 1/3 to 0;

(2) f2(x) is ∼ J0(x) and takes 2/3 and 1/3 to 1;

(3) f3(x) is J1(x) ∪ J2/3(x) and takes 2/3 to 1 and 1/3 to 0;

(4) f4(x) is J1(x) ∪ J1/3(x) and takes 2/3 to 0 and 1/3 to 1.

x f1(x) f2(x) f3(x) f4(x)

1 1 1 1 1

2/3 0 1 1 0

1/3 0 1 0 1

0 0 0 0 0

Using f1(x), f2(x), f3(x) and f4(x) analogously as it was done for B3,
we can construct four external negations and four external implications:

¬ix :=∼ fi(x) and x→i y := ¬ix ∪ fi(y) (i ∈ {1, 2, 3, 4}),
which are defined by the following truth-tables:

x ¬1x ¬2x ¬3x ¬4x
1 0 0 0 0

2/3 1 0 0 1

1/3 1 0 1 0

0 1 1 1 1

→1 1 2/3 1/3 0

1 1 0 0 0

2/3 1 1 1 1

1/3 1 1 1 1

0 1 1 1 1

→2 1 2/3 1/3 0

1 1 1 1 0

2/3 1 1 1 0

1/3 1 1 1 0

0 1 1 1 1
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→3 1 2/3 1/3 0

1 1 1 0 0

2/3 1 1 0 0

1/3 1 1 1 1

0 1 1 1 1

→4 1 2/3 1/3 0

1 1 0 1 0

2/3 1 1 1 1

1/3 1 0 1 0

0 1 1 1 1

Four-valued CPC isomorphs are determined by the following matrices:

M1 = 〈{0, 1/3, 2/3, 1},¬1,→1, {1}〉,
M2 = 〈{0, 1/3, 2/3, 1},¬2,→2, {1, 2/3, 1/3}〉,
M3 = 〈{0, 1/3, 2/3, 1},¬3,→3, {1, 2/3}〉,
M4 = 〈{0, 1/3, 2/3, 1},¬4,→4, {1, 1/3}〉.

Combining the operations ¬i, →j (i, j ∈ {1, 2, 3, 4}) of the isomorphs
we construct the class of four-valued literal LPP logics. Let us present the
corresponding matrices:

paraconsistent

M5 = 〈{0, 1/3, 2/3, 1},¬1,→2, {1, 2/3, 1/3}〉,
M6 = 〈{0, 1/3, 2/3, 1},¬3,→2, {1, 2/3, 1/3}〉,
M7 = 〈{0, 1/3, 2/3, 1},¬4,→2, {1, 2/3, 1/3}〉,
M8 = 〈{0, 1/3, 2/3, 1},¬1,→3, {1, 2/3}〉,
M9 = 〈{0, 1/3, 2/3, 1},¬1,→4, {1, 1/3}〉.

paracomplete

M10 = 〈{0, 1/3, 2/3, 1},¬2,→1, {1}〉,
M11 = 〈{0, 1/3, 2/3, 1},¬3,→1, {1}〉,
M12 = 〈{0, 1/3, 2/3, 1},¬4,→1, {1}〉,
M13 = 〈{0, 1/3, 2/3, 1},¬2,→3, {1, 2/3}〉,
M14 = 〈{0, 1/3, 2/3, 1},¬2,→4, {1, 1/3}〉.
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paranormal

M15 = 〈{0, 1/3, 2/3, 1},¬4,→3, {1, 2/3}〉,
M16 = 〈{0, 1/3, 2/3, 1},¬3,→4, {1, 1/3}〉.

As a result, a ten-element upper semi-lattice (see Figure 1) is con-
structed with respect to the functional embedding of matrices that define
literal LPP logics and the isomorphs themselves3.

The question about the functional inclusion one LPP logic to another
was solved by A. Nepeivoda (see [23]).

The resulting semi-lattice allows us to build visualization for construct-
ing LPP logics by the combination of CPC isomorphs. Note that the
isomorphs themselves are included in our class of LPP logics as a degener-
ate case. The four isomorphs differ by functional properties and have the
least expressive power.

• • • •

• • • • •

•

{¬3,→3} {¬2,→2} {¬1,→1} {¬4,→4}

{¬4,→3}
{¬3,→4}

{¬2,→3}

{¬3,→2}

{¬3,→1}

{¬1,→3}

{¬2,→1}

{¬1,→2}

{¬4,→2}

{¬2,→4}

{¬4,→1}

{¬1,→4}

Figure 1. An upper semi-lattice

3The sets of basic operations of the corresponding logical matrices are indicated as
semilattice elements.



A Semi-lattice of Four-valued. . . 43

The above structure is indeed an upper semi-lattice, since there is a
supremum for any pair of its elements. In some cases, this is clearly seen
in the construction of upper semi-lattices, in other cases it requires proof.
Let us give the corresponding proof. To do this, it is sufficient to prove the
following proposition:

Proposition 3.1. The operations of the set {→3,¬4} are definable by the
sets of operations:

(1) {¬2,→3} and {¬3,→1};
(2) {¬3,→1} and {¬2,→1};
(3) {¬2,→1} and {¬4,→2};
(4) {¬4,→2} and {¬4,→1}.

Proof: For (1), it is sufficient to define ¬4 by the sets of functions {¬2,→3}
and {¬3,→1}. The function ∧3 can be defined by {¬2,→3} the following
way:

x ∧3 y := ¬2(x→3 ¬2y).

Further, since the sets {¬3,→1} and {¬2,→3} are functionally equivalent
(Fact 1), we have:

¬4x := (¬3x→3 ¬2x) ∧3 (x→3 ¬1x).

For (2), it is sufficient to define ¬4 and →3 by the sets of functions
{¬3,→1} and {¬2,→1}. Due to Fact 1, it is obvious that the function →3

is definable. The function ¬4 could be defined in the same way as it was
done in the proof of (1).

For (3), it is sufficient to define ¬3 and →4 by the sets of functions
{¬2,→1} and {¬4,→2}. Since the sets {¬4,→2} and {¬2,→4} are func-
tionally equivalent (Fact 2), it is obvious that the function→4 is definable.
The function ¬3 could be defined in the following way. Since the function
∧1 is defined by {¬2,→1}:

x ∧1 y := ¬2(x→1 ¬2y),

and the sets of functions {¬2,→1} and {¬1,→2} are functionally equiva-
lent, we have:

¬3x := (¬4x→1 ¬2x) ∧1 ¬1x.

For (4), it is sufficient to define ¬3 and →4 by the sets of functions
{¬4,→2} and {¬4,→1}. Due to Fact 2, it is obvious that the function →4

is definable. Since the function ∧2 is defined by {¬4,→2}:
x ∧2 y := ¬4(x→2 ¬4y),
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and the sets of functions {¬4,→1} and {¬1,→4} are functionally equiva-
lent, and that Fact 2 takes place, we have:

¬3x := (¬4x→2 ¬2x) ∧2 ¬1x.

In paper [9] we consruct a four-element lattice of three-valued literal
LPP logics with respect to the possesion of paraconsistency and paracom-
pleteness properties. And the theorem on the functional equivalence of the
LPP logics that form this lattice was proved (p. 230).

The four-valued case is more complicated. The upper semi-lattice of
four-valued litearal LPP logics contains a number of four-element lattices
with respect to the functional embeddinig one logic into another, on one
hand, and possesion of paraconsistency and paracompleteness properties,
on the other. In the next section, we consider two interesting lattices.

4. Four-element lattices of four-valued LPP logics

Let us consider the matrices: M3, M6, M8, M11, M13, M15, M16. The
LPP logics determined by the foregoing matrices form two four-element lat-
tices (see Fugure 2 and Fugure 3) with respect to the possesion of paracon-
sistency and paracompleteness properties, on one hand, and with respect
to the functional embedding of logics (corresponding classes of matrix’s
operations), on the other.

•

• •

•

M3

{¬3,→3→3→3}

{¬1,→3→3→3}
M8

{¬2,→3→3→3}
M13

{¬4,→3→3→3}
M15

Figure 2. Lattice 1
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•

• •

•

M3

{¬3¬3¬3,→3}

{¬3¬3¬3,→2}
M6

{¬3¬3¬3,→1}
M11

{¬3¬3¬3,→4}
M16

Figure 3. Lattice 2

Lattices in Figure 2 and Figure 3 are included in the upper semi-lattice
in Figure 1.

Let us consider the properties of the logics that constitute these lattices.

(1) Logics introduced by the matrices M6 and M8 are paraconsistent.

(2) Logics introduced by the matrices M11 and M13 are paracomplete.

(3) Logics introduced by the matrices M15 and M16 are paranormal.

4.1. Functional properties

By the construction of the upper semi-lattice (see Fugure 1), it is obvious
that paraconsistent logics with operations {¬3,→2} and {¬1,→3} (matri-
ces M6 and M8) are different in functional properties. Similarly that about
paracomplete logics with operations {¬3,→1} and {¬2,→3} (matrices M11

and M13). But the matrices M6 and M13 are functionally equivalent, and
the same situation takes place for matrices M8 and M11. Notice that we
have a similar property for three-valued logics: the matrices correspond-
ing to paraconsistent logic P 1[19] and paracomplete logic I1 [21] are also
functionally equivalent [12, p. 222].

Paranormal logics with operations {¬4,→3} and {¬3,→4} (matrices
M15 and M16) are functionally equivalent. In paper [22, p. 81–82] it is
proved that these logical matrices correspond to the class of all external
four-valued functions.
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Also, there are well-known four-valued logics that are functionally equiv-
alent to M15 (M16). Logic I1P 1, which is the part of a hierarchy of para-
normal logics called InP k, introduced by V. Fernández [6]. A sound and
complete axiomatization for each InP k using the techniques of Rosser-
Turquette was defined in [6]. In [5, p. 88] L. Devyatkin construct the
four-valued matrices for the logics P 1 and I1. And he shows that the
matrix of I1P 1 constitutes a functional extension of P 1 and I1 and this
entails that I1P 1 is a linguistic variant of a common linguistic extension of
P 1 and I1.

The matrix of I1P 1 coincides with the matrix M15.
Logic V (see [18, p. 208] for the corresponding matrix) was introdused

by L.Z. Puga and N.C.A. da Costa after ideas on the “imaginary logic”
by N.A. Vasiliev. Corresponding matrix is functionally equivalent to the
matrix M15 (M16).

In [16, p. 89] V.M. Popov introduced the matrix M0 (this matrix
coincides with the matrix of logic V ), where truth-tables for ¬ and → (¬4
and →3 in our notation), may be viewed as four-valued generalizations of
P 1’s and I1’s tables.

4.2. Classes of tautologies

In this section, we analyze the theories (sets of tautologies) generated by
the foregoing matrices.

Paraconsistent logic P 1 [19] and paracomplete logic I1 [21] play a sig-
nificant role in our analysis. The calculi P 1 and I1 are expressed in a
language using negation and implication as a primitives.

P 1 is axiomatized by the following axiom schemata:

(A1) A→ (B → A)

(A2) (A→ (B → C))→ ((A→ B)→ (A→ C))

(A3) (¬A→ ¬B)→ ((¬A→ ¬¬B)→ A)

(A4) (A→ B)→ ¬¬(A→ B)

Inference rule: modus ponens [20].

The matrix MP1 = 〈{1, 1/2, 0},¬P1,→P1, {1, 1/2}〉, where ¬P1 and→P1

are defined by the tables
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x ¬P1x

1 0

1/2 1

0 1

→P1 1 1/2 0

1 1 1 0

1/2 1 1 0

0 1 1 1

gives us a strongly adequate matricial semantics for P 1.

The axioms of I1 are given by the following schemas:

(A1) A→ (B → A)

(A2) (A→ (B → C))→ ((A→ B)→ (A→ C))

(A3’) (¬¬A→ ¬B)→ ((¬¬A→ B)→ ¬A)

(A4’) ¬¬(A→ B)→ (A→ B)

Inference rule: modus ponens [21].

I1 is complete relative to the matrix MI1 = 〈{1, 1/2, 0},¬I1,→I1, {1}〉,
where ¬I1 and →I1 are defined by the tables

x ¬I1x
1 0

1/2 0

0 1

→I1 1 1/2 0

1 1 0 0

1/2 1 1 1

0 1 1 1

For ease of comparison, let’s also give the axiomatization of classical
propositional logic in a language using negation and implication as a prim-
itives:

(A1) A→ (B → A)

(A2) (A→ (B → C))→ ((A→ B)→ (A→ C))

(A3”) (¬B → ¬A)→ ((¬B → A)→ B)

Inference rule: modus ponens [14, p. 35].

Let us consider paraconsistent matrix M8:

M8 = 〈{0, 1/3, 2/3, 1},¬1,→3, {1, 2/3}〉.
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The matrix M8 can be regarded as four-valued generalizations of the
three-valued matrix, introdused by Sette in [19].

The matrix M8 generates the same theory as the well-known Sette’s
paraconsistent logic P 1. It follows from the paper [5, pp. 86–87], where
the four-valued matrix P1f for logic P 1 is constructed. Matrix P1f is M8

in our notation. It is shown that matrix P1f is a homomorphic image of
the matrix MP1 with respect to the mapping h: h(1/3) = 0 and h(x) = x,
if x 6= 1/3. As a consequence, matrix P1f (M8) induces the logic P 1 (i.e.
P1f (M8) is a characteristic matrix4 for calculus P 1). Moreover,

Proposition 4.1. All paraconsistent matrices, included in the upper semi-
lattice in Figure 1 are characteristic for P 1.

Proof: The proof follows from the facts:

(1) if M is a homomorphic image of N then E(M) = E(N) [3, p. 21].

(2) matrix M5 is a homomorphic image of the matrix MP1 with respect
to the mapping h: h(1/3) = 2/3 and h(x) = x, if x 6= 1/3.

(3) matrix M6 is a homomorphic image of the matrix MP1 with respect
to the mapping h: h(2/3) = 1 and h(x) = x, if x 6= 2/3.

(4) matrix M7 is a homomorphic image of the matrix MP1 with respect
to the mapping h: h(1/3) = 1 and h(x) = x, if x 6= 1/3.

(5) matrix M9 is a homomorphic image of the matrix MP1 with respect
to the mapping h: h(2/3) = 0 and h(x) = x, if x 6= 2/3.

Let us consider the paracomplete matrix M13:

M13 = 〈{0, 1/3, 2/3, 1},¬2,→3, {1, 2/3}〉.
The matrix M13 can be regarded as four-valued generalization of three-

valued matrix, introdused by Sette and Carnielli in [21].
In paper [5, p. 87] L. Devyatkin construct the four-valued matrix I1t,

which is a homomorphic image of the matrix MI1 with respect to the
mapping h: h(2/3) = 1 and h(x) = x, if x 6= 2/3. The matrix I1t is M13 in
our notation. It follows that the matrix M13 generates the same theory as
the paracomplete logic I1.

4Matrix M is characteristic for calculus L, if �M A iff `L A.
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The following proposition takes place:

Proposition 4.2. All paracomplete matrices, included in the upper semi-
lattice in Figure 1 are characteristic for I1.

Proof: The proof follows from the facts:

(1) if M is a homomorphic image of N then E(M) = E(N) [3, p. 21].

(2) matrix M10 is a homomorphic image of the matrix MI1 with respect
to the mapping h: h(2/3) = 1/3 and h(x) = x, if x 6= 2/3.

(3) matrix M11 is a homomorphic image of the matrix MI1 with respect
to the mapping h: h(1/3) = 0 and h(x) = x, if x 6= 1/3.

(4) matrix M12 is a homomorphic image of the matrix MI1 with respect
to the mapping h: h(2/3) = 0 and h(x) = x, if x 6= 2/3.

(5) matrix M14 is a homomorphic image of the matrix MI1 with respect
to the mapping h: h(1/3) = 1 and h(x) = x, if x 6= 1/3.

The question about the classes of tautologies generated by the matrices
M15 and M16 is considered in paper [22]. It is proved that the theories
generated by these matrices are equivalent.

The analysis of the application of the algorithm for constructing classes
of literal LPP logics by combination of isomorphs of classical logic CPC
to three-valued and four-valued cases allows us to make two more general
assumptions:

1. All paraconsistent (and not paracomplete) matrices constructed by com-
bination of isomorphs of classical logic CPC generate the same theory as
Sette’s paraconsistent logic P 1 [19].

2. All paracomplete (and not paraconsistent) matrices constructed by com-
bination of isomorphs of classical logic CPC generate the same theory as
paracomplete logic I1 introdused by Sette and Carnielli in [21].

4.3. Some properties of lattices

For our analysis, we have chosen the lattices, presented in Figures 2 and 3,
because it helps us to demonstrate, how it is possible to vary paraconsis-
tency and paracompleteness properties in logics.
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Let us consider the lattice in Figure 2. Martices M8, M13, M15, corre-
sponding to LPP logics, differ only in negation operation. It’s obvious that
negation ¬1 is paraconsistent in the sense that classical negation allows
explosity, but the negation ¬1 does not, that is A and ¬1A can be true at
the same time. Negation ¬2 has the property of paracompleteness, in the
sense that A and ¬2A can be false at the same time. Thus, by varying
the negation operation, we can obtain LPP logics with different properties.
And herein the implication operation and the class of designated values
in the matrices remain the same. Taking this into account, it is clearly
seen that it is natural to axiomatize the LPP logics, varying the axioms for
negation. We see this on the example of the foregoing axiomatizations of
P 1, I1 and CPC. The matrices M8 and M13 are four-valued characteristic
matrices for the known calculi P 1 and I1, and differ only in the negation
operation.

Let us turn to the lattice in Figure 3. Here, the matrices of the corre-
sponding LPP logics differ in the implication operations and in the class
of the designated values. Herein the negation operation is defined by same
truth-table in all these matrices (M3, M6, M11, M16) and properties of
negation operation (and corresponding LPP logics) are directly dependent
on the choice of the designated values class.

The paraconsistent logic corresponding to the matrix M6 in Lattice 1
is functionally eqiuvalent to the paracomplete logic corresponding to the
matrix M13 in Lattice 2; and the paraconsistent logic corresponding to the
matrix M11 in Lattice 2 is functionally eqiuvalent to the paracomplete logic
corresponding to the matrix M8 in Lattice 1. Both paraconsistent logics
generate the same theory as well-known Sette’s paraconsistent logic [19],
and paracomplete logics have the same set of tautologies as the paracom-
plete logic I1 [21].

5. Concluding remarks

We have analized the application of the method of constructing LPP logics
by combinating isomorphs of classical logic to the four-valued case. Recall
that in the case of three-valued logics Sette’s paraconsistent logic P 1 and
paracomplete logic I1 can be obtained by using this method. As a result
we get four-valued generalizations of these logics.
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This method preserves all essential properties of these LPP logics, i.e.
allows to construct paraconsistent and paracomplete matrices, which are
functionally equivalent, on the one hand, and generate theories equivalent
to P 1 and I1, on the other. In the three-valued case, combination of
isomorphs of CPC leads to two LPP logics, in four-valued case, we can
obtain5 four isomorphs of CPC, combinating which allows to obtain five
paraconsistent, five paracomplete and two paranormal logics. At that,
these LPP logics form the 10-element upper semi-lattice with respect to
the functional embeddinig one logic into another.

And the foregoing upper semi-lattice includes several four-element lat-
tices with respect to the functional embeddinig one logic into another, on
the one hand, and with respect to the possesion of paraconsistency and
paracompleteness properties, on the other. Two such four-element lattices
of LPP logics were considered. Functional properties and sets of tautologies
of corresponding LPP logics were investigated. On the example of these
two lattices the mechanism of variation of paraconsistency and paracom-
pleteness properties in logics is clearly seen.

As a result, the analysis allows us to make an assumption that all
n-valued literal paraconsistent matrices (and not paracomplete) and all
n-valued literal paracomplete matrices (and not paraconsistent) constructed
by combinating isomorphs of classical logic generate the same theories as
P 1 and I1.
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