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1. Introduction

Several generalizations and extensions of Zadeh’s fuzzy sets have been in-
troduced in the literature, for example, intuitionistic fuzzy sets, interval-
valued fuzzy sets, type 2 fuzzy sets and fuzzy multisets etc. As another
generalization of fuzzy sets, Torra [12] introduced the notion of hesitant
fuzzy sets which are a very useful to express peoples hesitancy in in daily
life. The hesitant fuzzy set is a very useful tool to deal with uncertainty,
which can be accurately and perfectly described in terms of the opinions
of decision makers. Xu and Xia [17] proposed a variety of distance mea-
sures for hesitant fuzzy sets, based on which the corresponding similarity
measures can be obtained. They investigated the connections of the afore-
mentioned distance measures and further develop a number of hesitant
ordered weighted distance measures and hesitant ordered weighted similar-
ity measures. Also, hesitant fuzzy set theory is used in decision making
problem etc. (see [10, 14, 15, 16, 18]). In the algebraic structures, Jun et
al. [6, 8] applied the hesitant fuzzy sets to BCK/BCI-algebras and MTL-
algebras. They introduced the notions of hesitant fuzzy subalgebras and
hesitant fuzzy ideals of BC'K/BCI-algebras, and the notions of a (Boolean,
prime, ultra, good) hesitant fuzzy filter and a hesitant fuzzy MV -filter of
MT L-algebras. They investigated related relations and properties, and
considered characterizations of hesitant fuzzy subalgebras, hesitant fuzzy
ideals, (Boolean, ultra) hesitant fuzzy filters in BC'K/BCI-algebras and
MT L-algebras. Recently BCK/BCI-algebras have been widely applied to
soft set theory, cubic structure, bipolar and m-polar fuzzy set theory etc.
(see 1], [2], [3], [4], [7], [11]).

In this paper, based on the hesitant fuzzy set theory which is introduced
by Torra [12], we introduce the notions of Inf-hesitant fuzzy subalgebras,
Inf-hesitant fuzzy ideals and Inf-hesitant fuzzy p-ideals in BCK/BCI-
algebras. We investigate their relations and properties, and find condi-
tions for an Inf-hesitant fuzzy ideal to be an Inf-hesitant fuzzy p-ideal.
We discuss caracterizations of an Inf-hesitant fuzzy subalgebras,
an Inf-hesitant fuzzy ideals and an Inf-hesitant fuzzy p-ideal. We con-
struct an Inf-hesitant fuzzy ideal by using the notion of BCK-parts. Using
the notion of Inf-hesitant fuzzy (p-) ideals, we provide a characterization of
a p-semisimple BC'[-algebra. Finally, we establish the extension properties
for an Inf-hesitant fuzzy p-ideal.
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2. Preliminaries

A BCK/BCTI-algebra is an important class of logical algebras introduced
by K. Iséki and was extensively investigated by several researchers.
An algebra (X;*,0) of type (2,0) is called a BCI-algebra if it satisfies

the following conditions:

@) (Vz,y,2 € X) (xxy) * (z%2)) x (2 xy) =0),

D) (Vz,y € X) ((zx (z*y)) xy =0),
(III) (Vz € X) (z*xx =0),
(IV) Vr,ye X) (zxy=0,yxx=0 = z =1y).
If a BC'I-algebra X satisfies the following identity:

(V) VzeX) (0xz=0),
then X is called a BC' K-algebra. A BC' K-algebra X is said to be positive
implicative if it satisfies:

(Vo,y,z € X)((z*xy)xz= (zx2) % (y*2)). (2.1)
A BCK-algebra X is said to be implicative if it satisfies:
(Vo,y € X) (z =2 (yxx)). (2.2)

Any BCK/BCI-algebra X satisfies the following conditions:

~ o~~~
SIS IR R
NS AN ANS)

where x < y if and only if z xy = 0.
Any BClI-algebra X satisfies the following conditions:

(Vo,y,2 € X) (0% (0% ((zx2) * (y* 2))) = (0xy) = (0x2)),(2.7)
(Vz,y € X) (0% (0 (zxy)) = (0xy) x (0xx)), (2.8)
(Vz e X)(0x (0% (0xx))=0xz).

A BCI-algebra X is said to be p-semisimple (see [5]) if 0% (0x2) =z
for all z € X.
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Every p-semisimple BCI-algebra X satisfies:
(Vo,y,z€ X)((zx2)* (yx2) =z *y). (2.10)

A nonempty subset S of a BCK/BCT-algebra X is called a subalgebra
of X if zxy € S forall x,y € S. A subset A of a BCK/BC1I-algebra X is
called an ideal of X if it satisfies:

0e A, (2.11)
VeeX)(zxyec A, yec A = xze€A). (2.12)

A subset A of a BCI-algebra X is called a p-ideal of X (see [19]) if it
satisfies (2.11) and

(Vo,y,z€ X)((z*x2)x(yx2) €A, ye A = z€A). (2.13)

Note that every p-ideal is an ideal, but the converse is not true in
general (see [19]). Note that an ideal A of a BCI-algebra X is a p-ideal of
X if and only if the following assertion is valid:

(Vo,y,z€ X)((z*x2)x(yx2) €A = zxy e A). (2.14)

We refer the reader to the books [5, 9] for further information regarding
BCK/BCI-algebras.

3. Inf-hesitant fuzzy subalgebras and ideals

Torra [12] introduced a new extension for fuzzy sets to manage those situa-
tions in which several values are possible for the definition of a membership
function of a fuzzy set.

DEFINITION 3.1 ([12, 13]). Let X be a reference set. A hesitant fuzzy set on
X is defined in terms of a function that when applied to X returns a subset
of [0, 1], which can be viewed as the following mathematical representation:

H:={(z,h(z)) |z € X}

where h: X — 2([0,1]).
In what follows, the power set of [0, 1] is denoted by £(]0,1]) and

27([0,1]) = 2([0, 1)) \ {0}.
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For any element D € 22*(]0,1]), the infimum of D is denoted by inf D.
For any hesitant fuzzy set H := {(z,h(z)) | z € X} and D € £*([0,1]),
consider the set

Inf[H; D] :={z € X |inf h(z) > inf D}.

DEFINITION 3.2. Let X be a BCK/BC1I-algebra. Given an element D €
2*(|0,1]), a hesitant fuzzy set H := {(x,h(z)) | x € X} is called an
Inf-hesitant fuzzy subalgebra of X related to D (briefly, D-Inf-hesitant
fuzzy subalgebra of X) if the set Inf[H; D] is a subalgebra of X whenever
it is non-empty. If H := {(z,h(x)) | z € X} is a D-Inf-hesitant fuzzy
subalgebra of X for all D € £22*([0,1]) with Inf[H; D] # 0, then we say
that H := {(x,h(x)) | x € X} is an Inf-hesitant fuzzy subalgebra of X.

EXAMPLE 3.3.
(1) Let X = {0,a,b,c} be a BCK-algebra with the following Cayley
table:

Qo Q O
o o Q OO
oo O O
Q@ O o<
o O o oln

Let H := {(z,h(z)) | x € X} be a hesitant fuzzy set on X defined by
H={(0,(0.8,1]), (a, (0.3,0.5) U {0.9}), (b,[0.5,0.7]), (¢, (0.3,0.5) U {0.7}) } .

Since inf h(0) = 0.8, infh(a) = 0.3 = infh(c) and inf h(b) = 0.5, it is
routine to verify that H := {(z,h(z)) | x € X} is an Inf-hesitant fuzzy
subalgebra of X.

(2) Let X = {0,a,b,c,d} be a BCK-algebra with the following Cayley
table:

QL O T O *
QUL O T2 OO
QO 0 OOl
O 0 OO o
QOO O OIn
S OO O O




58 Young Bae Jun, Seok-Zun Song

Let H := {(z,h(z)) | € X} be a hesitant fuzzy set on X defined by

H = {(0,{0.8,0.9}), (a, [0.2,0.9)), (b, (0.7,0.8]),
(¢, {0.5} U (0.7,0.9)), (d, [0.1,0.5])}.

Note that inf h(0) = 0.8, inf h(a) = 0.2, inf A(b) = 0.7, inf h(c) = 0.5 and
inf h(d) = 0.1. It is easy to check that H := {(z,h(z)) | z € X} is an
Inf-hesitant fuzzy subalgebra of X.

(3) Consider a BCT-algebra X = {0,1, a, b, ¢} with the following Cayley
table.

o o O
o e = oo
0O Q2 O Ol
Q. OO0 ol
S0 0 2 9|0

Q R OO O

Let H := {(z,h(z)) | x € X} be a hesitant fuzzy set on X defined by

H = {(0,[0.8,0.9)), (1, (0.6,0.7]), (a, [0.5,0.6]), (b, [0.5,0.6]), (c, [0.3,0.7])}.

Then H := {(z,h(x)) | x € X} is a D;-Inf-hesitant fuzzy subalgebra of X
with D; := [0.55,0.65]. But it is not a Dy-Inf-hesitant fuzzy subalgebra of
X with Ds := [0.4,0.6] since Inf[H; D3] = {0,1,a,b} is not a subalgebra
of X.

(4) Consider a BC' K-algebra X = {0,a,b, ¢, d} with the following Cay-
ley table.

*x|10 a b ¢ d
0|0 0O 0O O O
ala 0 0 0 a
b|b a 0 0 b
cle b a 0 ¢
dld d d d 0

Let H := {(z,h(z)) | x € X} be a hesitant fuzzy set on X defined by

H = {(0,[0.7,0.8]), (a, (0.6,0.7]), (b, [0.3,0.6]), (c, [0.5,0.7]), (d, [0.2,0.4])}.
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Then H := {(z,h(x)) | x € X} is a D;-Inf-hesitant fuzzy subalgebra of X
with Dy :=[0.2,0.4]. If we take Do := (0.4,0.6], then Inf[H; D3] = {0, a, c}
which is not a subalgebra of X. Hence H := {(z,h(z)) | x € X} is not a
Ds-Inf-hesitant fuzzy subalgebra of X.

THEOREM 3.4. A hesitant fuzzy set H = {(xz,h(x)) | * € X} on a
BCK/BCI-algebra X is an Inf-hesitant fuzzy subalgebra of X if and only
if the following assertion is valid:

(Va,y € X) (inf h(z x y) > min{inf h(x),inf h(y)}). (3.1)

PROOF: Assume that H := {(z,h(x)) | ¢ € X} is an Inf-hesitant fuzzy
subalgebra of X. Assume that there exists Q € 27*([0, 1]) such that

inf h(z * y) < inf @ < min{inf h(z),inf h(y)}.

Then z,y € Inf[H; D] and z * y ¢ Inf[H; D]. This is a contradiction, and
S0
inf h(z * y) > min{inf h(z),inf h(y)}

for all x,y € X.

Conversely, suppose that (3.1) is valid. Let D € £22*([0,1]) and z,y €
Inf[H; D]. Then inf h(z) > inf D and inf h(y) > inf D. It follows from
(3.1) that

inf h(x % y) > min{inf h(x),inf h(y)} > inf D

and that  xy € Inf[H; D]. Hence the set Inf[H; D] is a subalgebra of X,
and so H := {(z,h(z)) | * € X} is an Inf-hesitant fuzzy subalgebra of X.
O

LEMMA 3.5. If H := {(z,h(z)) | x € X} is an Inf-hesitant fuzzy subalgebra
of a BCK/BCI-algebra X, then

(Vz € X) (inf h(0) > inf h(z)). (3.2)

ProOF: Using (IIT) and (3.1), we have
inf A(0) = inf h(x * x) > min {inf h(z),inf h(x)} = inf A(x)

forall z € X. O
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PROPOSITION 3.6. Let H := {(z,h(z)) | * € X} be an Inf-hesitant fuzzy
subalgebra of a BCK -algebra X. For any elements ay,a9,-+- ,an, € X, if
there exists ay, € {a1,a9, -+ ,a,} such that ay = ay, then

(Ve € X) (inf h((--- ((a1 * ag) * a3) * - -+ ) x ay) > inf h(z)).

ProoOF: Using (2.5), (III) and (IV), we have (- - - ((a1*ag)*az)*- - - )*a, = 0.
Thus the desired result follows from Lemma 3.5. g

DEFINITION 3.7. Let X be a BCK/BCI-algebra. Given an element D €
2*(]0,1]), a hesitant fuzzy set H := {(x,h(z)) | z € X} is called an Inf-
hesitant fuzzy ideal of X related to D (briefly, D-Inf-hesitant fuzzy ideal
of X) if the set Inf[H; D] is an ideal of X whenever it is non-empty. If
H := {(z,h(x)) | x € X} is a D-Inf-hesitant fuzzy ideal of X for all D €
2*(]0,1]) with Inf[H; D] # 0, then we say that H := {(z,h(z)) | z € X}
is an Inf-hesitant fuzzy ideal of X.

EXAMPLE 3.8.

(1) The hesitant fuzzy set H := {(z,h(z)) | + € X} in Example 3.3(1)
is an Inf-hesitant fuzzy ideal of X.

(2) Let (Y,%,0) be a BCI-algebra and (Z,+,0) an additive group of
integers. Let (Z, —,0) be the adjoint BCI-algebra of (Z,+,0) and let X :=
Y X Z. Then (X, ®,(0,0)) is a BCI-algebra where the operation ® is given
by

(Y(z,m), (3,1m) € X) ((,m) & (y,n) = (& +y,m — ).

For a subset A :=Y x Ny of X where Ny is the set of nonnegative integers,
let H :={(z,h(z)) | z € X} be a hesitant fuzzy set on X defined by

H = {(z,(0.5,1]),(y,[0.4,09]) |z € A, y € X \ A}.

Then H := {(x,h(z)) | z € X} is an Inf-hesitant fuzzy ideal of X.
(3) Let X ={0,a,b,c,d} be a BCK-algebra with the following Cayley

table:
d

QL O T OO
L O O
QL OO OO0

QUL O T O *
QU T O O
OO O OO
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Let H := {(z, h(z
=

| z € X} be a hesitant fuzzy set on X defined by

)

(0,[0.8,1)), (a,[0.4,0.7]), (b,{0.3} U (0.4, 0.6]),
(c, [06 0.9]), (d,[0.1,0.5))}.
)

If Dy := [0.5,0.8), then Inf[H; D;] = {0,¢} which is not an ideal of X
since b* ¢ = 0 € Inf[H; D;] but b ¢ Inf[H; D;]. Thus H := {(z,h(z)) |
x € X} is not a D;-Inf-hesitant fuzzy ideal of X. We can easily verify
that H := {(z,h(x)) | x € X} is a Dy-Inf-hesitant fuzzy ideal of X with
Dy = [0.25,0.5].

THEOREM 3.9. A hesitant fuzzy set H = {(z,h(z)) | = € X} on a
BCK/BCI-algebra X is an Inf-hesitant fuzzy ideal of X if and only if
it satisfies (3.2) and

(Vz,y € X) (inf h(z) > min{inf A(x * y),inf A(y)}) . (3.3)

PrOOF: Let H := {(x,h(x)) | € X} be an Inf-hesitant fuzzy ideal of X.
If (3.2) is not valid, then there exists D € 22*([0, 1]) and a € X such that
inf h(0) < inf D < inf h(a). It follows that a € Inf[H; D] and 0 ¢ Inf[H; D).
This is a contradiction, and so (3.2) is valid. Now assume that there exist
a,b € X such that inf h(a) < min{inf h(a * b),inf h(b)}. Then there exists
K € 22*(]0,1]) such that

inf h(a) < inf K < min{inf h(a = b), inf h(b)},

which implies that axb € Inf[H; K], b € Inf[H; K] but a ¢ Inf[H; K]. This
is a contradiction, and thus (3.3) holds.

Conversely, suppose that H := {(z,h(z)) | z € X} satisfies two con-
ditions (3.2) and (3.3). Let K € 27*(|0,1]) be such that Inf[H; K] # 0.
Obviously, 0 € Inf[H; K]. Let z,y € X be such that z xy € Inf[H; K| and
y € Inf[H; K]. Then inf h(x * y) > inf K and inf A(y) > inf K. Tt follows
from (3.3) that

inf A(z) > min{inf h(z * y), inf h(y)} > inf K
and that « € Inf[H; K]. Hence Inf[H; K] is an ideal of X for all K €

2*(]0,1]), and therefore H := {(z,h(x)) | x € X} is an Inf-hesitant fuzzy
ideal of X. O
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THEOREM 3.10. Let H := {(x,h(z)) | x € X} be a hesitant fuzzy set on a
BC1I-algebra X defined by

H={(z,D),(y,E) |z € B, yec X\ B, inf D> inf E}

where D, E € 2*([0,1]) and B is the BCK-part of X. Then H =
{(z,h(x)) | x € X} is an Inf-hesitant fuzzy ideal of X .

PRrOOF: Since 0 € B, we have inf h(0) = inf D > inf h(x) for all z € X.
Let x,y € X. If x € B, then it is clear that

inf h(z) > min{inf h(z * y),inf h(y)}.

Assume that z € X\ B. Since B is an ideal of X, it follows that zxy € X\ B
or y € X \ B and that

inf A(z) = min{inf h(x * y),inf h(y)}.

Therefore H := {(z,h(x)) | x € X} is an Int-hesitant fuzzy ideal of X by
Theorem 3.9. U

PROPOSITION 3.11. Every Inf-hesitant fuzzy ideal H := {(z,h(z)) | x € X}
of a BCK/BC1I-algebra X satisfies:

(Vez,y € X)(z <y = infh(z) > infh(y)). (3.4)

PRrooOF: Let z,y € X be such that x <y. Then z xy = 0, and so

inf h(z) > min{inf A(z * y),inf h(y)} = min{inf ~(0),inf A(y)} = inf h((y) |
3.5

by (3.3) and (3.2). O

THEOREM 3.12. Let H := {(z,h(z)) | © € X} be a hesitant fuzzy set on
a BCK/BCI-algebra X which satisfies the condition (3.2). Then H :=
{(z,h(x)) | © € X} is an Inf-hesitant fuzzy ideal of X if and only if the
following assertion is valid.

(Ve,y,z € X) (x+y <z = infh(z) > min{inf h(y),inf h(z)}). (3.6)
PRrROOF: Assume that H := {(z,h(x)) | = € X} is an Inf-hesitant fuzzy

ideal of X and let z,y, 2z € X be such that z xy < z. Then (z*y)*z =0,
and thus
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inf h(z * y) > min{inf h((z * y) * z),inf h(z)}
= min{inf ~(0), inf h(2)} (3.7)
= inf h(z).
It follows that inf A(z) >min{inf h(z*y),inf A(y)} > min{inf ~A(y),inf A(z)}.
Conversely, suppose that the condition (3.6) is valid. Since z* (z*xy) <
y for all z,y € X, it follows from (3.6) that infh(z) > min{inf h(z *

y),inf h(y)} for all x,y € X. Therefore H := {(x,h(z)) | z € X} is an
Inf-hesitant fuzzy ideal of X. O

PROPOSITION 3.13. For any Inf-hesitant fuzzy ideal H := {(x,h(z)) | x €
X} of a BCK/BCI-algebra X, the following assertions are equivalent.
(1) inf h((z *y) xy) < inf h(x xy),
(2) inf h((z*xy) *x2) <infh((z*2)* (y * 2))
forall z,y,z € X.

PROOF: Assume that (1) holds. Note that
for all z,y,z € X. It follows from Proposition 3.11, (1) and (2.5) that
infh((zxy)x2z) <inf h(((z * (y*2)) * 2) x 2)

<infh((z * (y* 2)) * 2) (3.8)
=inf h((z * 2) * (y x 2))

for all z,y,z € X.
Conversely, suppose that (2) is valid and if we put z := y in (2), then
infh((zxy)xy) <infh((zxy)* (yxy))
= inf h((z *y) % 0) (3.9
= inf h(z * y)
for all x,y € X. O

THEOREM 3.14. In a BCK-algebra X, every Inf-hesitant fuzzy ideal is an
Inf-hesitant fuzzy subalgebra.

ProOF: Let H := {(z,h(z)) | * € X} be an Inf-hesitant fuzzy ideal of a
BCK-algebra X. Using (3.3), (2.5), (IIT), (V) and (3.2), we have
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inf h(z * y) > min{inf h((z * y) * =), inf h(z)}
> min{inf A((x * x) * y), inf h(x)}

min{inf (0 * y), inf h(z)}

(

(

min{inf ~(0), inf h(z)}
> min{inf h(z),inf h(y)}

for all z,y € X. Therefore H := {(z,h(x)) | * € X} is an Inf-hesitant
fuzzy subalgebra of X. O

The converse of Theorem 3.14 is not true in general as seen in the
following example.

EXAMPLE 3.15. The Inf-hesitant fuzzy subalgebra H := {(z,h(z)) | z €
X} in Example 3.3(2) is not an Inf-hesitant fuzzy ideal of X since
inf h(d) = 0.1 < 0.5 = min{inf h(d % b),inf h(D)}.

In a BC'I-algebra X, Theorem 3.14 is not true. In fact, the Inf-hesitant
fuzzy ideal H := {(x,h(x)) | € X} in Example 3.8 is not an Inf-hesitant
fuzzy subalgebra of X since

inf h((0,0) ® (0,1)) = inf ~(0, —1) = 0.4
< 0.5 = min{inf 2(0,0),inf A(0,1)}.
Let H := {(z,h(z)) | z € X} be a hesitant fuzzy set on a BC K-algebra
X. For any a,b € X and n € N, let
Inf[b;a"] := {x € X | inf h((z * b) * a™) = inf h(0)}
where (xxb)xa™ = ((--- ((z*b)*a)*a)*---)*a in which a appears n-times.
Obviously, a,b,0 € Inf[b; a™].
PROPOSITION 3.16. Let H := {(x,h(z)) | x € X} be a hesitant fuzzy set
on a BCK-algebra X in which the condition (3.2) is valid and
(Va,y € X) (inf h(z x y) > max{inf h(x),inf h(y)}). (3.10)

For any a,b € X and n € N, if x € Inf[b; a"] then x x y € Inf[b; a™] for all
yeX.
PROOF: Let x € inf h[b;a™]. Then inf h((z * b) * a™) = inf h(0), and thus
inf h(((z *y) *b) * a™) = inf h(((z *b) xy) xa™)
=inf h(((z * b) x a™) x y)
> max{inf h((z * b) * a™), inf h(y)}
= max{inf ~(0), inf h(y)} = inf h(0)
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for all y € X. Hence inf h(((x * y) * b) * a™) = inf h(0), that is, x *y €
inf h[b; a™] for all y € X. O

PROPOSITION 3.17. Let H := {(x,h(z)) | x € X} be a hesitant fuzzy set
on a BCK-algebra X. If an element a € X satisfies:

VzeX)(x<a), (3.11)
then Inf[b; a™] = X = Inf[a; "] for allb € X and n € N.

PRrROOF: Let b,z € X and n € N. Then

inf h((x * b) xa™) = inf h(((x % b) * a) * a™ 1)
=inf h(((z * a) % b) xa™ 1)
= infh((0*b) *a" 1)
= inf h(0)

by (2.5), (3.11) and (V), and so x € Inf[b; a”], which shows that Inf[b; a"] =
X. Similarly Inf[a; b"] = X. d

COROLLARY 3.18. If H := {(z,h(z)) | x € X} is a hesitant fuzzy set on
a bounded BCK -algebra X, then Inf[b;u"] = X = Influ;b"] for allb e X
and n € N where u is the unit of X.

PROPOSITION 3.19. Let H = {(z,h(z)) | + € X} be a hesitant fuzzy
subalgebra of a BCK-algebra X satisfying the condition (3.4). Then the
following assertion is valid.

(Va,b,c€ X)(Vn e N) (b <c¢ = Inf[b;a"] C Inf[c;a"]). (3.12)

PRroOF: Let b,c € X be such that b < ¢. For any a € X and n € N, if
z € Inf[b; a™] then
inf h(0) = inf A((x * b) * ") = inf h((z * a™) * b)
<infh((z*a™) *xc) =inf h((z x c) x a™)

by (2.4) and (3.4), and so inf h((x *c) xa™) = inf h(0). Thus = € Inf[c; a™],
and therefore Inf[b; a™] C Inf[c; a™] for all @ € X and n € N. O
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COROLLARY 3.20. Every Inf-hesitant fuzzy ideal H := {(z,h(z)) |z € X}
of a BCK -algebra X satisfies the condition (3.12).

The following example shows that there exists a hesitant fuzzy set
H :={(x,h(z)) | z € X} on a BCK-algebra X such that
(1) H :={(z,h(x)) | z € X} is an Inf-hesitant fuzzy ideal of X,
(2) There exist a,b € X and n € N such that the set Inf[b; a™] is not an
ideal of X.

EXAMPLE 3.21. Let X = {0, a,b, ¢} be a BCK-algebra with the following
Cayley table:

Qo Q O %
o TR OO
02 O ol
o O O ol
O Tt On

Let H := {(z,h(x)) | z € X} be a hesitant fuzzy set on X defined by
H = {(0,(0.8,0.9]), (a, [0.6,0.8]), (b, [0.6,0.8]), (¢, {0.3} U [0.4,0.6))} .
Then H := {(z,h(x)) | € X} is an Inf-hesitant fuzzy ideal of of X and
Infla; "] = {z € X | inf h((z *a) * ") = inf h(0)} = {0,a,c}
which is not an ideal of X for any n € N since b * a = a € Inf[a; "] but
b ¢ Infla; c™].

We now consider conditions for a set Inf[b; a™] to be an ideal of X.

THEOREM 3.22. Let H := {(z,h(z)) | x € X} be a hesitant fuzzy set on a
BCK -algebra X such that

(Vo,y € X) (inf h(z) =infh(y) = z=y). (3.13)

If X is positive implicative, then Inf[b;a™] is an ideal of X for all a,b € X
and n € N.

PROOF: Let a,b,z,y € X and n € N be such that  x y € Inf[b;a™] and
y € Inf[b;a™]. Then inf h((y *b) * a™) = inf h(0), which implies from (3.13)
that (y *b) x a™ = 0. Hence
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inf h(0) = inf A(((z x y) * b) x a™
=infh((((z*y) *b) xa) xa™ 1)
=infh((((z*b)* (y*b))*a)*a" 1)
=inf h(((((z % b) xa) * ((y xb) xa)) xa) x a"?)
—inf h(((z +b) + a”) + ((y b) * a"))
=infh(((z *b) *xa™) % 0)
= inf h((z * b) * a™),
which shows that « € Inf[b; a™]. Therefore Inf[b; a”] is an ideal of X for all
a,be X and n € N. O

Since every implicative BC K-algebra is a positive implicative BCK-
algebra, we have the following corollary.

COROLLARY 3.23. Let H := {(x,h(x)) | x € X} be a hesitant fuzzy set on
a BCK-algebra X satisfying (3.13). If X is implicative, then Inf[b;a™] is
an ideal of X for all a,b € X and n € N.

Theorem 3.22 is illustrated by the following example.

EXAMPLE 3.24. Let X = {0,a,b,c} be a set with the following Cayley
table:

QS Q O
o TR OO
0o ot O Ol
o O O ol
R Ol

0

Then X is a positive implicative BC K-algebra. Let H := {(z,h(z)) | z €
X} be a hesitant fuzzy set on X defined by

H = {(0,(0.6,0.9]), (a,[0.7,0.8)), (b, {0.4,0.5,0.6}), (c, (0.2,0.4])} .

Then inf ~(0) = 0.6, inf h(a) = 0.7, inf h(b) = 0.4 and inf h(c) = 0.2. Thus
H = {(z,h(z)) | x € X} satisfies the condition (3.13), but it does not
satisfy the condition (3.2). Hence H := {(x,h(z)) | x € X} is not an
Inf-hesitant fuzzy ideal of X. Note that

Inf[0 : 07] = {0}, Inf[0;a™] = {0,a}, Inf[0;b"] = {0,qa,b}, Inf[0;c"] =
{0, ¢},
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Inf[a; 0"] = {0,a}, Infla;a™] = {0,a}, Infla;b"] = {0,a,b}, Infla;c"] =

{07 a, C}7
Inf[b;0"] = {0, a,b}, Inf[b; a”] = {0, a,b}, Inf[b; "] = {0, a,b}, Inf[b; "] =
X

Inf[c; 0] = {0, ¢}, Inflc;a™] = {0, a, ¢}, Infle; 4] = X, Inflc; "] = {0, ¢},
and they are ideals of X.

PROPOSITION 3.25. Let H := {(x,h(x)) | x € X} be a hesitant fuzzy set on
a BCK-algebra X in which the condition (3.13) is valid. If J is an ideal
of X, then the following assertion holds.

(Va,b € J) (Vn € N) (Inf[b;a™] C J). (3.14)
PROOF: For any a,b € J and n € N, let = € Inf[b; a™]. Then
inf A(((z % b) * a" 1) % a) = inf h((x * b) * a™) = inf h(0)

and so ((z *b) xa" 1) xa =0 € J by (3.13). Since J is an ideal of X,
it follows from (2.12) that (z x b) * a”~1 € J. Continuing this process, we
have z xb € J and thus « € J. Therefore Inf[b;a"| C J for all a,b € J and
n € N. g

THEOREM 3.26. Let H := {(z,h(z)) | © € X} be a hesitant fuzzy set on
a BCK-algebra X. For any subset J of X, if the condition (3.14) holds,
then J is an ideal of X.

PROOF: Suppose that the condition (3.14) is valid. Not that 0 € Inf[b; a™] C
J. Let x,y € X be such that xxy € J and y € J. Taking b := = *y implies
that

inf h((z «b) xy™) = inf h((z * (z xy)) x y™)

inf h(((z * (@ *y)) *y) xy" ")
((
(0

=infh(((zxy) * (zxy)) xy" ")
=inf (0 * y" ') = inf h(0),

and so = € Inf[b;y™] C J with b = z xy. Therefore J is an ideal of X. O

THEOREM 3.27. If H := {(x,h(z)) | x € X} is an Inf-hesitant fuzzy ideal
of a BCK/BCI-algebra X, then the set
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H, :={x € X |inf h(a) < inf h(z)}
1s an ideal of X for alla € X.

PROOF: Let z,y € X be such that zxy € H, and y € H,. Then inf h(a) <
inf h(z * y) and inf h(a) < inf h(y). It follows from (3.3) and (3.2) that

inf h(a) < min{inf h(z * y),inf h(y)} < inf h(z) < inf h(0)

and that 0 € H, and « € H,. Therefore H, is an ideal of X for all a € X.
O

COROLLARY 3.28. If H := {(z,h(x)) | v € X} is an Inf-hesitant fuzzy
ideal of a BCK/BCI-algebra X, then the set

Hy:={z € X |inf h(0) = inf h(z)}
is an ideal of X for alla € X.

THEOREM 3.29. Let a € X and let H := {(x,h(z)) | z € X} be a hesitant
fuzzy set on a BCK/BC1I-algebra X. Then

(1) If H, is an ideal of X, then H := {(z,h(x)) | x € X} satisfies:

(Vz,y € X)(inf h(a) < min{inf h(z * y), inf h(y)} 315
= infh(a) < inf h(x)). (3.15)
(2) If H .= {(z,h(x)) | x € X} satisfies two condition (3.2) and (3.15),
then H, is an ideal of X.
PROOF:

(1) Assume that H, is an ideal of X and let =,y € X be such that
inf h(a) < min{inf A(x % y),inf h(y)}. Then x xy € H, and y € H,, which
imply that z € H,, that is, inf h(a) < inf h(x).

(2) Let H := {(z,h(z)) | x € X} be a hesitant fuzzy set on X in which
two conditions (3.2) and (3.15) are valid. Then 0 € H,. Let z,y € X
be such that z xy € H, and y € H,. Then inf h(a) < inf h(z x y) and
inf h(a) < inf h(y), and so inf A(a) < min{inf h(z * y),inf h(y)}. It follows
from (3.15) that inf h(a) < inf h(x), that is, « € H,. Therefore H, is an
ideal of X. O
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4. Inf-hesitant fuzzy p-ideals

In what follows, we take a BCI-algebra X as a reference set unless other-
wise specified.

DEFINITION 4.1. Given an element D € 22*([0,1]), a hesitant fuzzy set
H :={(z,h(x)) | x € X} on X is called an Inf-hesitant fuzzy p-ideal of X
related to D (briefly, D-Inf-hesitant fuzzy p-ideal of X) if the set Inf[H; D]
is a p-ideal of X whenever it is non-empty. If H := {(z,h(z)) |z € X} isa
D-Inf-hesitant fuzzy p-ideal of X for all D € £2*([0, 1]) with Inf[H; D] # 0,
then we say that H := {(z,h(z)) | € X} is an Inf-hesitant fuzzy p-ideal
of X.

EXAMPLE 4.2.
(1) Let X = {0,a,b,c} be a BCI-algebra with the following Cayley
table.

*‘Oa b c
010 a b ¢
ala 0 ¢ b
blb ¢ 0 a
cle b a O

Let H := {(z,h(x)) | z € X} be a hesitant fuzzy set on X defined by
Hx ={(0,(0.7,0.9]), (a, ({0.5} U (0.6,0.7)), (b, [0.3,0.6]), (¢, [0.3,0.6]) } .

It is easy to verify that H := {(z,h(z)) | x € X} is an Inf-hesitant fuzzy
p-ideal of X.

(2) Let X = {0,a,b,c} be a BCI-algebra with the following Cayley
table.

«|0 1 a b
00 0 a a
1/1 0 b a
ala a 0 0
blb a 1 0

Let H := {(z,h(x)) | x € X} be a hesitant fuzzy set on X defined by
Hx = {(0,[0.7,0.9]), (1, ([0.3,0.6)), (a, [0.5,0.8]), (b,[0.3,0.6)) } .

Then H := {(z,h(z)) | x € X} is a D;y-Inf-hesitant fuzzy p-ideal of X with
D, =[0.3,0.6). But if Dy = (0.4,0.7], then Int[H; D3] = {0,a} is not a
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p-ideal of X since (1% b) * (a *b) = a € Int[H; Ds] and b ¢ Int[H; Ds].
Hence H := {(z,h(x)) | z € X} is not a Dy-Inf-hesitant fuzzy p-ideal of X.
THEOREM 4.3. A hesitant fuzzy set H := {(z,h(z)) | x € X} on X is an
Inf-hesitant fuzzy p-ideal of X if and only if if it satisfies (3.2)

(Va,y,z € X) (min{inf h((z * 2) * (y * 2)),inf h(y)} <infh(z)). (4.1)

PrOOF: Let H := {(x,h(z)) | © € X} be an Inf-hesitant fuzzy p-ideal
of X. If (3.2) is not valid, then there exists D € 2*(]0,1]) and a € X
such that inf h(0) < inf D < inf h(a). It follows that a € Inf[H; D] and
0 ¢ Inf[H; D]. This is a contradiction, and so (3.2) is valid. Now assume
that (4.1) is not valid. Then

min{inf ~((a * ¢) * (b* ¢)),inf h(b)} > inf h(a)
for some a,b,c € X. Thus there exists B € 27*([0, 1]) such that
min{inf h((a * ¢) * (b* ¢)),inf h(b)} > inf B > inf h(a).

which implies that (a * ¢) * (b*c¢) € Inf[H;B], b € Inf[H;B] but a ¢
Inf[H; B]. This is a contradiction, and thus (4.1) holds.

Conversely, suppose that H := {(x, h(z)) | = € X} satisfies two condi-
tions (3.2) and (4.1). Let D € 22%([0, 1]) be such that Inf[H; D] # 0. Obvi-
ously, 0 € Inf[H; D]. Let z,y,2z € X be such that (x*2)*(yx2) € Inf[H; D]
and y € Inf[H; D]. Then inf h((z*z)*(y*2)) > inf D and inf h(y) > inf D.
It follows from (4.1) that

inf A(z) > min{inf h((z * 2) * (y * 2)),inf A(y)} > inf D
and that x € Inf[H; D]. Hence Inf[H; D] is a p-ideal of X for all D €
2*(10,1]) with Inf[H; D] # 0, and therefore H := {(z,h(z)) | z € X} is
an Inf-hesitant fuzzy p-ideal of X. (]

THEOREM 4.4. The hesitant fuzzy set H := {(z,h(x)) | z € X} on X
which is described in Theorem 3.10 is an Inf-hesitant fuzzy p-ideal of X.

PRrROOF: In the proof of Theorem 3.10, we know that the condition (3.2) is
valid. Let z,y,2 € X. If (x*2)* (y*2) € X\ Bory e X\ B, then we
have

min{inf A((z * 2) * (y * 2)),inf h(y)} < inf h(z).

Assume that (z % 2) * (y*2) € B and y € B. Since (x % 2) * (y * z) <
x *xy and B is the BCK-part of X, it follows from (2.4) and (III) that
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(xxy)*((x*2)*(y=*2)) € B and from (2.12) that € B since B is an
ideal of X. Hence

min{inf h((z * 2) * (y * 2)),inf h(y)} = inf h(z).

Therefore H := {(z,h(z)) | + € X} is an Inf-hesitant fuzzy p-ideal of X by
Theorem 4.3. d

PROPOSITION 4.5. Every Inf-hesitant fuzzy p-ideal H := {(x,h(z)) | z €
X} of X satisfies:

(Vz € X) (inf h(0 % (0 x 2)) < inf h(z)). (4.2)

PROOF: If we put z := x and y := 0 in (4.1), then

inf h(z) > min{inf h((z * z) * (0 * z)),inf h(0)}
= min{inf 2(0 * (0 % z)), inf A(0)}
=inf h(0 % (0 % x))
for all x € A by (III) and (3.2). O

THEOREM 4.6. Fvery Inf-hesitant fuzzy p-ideal of X is an Inf-hesitant fuzzy
ideal of X.

ProOOF: Let H := {(z,h(z)) | # € X} be an Inf-hesitant fuzzy p-ideal of
X. Since z %0 =z for all z € X, it follows from (4.1) that
inf h(x) > min{inf A((x * 0) x (y x 0)), inf h(y)}
= min{inf h(x * y),inf h(y)}

for all x,y € X. Therefore H := {(x,h(z)) | + € X} is an Inf-hesitant
fuzzy ideal of X. O

The converse of Theorem 4.6 is not true in general as seen in the fol-
lowing example.
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EXAMPLE 4.7. Consider a BCI-algebra X = {0, 1,a,b, ¢} with the follow-
ing Cayley table.

*x10 1 a b ¢
00 0 ¢ b a
1{1 0 ¢ b a
ala a 0 ¢ b
blb b a 0 ¢
clec ¢ b a O

Let H := {(z,h(x)) | z € X} be a hesitant fuzzy set on X defined by

H ={(0,]0.6,0.7] U {0.8,0.9}), (1, ({0.5,0.6,0.7,0.8}),
(a,[0.4,0.9]), (b, [0.4,0.9]), (c, [0.4,0.9])}.

Then H := {(z,h(z)) | x € X} is an Inf-hesitant fuzzy ideal of X, but it is
not an Inf-hesitant fuzzy p-ideal of X since

inf h(1) = 0.5 < 0.6 = min{inf h((1 *x a) * (0 *a)),inf h(0)}.

PROPOSITION 4.8. Every Inf-hesitant fuzzy p-ideal H := {(x,h(z)) | z €
X} of X satisfies:

(Vz,y,z € X) (inf h(z xy) <inf h((z * 2) * (y * 2))) . (4.3)

ProOOF: Let H := {(z,h(z)) | # € X} be an Inf-hesitant fuzzy p-ideal of
X. Then it is an Inf-hesitant fuzzy ideal of X by Theorem 4.6. Hence

inf h((x % 2) * (y * 2)) > min{inf h(((x * 2) * (y * 2)) * (x x y)),inf h(x xy)}
= min{inf A(0),inf h(z x y)} = inf h(x x y)

for all z,y,2z € X. (I

We provide conditions for an Inf-hesitant fuzzy ideal to be an Inf-
hesitant fuzzy p-ideal.

THEOREM 4.9. Let H := {(x,h(z)) | € X} be an Inf-hesitant fuzzy ideal
of X such that

(Ve,y,z € X) (inf h(z xy) > inf h((x * 2) * (y % 2))) . (4.4)

Then H := {(z,h(x)) | * € X} is an Inf-hesitant fuzzy p-ideal of X.
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PROOF: If the condition (4.4) is valid, then
inf A(z) > min{inf h(x * y),inf h(y)}
> min{inf h((z * 2) * (y * 2)), inf h(y)}

for all z,y,z € X. Therefore H := {(z,h(x)) | x € X} is an Inf-hesitant
fuzzy p-ideal of X. O

LEMMA 4.10. Every Inf-hesitant fuzzy ideal H := {(z,h(x)) | x € X} of X
satisfies the following condition:

(Vz € X) (inf h(z) <inf h(0* (0 * z))).
PRrROOF: For every z € X, we have
inf h(z) = min{inf £(0), inf h(x)}
= min{inf ~((0 * (0 % z)) * z),inf h(x)}
<infh(0x* (0 z))
which is the desired result. (]

THEOREM 4.11. If an Inf-hesitant fuzzy ideal H := {(x,h(x)) | x € X} of
X satisfies the condition (4.2), then it is an Inf-hesitant fuzzy p-ideal of X.

PRrROOF: Let z,y,z € A. Using Lemma 4.10, (2.7), (2.8) and (4.2), we have
inf h((x*2) * (yx2)) <inf h(0* (0 ((xx2) * (y * 2))))
=inf h((0*y) * (0 * x))
=1inf A(0* (0 * (z xy)))
<inf h(z *y).

It follows from Theorem 4.9 that H := {(z, h(z)) | € X} is an Inf-hesitant
fuzzy p-ideal of X. O

THEOREM 4.12. If H := {(x, h(z)) | © € X} is an Inf-hesitant fuzzy p-ideal
of X, then the set

I:={x € X |inf h(z) = inf h(0)}
s a p-ideal of X.
PRrOOF: Obviously 0 € I. Let z,y,z € X be such that (x x z) * (y*z) € [
and y € I. Then
inf A(x) > min{inf h((z * 2) x (y * 2)),inf A(y)} = inf h(0),
and so inf h(z) = inf h(0), that is, © € I. Therefore I is a p-ideal of X. O
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For any subset I of X, let HY = {(z,inf h!(z)) | z € X} be a hesitant
fuzzy set on X defined by

. I o {1} ifxel,
inf h'(z) { [0,1] otherwise.

LEMMA 4.13. For any subset I of X, the following are equivalent:
(1) I is an ideal (resp. p-ideal) of X.
(2) The hesitant fuzzy set HY = {(z,infh!(z)) |z € X} on X is an
Inf-hesitant fuzzy ideal (resp. Inf-hesitant fuzzy p-ideal) of X.

PROOF: The proof is straightforward. (I

THEOREM 4.14. A BCI-algebra X is p-semisimple if and only if every
Inf-hesitant fuzzy ideal of X is an Inf-hesitant fuzzy p-ideal of X .

PROOF: Assume that X is a p-semisimple BCI-algebra and let H :=
{(z,h(x)) | x € X} be an Inf-hesitant fuzzy ideal of X. Then

inf h(z) > min{inf h(x *y), inf A(y)} = min{inf h((x * 2) * (y * 2)),inf h(y)}

by using (3.3) and (2.10). Hence H := {(x, h(z)) | € X} is an Inf-hesitant
fuzzy p-ideal of X.

Conversely, suppose that every Inf-hesitant fuzzy ideal of X is an Inf-
hesitant fuzzy p-ideal of X. Since the hesitant fuzzy set H}{f}
{(z,inf h1%(z)) |2 € X} on X is an Infhesitant fuzzy ideal of X, it is
also an Inf-hesitant fuzzy p-ideal of X. It follows from Lemma 4.13 that
{0} is a p-ideal of X. For any = € X, we have

((x*x (0% (0*x)))*xx)*(0xx)=((x*xx)* (0% (0x2)))*(0xx)
= (0% (0% (0xx))) x (0*x)
— (0% (0%2)) % (0% (0 %)) =0 & {0}
by using (2.5) and (IIT), which implies from (2.13) that 2* (0 (0xz)) € {0}.
Hence z % (0% (0xx)) = 0, that is, z < 0% (0% x). Since 0% (0 xz) < z, we
get 0% (0 x x) = z. Therefore X is a p-semisimple BCI-algebra. O

THEOREM 4.15. (Extension property for Inf-hesitant fuzzy p-ideals) Let
H:={(z,h(x)) |z € X} and G :={(z,g9(x)) | x € X}

be Inf-hesitant fuzzy ideals of X such that inf h(0) = inf g(0) and inf h(z) C

inf g(z) for allx € X. If H := {(z,h(x)) | x € X} is an Inf-hesitant fuzzy

p-ideal of X, then so is G := {(z,g(x)) | z € X}.
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PROOF: Assume that H := {(z,h(x)) | € X} is an Inf-hesitant fuzzy p-
ideal of X. Using (2.8), (2.9) and (III), we have 0% (0 (z* (0% (0%x)))) =0
for all z € X. Tt follows from hypothesis and (4.2) that

inf g(z* (0% (0% x))) > inf h(z* (0% (0% x)))
> inf h(0* (0% (z % (0% (0% 2)))))
= inf h(0) = inf g(0).
Hence
inf g(z) > min{inf g(x x (0% (0* z))),inf g(0 * (0 xx))}
> min{inf g(0),inf g(0 % (0 * x))}
=inf g(0 * (0 * x)),

and thus G := {(z,g(x)) | x € X} is an Inf-hesitant fuzzy p-ideal of X by
Theorem 4.11. O

5. Conclusions

Since hesitant fuzzy set theory was introduced by Torra in 2010, this con-
cept has been applied to many areas including algebraic structures. The
aim of this paper is introduce the notion of Inf-hesitant fuzzy set, and
applied it to BCK/BCI-algebras. We have introduced the notions of Inf-
hesitant fuzzy subalgebras, Inf-hesitant fuzzy ideals and Inf-hesitant fuzzy
p-ideals in BCK/BCI-algebras, and have investigated their relations and
properties. We have discussed caracterizations of an Inf-hesitant fuzzy
subalgebras, an Inf-hesitant fuzzy ideals and an Inf-hesitant fuzzy p-ideal,
and have constructed an Inf-hesitant fuzzy ideal by using the notion of
BCK-parts. We have provided conditions for an Inf-hesitant fuzzy ideal
to be an Inf-hesitant fuzzy p-ideal, and have provided a characterization
of a p-semisimple BCT-algebra. We have considered characterizations of
Inf-hesitant fuzzy p-ideals. We finally have established extension property
for an Inf-hesitant fuzzy p-ideal. Future research will focus on applying
the notions/contents to other types of ideals in BCK/BCI-algebras and
related algebraic structures.
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