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Abstract

This paper deals with pretabularity of fuzzy logics. For this, we first introduce

two systems NMnfp and NM
1
2 , which are expansions of the fuzzy system NM

(Nilpotent minimum logic), and examine the relationships between NMnfp and

the another known extended system NM−. Next, we show that NMnfp and NM
1
2

are pretabular, whereas NM is not. We also discuss their algebraic completeness.
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1. Fuzzy logic and pretabularity

This paper is a contribution to the study of pretabularity of fuzzy logics.
In general, a logic L is said to be pretabular if it does not itself have a finite
characteristic matrix (algebra, or frame), but every normal extension of it
does (see [4, 7, 8, 11, 13]). Note that Dunn (and Meyer) [3, 5] investigated
the pretabularity of the semi-relevance logic RM (R with mingle) and the
Dummett-Gödel logic G. One interesting fact is that these systems can be
also regarded as fuzzy logics.1 Then, a natural question is now raised as
follows.

1According to Cintula (and Běhounek) [1, 2], a (weakly implicative) logic L is said to
be fuzzy if it is complete with respect to (w.r.t.) linearly ordered matrices (or algebras)
and core fuzzy if it is complete w.r.t. standard algebras (i.e., algebras on the real unit
interval [0, 1]).
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Which fuzzy logics are pretabular?

This question, on the one hand, is not interesting in the sense that most
basic fuzzy logics such as UL (Uninorm logic), MTL (Monoidal t-norm
logic), and BL (Basic fuzzy logic) are not pretabular because such logics
have some axiomatic extensions (henceforth, extensions for short) without
finite characteristic matrices. On the other hand, it is interesting in that
while, since then, no further pretabular fuzzy logics have been introduced,
we can still introduce other concrete fuzzy logic systems.

We introduce two new pretabular systems as fuzzy logics, which we

shall call the fixed-pointed nilpotent minimum logic NM
1
2 and the non-

fixed-pointed nilpotent minimum logic NMnfp. These two are the systems
expanding and extending, respectively, the well-known fuzzy system NM
(Nilpotent minimum logic) [6].2 In particular, the system NMnfp can be
regarded as a Hilbert-style presentation of NM− (the NM with (BP) below),
which is one of the extensions of NM introduced in [9, 10]. For this purpose,
we first introduce these two systems and examine the relationship between

NMnfp and NM−. We then show that NMnfp and NM
1
2 are pretabular

while NM is not. We also discuss their algebraic completeness.

2. Nilpotent minimum logics

The nilpotent minimum logic NM can be based on a countable proposi-
tional language with formulas Fm built inductively as usual from a set of
propositional variables VAR, binary connectives →,&,∧, and constant F,
with defined connectives: (df1) ¬A := A→ F; (df2) A∨B := ((A→ B)→
B) ∧ ((B → A)→ A); (df3) A↔ B := (A→ B) ∧ (B → A).

The constant T is defined as F → F. For the rest of this paper, we
use the customary notations and terminology, and the axiom systems to
provide a consequence relation.

We start with the following axiomatizations of NM and its two expan-
sions.

Definition 1.

(i) ([6]) NM consists of the following axiom schemes and rules:
A1. (A→ B)→ ((B → C)→ (A→ C));

2For the definitions of expansion and extension, see Definition 9 in [2].
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A2. (A&B)→ A;
A3. (A&B)→ (B&A);
A4. (A ∧B)→ A;
A5. (A ∧B)→ (B ∧A);
A6. (A&(A→ B))→ (A ∧B);
A7. (A→ (B → C))↔ ((A&B)→ C);
A8. ((A→ B)→ C)→ (((B → A)→ C)→ C);
A9. F→ A;
A10. ¬¬A→ A;
A11. ((A&B)→ F) ∨ ((A ∧B)→ (A&B));
A→ B,A ` B (modus ponens, mp);
A,B ` A ∧B (adjunction, adj).

(ii) • Non-fixed-pointed nilpotent minimum logic NMnfp is NM plus
(A ∨ ¬A)→ ((A&A) ∨ (¬A&¬A)) (Non-fixed-point, Nfp).

• Fixed-pointed nilpotent minimum logic NM
1
2 is NM plus 1

2 and
1
2 ↔ ¬

1
2 (Fixed-point, Fp).3

For convenience, ‘¬,’ ‘∧,’ ‘∨,’ and ‘→’ are used ambiguously as propo-
sitional connectives and as algebraic operators, but context should clarify
their meaning.

The algebraic counterpart of L ∈ {NM,NMnfp, NM
1
2 } is defined as

follows.

Definition 2.

(i) An NM-algebra is a structure A = (A,>,⊥,∧,∨, ∗,→,¬), where
¬x := x→ ⊥ for all x ∈ A and x∨ y := ((x→ y)→ y)∧ ((y → x)→
x) for all x, y ∈ A, such that:

− (A,>,⊥,∧,∨) is a bounded lattice with top element > and bot-
tom element ⊥;

− (A, ∗,>) is an integral commutative monoid;

− y ≤ x→ z iff x ∗ y ≤ z (residuation);

− > = (x → y) ∨ (y → x) (prelinearity);

3The constant 1
2

does not necessarily correspond to the actual fraction 1
2

. Since the

standard negation ¬x is defined as 1 − x in [0, 1] and 1
2

has the role of fixed-point in

that 1
2

= ¬ 1
2

in [0, 1], 1
2

is used as a representative of fixed-point. Therefore, here we

use 1
2

as the constant for denoting a fixed-point element of any algebra.
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− ¬¬x = x (involution);

− > = ((x∗y)→ ⊥)∨((x∧y)→ (x∗y)) (weak nilpotent minimum).

(ii) • An NMnfp-algebra is an NM-algebra satisfying x ∨ ¬x ≤ (x ∗
x) ∨ (¬x ∗ ¬x) (non-fixed-point).

• An NM
1
2 -algebra is an NM-algebra with 1

2 satisfying 1
2 = ¬ 1

2
(fixed-point).

Consider the system NM−, which is NM plus (BP ) ¬(¬(A & A) &
¬(A & A))↔ (¬(¬A & ¬A) & ¬(¬A & ¬A)). This system was introduced
as the logic with semantics on [0, 1] minus the fixed-point in [9]. Let linearly
ordered algebras be chains. We finally consider the relationships between
NMnfp and NM−.

Theorem 1.

(1) ([9]) A nontrivial NM-chain satisfies (BPA) ¬(¬(x ∗ x)∗ ¬(x ∗ x)) =
¬(¬x ∗ ¬x) ∗ ¬(¬x ∗ ¬x) iff it does not contain a fixed-point.

(2) A nontrivial NM-chain satisfies (non-fixed-point) iff it does not con-
tain a fixed-point.

Proof: For the left-to-right direction of (2), we assume that there is an
element x > ⊥ such that x = ¬x and show that x∨¬x > (x∗x)∨(¬x∗¬x).
Let x = ¬x. Then, since x ∗ x = ¬x ∗ ¬x = ⊥, we have that x ∨ ¬x >
(x ∗ x) ∨ (¬x ∗ ¬x) = ⊥. For the right-to-left direction of (2), assume that
x 6= ¬x for all x ∈ A. First, consider the case x < ¬x. Using (weak
nilpotent minimum), we can obtain that x ∗ x = ⊥ and ¬x ∗ ¬x = ¬x and
thus x∨¬x = ¬x = (x∗x)∨(¬x∗¬x); therefore, x∨¬x ≤ (x∗x)∨(¬x∗¬x).
Consider the case ¬x < x. Its proof is analogous to that of the case x < ¬x.
�

Corollary 1. A nontrivial NM-chain satisfies (BPA) iff it satisfies (non-
fixed-point).

Now consider the systems NMnfp and NM− synthetically. We can show
the following.

Theorem 2. The system NMnfp proves:
(BP ) ¬(¬(A&A)&¬(A&A))↔ (¬(¬A&¬A)&¬(¬A&¬A)).

Proof: First, note that the following are theorems of NM: (a) (A→ B)∨
(B → A); (b) A → (¬A → B); (c) A → (B → A); (d) ¬¬A ↔ A;
(e) ((A&A) ∨ (¬A&¬A))→ (A ∨ ¬A).
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(⇒) 1. (A→ ¬A) ∨ (¬A→ A) (a);
2. ((A → ¬A)&(A → ¬A)) ∨ ((¬A → A)&(¬A → A)) (1, T&T ↔
T);
3. ((A → ¬A)&(A → ¬A)) → (¬((A → ¬A)&(A → ¬A)) →
((¬A→ A)&(¬A→ A))) (b);
4. ((¬A → A)&(¬A → A)) → (¬((A → ¬A)&(A → ¬A)) →
((¬A→ A)&(¬A→ A))) (c);
5. ¬((A → ¬A)&(A → ¬A)) → ((¬A → A)&(¬A → A)) (2, 3, 4,
adj, mp);
6. ¬(¬(A&A)&¬(A&A)) → (¬(¬A&¬A)&¬(¬A&¬A)) (5, d, (df4)
A&B := ¬(A→ ¬B)).

(⇐) 1. (A ∨ ¬A)↔ ((A&A) ∨ (¬A&¬A)) (e, Nfp, adj, df3);
2. ¬(A ∨ ¬A)↔ ¬((A&A) ∨ (¬A&¬A))↔ F (1, df1, A9, adj);
3. (A ∧ ¬A)↔ (¬(A&A) ∧ ¬(¬A&¬A))↔ F (2, d, De Morgan);
4. (¬(A&A)&¬(A&A))∧(¬(¬A&¬A) &¬(¬A&¬A))↔F (3, F&F↔
F);
5. ¬(¬(A&A)&¬(A&A)) ∨ ¬(¬(¬A &¬A)&¬(¬A&¬A)) ↔ T (4,
¬F↔ T, De Morgan);
6. (¬(¬A&¬A)&¬(¬A&¬A)) → ¬(¬(A&A)&¬(A&A)) (4, 5,
Boolean property). �

Then, from Theorem 2, the following question arises when we just think of
the systems synthetically.

• Open Problem: Does the system NM− prove (Nfp) synthetically?

According to Corollary 1, it seems possible to show this since the conditions
(BPA) and (non-fixed-point) both correspond to the condition ‘no fixed-
point.’ However, we have not yet proved this. To the author, it seems
that the correct axiomatization of the extension of NM with the semantics
on [0, 1]−, i.e., [0, 1] \ { 12}, is not the axiomatization of NM−, but that of
NMnfp.

3. Pretabularity

For L ∈ {NM,NMnfp, NM
1
2 }, by an L-algebra, we henceforth denote any

of NM-, NMnfp-, and NMnfp-algebras. By 1 and 0, we express > and ⊥,
respectively, on the real unit interval [0, 1] or on a subset of it with top
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and bottom elements 1, 0. We refer to L-algebras on such a carrier set as
SL-algebras. SL-algebras are defined as follows:

Definition 3. The operations for an SL-algebra are defined as follows.

(1) ([6]) Let the carrier set S be [0, 1]. An SNM -algebra is an algebra
satisfying: T1. x ∧ y = min(x, y); T2. x ∨ y = max(x, y); T3.
x → y = 1 if x ≤ y, and otherwise x → y = max(1 − x, y); T4.
¬x = 1− x.4

(2) Let the carrier set S be a subset of [0, 1] with top and bottom elements
1, 0.

• An SNMnfp

-algebra is an SNM -algebra whose carrier set S has
no fixed-point.

• An SNM 1
2 -algebra is an SNM -algebra whose carrier set S has 1

2 ,
a fixed-point.

By SL
[0,1]-algebra, we henceforth denote the SL-algebra on [0, 1]; by

SL
[0,1]−-algebra, the SL-algebra on [0, 1]\{ 12}; by SL

n -algebra, the SL-algebra

whose elements are in {0, 1
n−1 , . . . ,

n−2
n−1 , 1}. Generalizing, S-algebra refers

to any algebra whose elements form a chain with the greatest and least
elements, and whose operations are defined in an analogous way.

Note that S-algebras having 1
2 as an element x such that x = ¬x are

said to be fixed-pointed, and otherwise non-fixed-pointed. A logic L is said
to be fixed-pointed if L is characterized by an S-algebra having a fixed-
point, and otherwise is non-fixed-pointed. An extension of L is said to be
proper if it does not have exactly the same theorems as L.

Definition 4.

(i) (Tabularity) A logic L is tabular if L has some finite characteristic
algebra.

(ii) (Pretabularity) A logic L is pretabular if (a) L is not tabular and (b)
every proper extension of L has some finite characteristic algebra.

Now, we show that L ∈ {NMnfp, NM
1
2 } is pretabular, but the systems

NM is not. We first introduce some known pretabular logics.

Fact 1. ([3, 5]) Each of RM and G is pretabular.

4In general, the involutive negation is defined as the negation n satisfying n(n(x)) = x
for all x ∈ [0, 1]. Since any involutive negation [0, 1] can be isomorphic to 1 − x, for
convenience, we take this definition.
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We then divide the work into a number of propositions following the
line in [3, 5].

Proposition 1. Let X be an extension of L ∈ {NMnfp, NM
1
2 }, A be an

X -algebra, and a ∈ A be such that a < >. Then, there is a homomorphism
h of A onto an S-algebra which is an X -algebra, such that h(a) < 1.

Proof: The proof is analogous to Theorem 3 in [3] and Theorem 11.10.4
in [4]. �

Proposition 2.

(i) Let L be the system NMnfp. Let SL
1 , S

L
2 , S

L
4 , S

L
6 , . . ., i.e., SL

1 and
SL
2n, 1 ≤ n ∈ N , be the sequence of SL-algebras relabeled in order as

ML
1 ,M

L
2 ,M

L
3 , . . .. If a sentence A is valid in ML

i , then A is valid in
ML

j , for all j, j ≤ i.

(ii) Let L be the system NM
1
2 . Let SL

1 , S
L
3 , S

L
5 , S

L
7 , . . ., i.e., SL

2n−1, 1 ≤ n
∈ N , be the sequence of SL-algebras relabeled in order as ML

1 ,M
L
2 ,

ML
3 , . . .. If a sentence A is valid in ML

i , then A is valid in ML
j , for

all j, j ≤ i.

Proof: Since each SL
j is (isomorphic to) a subalgebra or a homomorphic

image of SL
i , (i) and (ii) are immediate. �

Proposition 3. In SNM -algebras, when i is even (≥ 4), SNM
i validates a

sentence A that is not valid in any odd-valued SNM
j , 3 ≤ j ≤ i.

Proof: The claim can be verified by considering the sentence (Nfp), which
is valid in every even-valued SNM

i , but not in SNM
3 (and thus not in any

odd-valued SNM
j , j ≥ 3). �

Remark 1. Proposition 3 implies that every valid sentence in SNM
[0,1] must

be valid in SNM
[0,1]− , but there is a valid sentence in SNM

[0,1]− that is not in

SNM
[0,1] .

Now, we recall the concept of a Lindenbaum-Tarski algebra. Let L ∈
{NMnfp, NM

1
2 } and T be a theory in L. We define [A] = {B : T `L A↔

B} and L = {[A] : A ∈ Fm}. The Lindenbaum-Tarski algebra LindT w.r.t.
L and T is L-algebra having the domain L, operations #Lind([A1], . . . , [An])
= [#(A1, . . . , An)], where # ∈ {∧,&,→}, and the top and bottom elements
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are [T] and [F], respectively. We call this algebra the Lindenbaum-Tarski
algebra A(L).

Where X is a propositional system and V is a set of atomic sentences,
let X/V be that propositional system like X except that its sentences
contain no atomic sentences other than those in V and thus A(X/V) be
its corresponding Lindenbaum-Tarski algebra. The following is obvious.

Proposition 4. Let X be an extension of L ∈ {NMnfp, NM
1
2 }. Then,

A(X/V) is an X -algebra and is characteristic for X/V, since any non-
theorem may be falsified under the canonical evaluation vc, which sends
every sentence A to [A], where [A] is the set of all sentences B such that
B ↔ A.

Also, it follows from Propositions 1 and 4 that:

Proposition 5. Let X be an extension of L ∈ {NMnfp, NM
1
2 }. Then, if

a sentence A is not a theorem of X , there is some SL-algebra SL
n such that

SL
n is an X -algebra and A is not valid in SL

n .

Proof: If A is not a theorem of X , then, by Proposition 4, A is falsifiable in
the X -algebra A(X/V), where V is the set of sentential variables occurring
in A, by the canonical evaluation vc. However, since [A] is undesignated in
A(X/V), then, by Proposition 1, there is a homomorphism h of A(X/V)
onto an SL-algebra SL such that SL is an X -algebra and h([A]) < 1 in SL.
However, the composition of h and vc, h ◦ vc(B) = h([B]), is an eval-
uation that falsifies A in SL. Note that an SL-subalgebra, the image
h(A(X/V), is finitely generated since it is the homomorphic image of
A(X/V), which is finitely generated by the elements [p] such that p ∈ V.
Thus, this algebra is finitely generated by the elements [p] such that p ∈ V.
It is obvious that every finitely generated SL-subalgebra is finite and iso-
morphic to some SL

n . Thus, this algebra is isomorphic to some SL
n , which

completes the proposition. �

If X is L itself, we have the following completeness theorem as a corol-
lary.

Corollary 2. (Completeness) For L ∈ {NMnfp, NM
1
2 } and the set of

SL-algebras SL, if a sentence A is valid in SL, then A is a theorem of L.

Proof: By proposition 5, we have that if a sentence A is not a theorem
of L, there is some SL-algebra SL

n such that A is not valid in SL
n . Thus, by

contraposition, we obtain the claim. �
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Finally, we turn to a proof of our principal results.

Theorem 3.

(i) L ∈ {NMnfp, NM
1
2 } is pretabular.

(ii) NM is not pretabular.

Proof: For (i), we show that every proper extension of L has a finite char-
acteristic algebra. Let ML

1 ,M
L
2 ,M

L
3 , . . . be the sequence of SL-algebras

defined in Proposition 2. Let I be the set of indices of those SL-algebras
that are X -algebras, where X is the given proper extension of L.

First, if I contains an infinite number of indices, then I contains every
index because of Proposition 2. However, since every SL-algebra ML

i is an
L-algebra, it follows from Proposition 5 and Corollary 2 that X is identical
with L, which contradicts the hypothesis that X is a proper extension of L.

Second, if I contains only a finite number of indices, then, by Propo-
sition 2, there must be some index i such that I contains exactly those
indices less then or equal to i. By construction, SL

i is an X -algebra. Let
a sentence A not be a theorem of X . Then, by Proposition 5, A is not
valid in some X -algebra ML

h , and, by our choice of i, h ≤ i. However, by
Proposition 2, A is not valid in ML

i . Therefore, ML
i is the desired finite

characteristic algebra.
L itself has no finite characteristic algebra, which can easily be shown

by a proof similar to that of Sugihara in [12]. Therefore, it can be ensured
that L is pretabular.

(ii) directly follows from (i), Proposition 3, and Remark 1. (Note that
the system NMnfp is a pretabular extension of NM.) �

We finally remark some relationships between the results in Theorem 3
and algebraic results introduced in [9, 10].
Remark 2.

(1) The fact that NMnfp is pretabular but NM is not can be algebraically
obtained as a consequence of the full description of the lattice of
subvarieties of the variety NM (see Theorems 2 and 3 and Figure 2
in [9] and Figure 1 in [10]).

(2) Pretabularity is a property related to logics whose associated vari-
eties of algebras are locally finite. A variety of algebras is said to be
locally finite if each of its finitely generated members is a finite alge-
bras. We first note that the variety NM is locally finite (see [9, 10]).
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Thus, since the varieties NMnfp (the variety of non-fixed-pointed

NM-algebras) and NM
1
2 (the variety of fixed-pointed NM-algebras)

are subvarieties of NM, NMnfp and NM 1
2 are locally finite. These

results show that every pretabular variety is locally finite, but not
conversely.

4. Concluding remarks

We showed that the two fuzzy systems NMnfp, NM
1
2 are pretabular while

NM is not. We also showed that NMnfp and NM− are semantically equiv-
alent. However, we have not yet shown this syntactically. This problem
should be addressed in future research. We also have another interesting
question as follows: Let L1 and L2 be two pretabular logics complete w.r.t.
characteristic algebras SL1 and SL2 , and consider the logic L induced by
the ordinal sum SL1 ⊕SL2 . Then, we can ask: Under which condition L is
pretabular?
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