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EMPIRICAL NEGATION, CO-NEGATION
AND THE CONTRAPOSITION RULE II:

PROOF-THEORETICAL INVESTIGATIONS

Abstract

We continue the investigation of the first paper where we studied logics with

various negations including empirical negation and co-negation. We established

how such logics can be treated uniformly with R. Sylvan’s CCω as the basis. In

this paper we use this result to obtain cut-free labelled sequent calculi for the

logics.
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1. Introduction

In the first paper, we semantically investigated how some logics with non-
standard negation (IPC∼ [1, 2], TCCω [4], daC [9] and CCω [10]) are
related to each other. In particular, we noted how the difference between
IPC∼ and TCCω can be understood as the difference between Kripke and
Beth semantics. We also observed, by giving a uniform axiomatisation,
how other logics can be captured in the semantics of CCω in terms of
frame conditions. These frames conditions will play an essential role in the
proof-theoretical investigation of the present paper.

In this paper, we first re-introduce some definitions and results from the
first paper. Then we formulate labelled sequent calculi for the logics, and
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show cut-admissibility and the equivalence of the calculi with Hilbert-style
formulations. Finally we have discussions about some topics related to the
contents of the two papers.

2. Preliminaries

Let us use the following notations for metavariables.

• p, q, r, . . . for propositional variables.

• A,B,C, . . . for formulae.

In this paper, we shall consider the following propositional language

L ::= p | (A ∧B) | (A ∨B)| (A→ B) | ∼A.

Parentheses will be omitted if there is no fear of ambiguity. We shall use
the convention A↔ B := (A→ B) ∧ (B → A).

We shall give Hilbert-style proof systems for CCω, daC, TCCω and
IPC∼, using the uniform axiomatisations we established in the first paper.
We identify the systems with the logics themselves for convenience, and
denote them simply as CCω, daC etc..

Definition 2.1. We will consider following axiom schemata and rules.

Axioms

[Ax1] A→ (B → A)

[Ax2] (A→ (B → C))→ ((A→ B)→ (A→ C))

[Ax3] (A ∧B)→ A

[Ax4] (A ∧B)→ B

[Ax5] (C → A)→ ((C → B)→ (C → (A ∧B)))

[Ax6] A→ (A ∨B)

[Ax7] B → (A ∨B)

[Ax8] (A→ C)→ ((B → C)→ ((A ∨B)→ C))

[Ax9] A ∨ ∼A
[Ax10] ∼A→ (∼∼A→ B)

[Ax11] ∼∼A→ A
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[Ax12] ∼(∼(A ∨B) ∨A)→ B

[Ax13] (∼A ∧ ∼B)→ ∼(A ∨B)

Rules

A A→ B[MP]
B

A→ B[RC] ∼B → ∼A

The logics CCω, daC, TCCω and IPC∼ are each defined by [MP],
[RC] and the following axioms.

CCω: [Ax1]–[Ax9] and [Ax11].

daC: [Ax1]–[Ax9] and [Ax12].

TCCω: [Ax1]–[Ax10].

IPC∼: [Ax1]–[Ax10] and [Ax13].

The derivability in CCω is denoted by `c. We recall that IPC∼ and
CCω are the strongest and the weakest of the four systems, and daC and
TCCω lie somewhere between the two, while being mutually incomparable.

Semantically, the Kripke semantics of CCω gives the basis for our in-
quiry.

Definition 2.2 (Semantics of CCω). A Kripke frame Fc
K for CCω is a

triple (W,≤, S), where S ⊆ W ×W is a reflexive and symmetric (acces-
sibility) relation such that u ≤ v and uSw implies vSw, i.e. S is upward
closed. A Kripke modelMc

K for CCω a pair (Fc
K,V), where V is a mapping

that assigns a set of worlds V(p) ⊆W to each propositional variable p. We
assume V to be monotone, viz. w ∈ V(p) and w′ ≥ w implies w′ ∈ V(p).
To denote a model, we shall use both Mc

K and (Fc
K,V) interchangeably.

Given Mc
K, the forcing (or valuation) of a formula in a world, denoted

Mc
K, w 
Kc A, is inductively defined as follows.

Mc
K, w 
Kc p ⇐⇒ w ∈ V(p).

Mc
K, w 
Kc A ∧B ⇐⇒ Mc

K, w 
Kc A and Mc
K, w 
Kc B.

Mc
K, w 
Kc A ∨B ⇐⇒ Mc

K, w 
Kc A or Mc
K, w 
Kc B.

Mc
K, w 
Kc A→ B ⇐⇒ for all w′ ≥ w, if Mc

K, w
′ 
Kc A,

then Mc
K, w

′ 
Kc B.

Mc
K, w 
Kc ∼A ⇐⇒ Mc

K, w
′ 1Kc A for some w′ such that wSw′.
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We shall occasionally denote uSv also by vS−1u. As S is symmetric in
CCω, this distinction is not quite necessary. This however clarifies appeals
to symmetry in proofs, which becomes significant in a broader context.

Now the following gives the summary of semantical characterisations
for our logics.

Theorem 2.3. Let Fc
K be a CCω-frame. Then the following conditions are

equivalent:

(i) CCω is sound and weakly complete with respect to the class of all
CCω-frames.

(ii) daC is sound and weakly complete with respect to the class of CCω-
frames satisfying the condition

∀u, v(uSv implies ∃wS−1v(w ≤ u and w ≤ v)).

(iii) TCCω is sound and weakly complete with respect to CCω-frames
where S is transitive.

(iv) IPC∼ is sound and strongly complete with respect to CCω-frames
where S is transitive and satisfying the condition

∀u, v, w(uSv and uSw implies ∃xS−1u(v ≥ x and w ≥ x).

Proof: (i) and (iii) are established in [10] and [4], respectively. (ii) is
Corollary 5.2 of the first paper, and (iv) is a consequence of Proposition
5.6 of the same paper, as discussed thereafter.

3. Labelled sequent calculus

In this section, we define a labelled sequent calculus for some of the logics
we have treated (CCω,TCCω,daC, IPC∼), with the aid of the insights
obtained in the last section regarding their relationship. We shall show the
admissibility of cut and the correspondence with the Hilbert-style system.

A labelled formula is an expression of the form x : A, where A is a
formula and x is a label. We shall use x, y, z . . . for labels. We shall ad-
ditionally consider relational atoms, which either have the form xSy, or
x ≤ y. An item is either a labelled formula or a relational atom. We
denote items by α, β, . . .. A sequent has the form Γ ⇒ ∆, where Γ and ∆
are finite multisets of items.
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We shall consider the following calculus G3ccω.

Definition 3.1 (G3ccω).

x ≤ y, x : p,Γ⇒ ∆, y : p (Ax1) x ≤ y,Γ⇒ ∆, x ≤ y (Ax2)

xSy,Γ⇒ ∆, xSy (Ax3)

x : A, x : B,Γ⇒ ∆
(L∧)

x : A ∧B,Γ⇒ ∆

Γ⇒ ∆, x : A Γ⇒ ∆, x : B
(R∧)

Γ⇒ ∆, x : A ∧B
x : A,Γ⇒ ∆ x : B,Γ⇒ ∆

(L∨)
x : A ∨B,Γ⇒ ∆

Γ⇒ ∆, x : A, x : B
(R∨)

Γ⇒ ∆, x : A ∨B

x ≤ y, x : A→ B,Γ⇒ ∆, y : A x ≤ y, x : A→ B, y : B,Γ⇒ ∆
(L→)

x ≤ y, x : A→ B,Γ⇒ ∆

x ≤ y∗, y∗ : A,Γ⇒ ∆, y∗ : B
(R→)

Γ⇒ ∆, x : A→ B

xSy∗,Γ⇒ ∆, y∗ : A
(L∼)

x : ∼A,Γ⇒ ∆

xSy, y : A,Γ⇒ ∆, x : ∼A
(R∼)

xSy,Γ⇒ ∆, x : ∼A

x ≤ x,Γ⇒ ∆
(Ref)

Γ⇒ ∆

x ≤ z, x ≤ y, y ≤ z,Γ⇒ ∆
(Trans)

x ≤ y, y ≤ z,Γ⇒ ∆

xSx,Γ⇒ ∆
(RefS)

Γ⇒ ∆

xSy, ySx,Γ⇒ ∆
(SymS)

xSy,Γ⇒ ∆

x ≤ y, xSz, ySz,Γ⇒ ∆
(Up)

x ≤ y, xSz,Γ⇒ ∆

A proof (derivation/deduction) of a sequent Γ ⇒ ∆ in G3ccω (to be
denoted `Gc Γ ⇒ ∆) is a tree whose root is the sequent, whose nodes are
applications of rules, and whose leaves are axioms (0-premise rules).

In the rules, variables indicated by * are eigenvariables, meaning that
they cannot occur in the conclusion of the rules. Γ, ∆ are called contexts,
and non-context items in the conclusion are called principal. The calculus
is in a large part an amalgamation of the labelled calculus for modal logic
[6] and intuitionistic logic [7]. It has the rules (RefS) and (SymS) corre-
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sponding to the reflexivity and symmetry in CCω. Additionally, it has the
rule (Up) corresponding to the condition for upward closure in CCω.

We shall also consider the following additional rules, corresponding to
the additional frame conditions for daC, TCCω and IPC∼, to G3ccω.

Definition 3.2.

xSy, ySz∗, z∗ ≤ x, z∗ ≤ y,Γ⇒ ∆
(Pr)

xSy,Γ⇒ ∆

xSz, xSy, ySz,Γ⇒ ∆
(TransS)

xSy, ySz,Γ⇒ ∆

xSy, xSz, t∗ ≤ y, t∗ ≤ z, xSt∗,Γ⇒ ∆
(De)

xSy, xSz,Γ⇒ ∆

Where, as before, labels indicted with * are eigenvariables. The intention
is that the addition of (Pr) should correspond to daC, (TransS) to TCCω,
and (TransS) and (De) to IPC∼. We shall denote the addition of some of
these rules to G3ccω by G3cc+ω , and the deducibility is denoted by `Gc+.

We shall later observe how the sequent calculi correspond to the Hilbert-
style systems. We now proceed with checking some standard properties of
the calculi.

Proposition 3.3. `Gc x ≤ y, x : A,Γ⇒ ∆, y : A

Proof: By [8, Lemma 12.25], we only have to consider the case for ∼.
When A ≡ ∼B,

z ≤ z, z : B, xSz, x ≤ y, ySz,Γ⇒ ∆, y : ∼B, z : B
(Ref)

z : B, xSz, x ≤ y, ySz,Γ⇒ ∆, y : ∼B, z : B
(R∼)

xSz, x ≤ y, ySz,Γ⇒ ∆, y : ∼B, z : B
(Up)

xSz, x ≤ y,Γ⇒ ∆, y : ∼B, z : B
(L∼)

x ≤ y, x : ∼B,Γ⇒ ∆, y : ∼B
where the first line is obtained from the inductive hypothesis.

Definition 3.4 (substitution of labels). We define the substitution of
a label by another label x[z/w], substitution for an item α[z/w] and for
a multiset Γ[z/w] by the following clauses. (◦ ∈ {≤, S})

x[z/w] ≡ w if x ≡ z.
x[z/w] ≡ x if x 6≡ z.
α[z/w] ≡ x[z/w] ◦ y[z/w] if α ≡ x ◦ y.
α[z/w] ≡ x[z/w] : A if α ≡ x : A.

Γ[z/w] ≡ {α[z/w] : α ∈ Γ}
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We shall denote instances of substitution by (Sub). In addition, we
shall write G3cc+ω `n Γ ⇒ ∆ if the sequent has a derivation whose depth
is less than n. We say a rule is depth-preserving admissible (dp-admissible)
if and only if: if there are derivations of the premises of the rule each with
the depth less than n, then there exists a derivation of the conclusion
with the depth less than n. If the depth is not preserved, we just say the
rule is admissible. We shall indicate an application of an admissible rule
by a dashed line.

Proposition 3.5 (dp-admissibility of substitution).

The rule
Γ⇒ ∆ (Sub)

Γ[z/w]⇒ ∆[z/w]
is dp-admissible in G3cc+ω .

Proof: We argue by induction on the depth of deduction. The intuition-
istic rules are already treated in [8, Lemma 12.26]. For others, the case for
(Ax2) is immediate, since the result of the substitution is also an instance
of (Ax2). The case for (L∼) and (R∼) are similar to those of R� and
L� in modal calculi, respectively; c.f. [8, Lemma 11.4]. The other rules
are instances of either the scheme for mathematical rules or the geometric
rule scheme [8, pp. 98, 134], so can be dealt with by the methodology of
[8, Lemma 11.4].

We shall now move on to consider structural rules.

Definition 3.6 (structural rules).

Γ⇒ ∆ (LW)
α,Γ⇒ ∆

Γ⇒ ∆ (RW)
Γ⇒ ∆, α

α, α,Γ⇒ ∆
(LC)

α,Γ⇒ ∆

Γ⇒ ∆, α, α
(RC)

Γ⇒ ∆, α

Γ⇒ ∆, α α,Γ′ ⇒ ∆′
(Cut)

Γ,Γ′ ⇒ ∆,∆′

Our goal is to prove that (Cut) is admissible. For this purpose we
check that the rules of Weakening (LW,RW) and Contraction (LC,RC) are
dp-admissible. We start with Weakening.

Proposition 3.7 (dp-admissibility of Weakening). (LW) and (RW) are
dp-admissible in G3cc+ω .
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Proof: The proof is by induction on the depth of deduction. In cases of
applications of (Ax1)-(Ax3), the result of Weakening is again an instance
of the axiom. For other rules, we apply the inductive hypothesis to the
premises of the rule, and thereafter apply the rule to obtain the desired
sequent; however for rules involving eigenvariables, we first need to apply
dp-admissible substitution (Proposition 3.5) to substitute the eigenvariable
with a fresh variable, so as to avoid the clash of variables. Then we apply
the above procedure.

For Contraction, we first need to demonstrate that the rules of G3cc+ω
are dp-invertible: that is, given a derivation of the conclusion of a rule, we
can find a depth-preserving derivation of the premises.

Lemma 3.8. The rules of G3cc+ω are dp-invertible.

Proof: We argue by induction on the depth of deduction. For the intu-
itionistic rules, we refer to [8, Theorem 12.28]. For the rules (R∼), (Up),
(RefS), (SymS), (TransS), (Pr) and (De), we can invert the sequent by
dp-admissible weakening.

The case for (L∼) is quite similar to that of R� for modal logic
[8, Lemma 11.7]. If `0 x : ∼A,Γ ⇒ ∆, then the derivation is an in-
stance of (Ax1), (Ax2) or (Ax3). In each case, xSy,Γ⇒ ∆, y : A is also an
instance of the same axiom. If `n+1 x : ∼A,Γ ⇒ ∆, then if it is obtained
by (L∼) with x : ∼A principal, i.e. it is of the form

`n xSz,Γ⇒ ∆, z : A
(L∼)`n+1 x : ∼A,Γ⇒ ∆

where z does not occur in the conclusion; then by dp-admissible substitu-
tion, `n xSy,Γ⇒ ∆, y : A (where y is a fresh variable).

We exemplify with (R→) the case where x : ∼A is obtained by a rule
with eigenvalue condition in which it is not principal

`n z ≤ t, t : C, x : ∼A,Γ′ ⇒ ∆′, t : D
(R→)

`n+1 x : ∼A,Γ′ ⇒ ∆′, z : C → D

then by dp-substitution, `n z ≤ t′, t′ : C, x : ∼A,Γ′ ⇒ ∆′, t′ : D, where t′ 6≡
y. (Note that y is fixed beforehand.) By I.H., `n z ≤ t′, t′ : C, xSy,Γ′ ⇒
∆′, y : A, t′ : D. So by (R→), `n+1 xSy,Γ

′ ⇒ ∆′, y : A, z : C → D.
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If it is obtained by a rule without eigenvariable condition, then apply
I.H. to the premise and apply the same rule.

Proposition 3.9 (dp-admissibility of Contraction). (LC) and (RC) are
dp-admissible in G3cc+ω .

Proof: We argue by simultaneous induction ((LC),(RC)) on the depth of
the deduction. General outline is as in [8, Theorem 12.28]. As an example,
suppose `n+1 x : ∼A, x : ∼A,Γ ⇒ ∆ and the last step is an instance of
(L∼) with x : ∼A principal.

`n xSy, x : ∼A,Γ⇒ ∆, y : A
(L∼)`n+1 x : ∼A, x : ∼A,Γ⇒ ∆

Then by dp-admissible invertibility of (L∼),

`n xSy, xSy,Γ⇒ ∆, y : A, y : A

So by I.H.
`n xSy,Γ⇒ ∆, y : A

Thus by (L∼)
`n+1 x : ∼A,Γ⇒ ∆

We are now ready to prove the admissibility of (Cut). We shall call the
item to be eliminated in (Cut) the cut-item.

Theorem 3.10 (admissibility of Cut). (Cut) is admissible in G3cc+ω .

Proof: We argue by induction on the complexity of cut-items, with a
subinduction on the level (the sum of the depths of the deductions of the
premises) of (Cut). Again the outline is the same as that of the intuitionistic
case [8, Theorem 12.30]. In particular, rules that are mathematical or
geometric are treated similarly to those of intermediate axioms.

Here we shall consider the case where the cut-item is principal in both
of the premises, and has the form x : ∼A. We have

`m−1 xSy, y : A,Γ⇒ ∆, x : ∼A
(R∼)`m xSy,Γ⇒ ∆, x : ∼A

`n−1 xSz,Γ′ ⇒ ∆′, z : A
(L∼)

`n x : ∼A,Γ′ ⇒ ∆′
(Cut)

` xSy,ΓΓ′ ⇒ ∆∆′
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Then

`n−1 xSz,Γ′ ⇒ ∆′, z : A
(Sub)

`n−1 xSy,Γ′ ⇒ ∆′, y : A

(note that z is an eigenvariable, so cannot occur in Γ′,∆′). Moreover, by
I.H. the following cut of a lower level (m+ n− 1 < m+ n) is admissible:

`m−1 xSy, y : A,Γ⇒ ∆, x : ∼A `n x : ∼A,Γ′ ⇒ ∆′
(I.H.)

` xSy, y : A,ΓΓ′ ⇒ ∆∆′

From these, and a cut of lower complexity (admissible by I.H.), we obtain

`n−1 xSy,Γ′ ⇒ ∆′, y : A ` xSy, y : A,ΓΓ′ ⇒ ∆∆′
(I.H.)

` xSy, xSy,ΓΓ′Γ′ ⇒ ∆∆′∆′
(Contraction)

` xSy,ΓΓ′ ⇒ ∆∆′

Next we observe that G3ccω and calculi in G3cc+ω indeed correspond
to CCω, daC, TCCω and IPC∼.

Proposition 3.11.

(i) `c A implies `Gc ⇒ x : A.

(ii) If we add (Pr)/(transS) to the calculus, then the axioms of
daC/TCCω become derivable. If we add (transS) and (De), the
axioms of IPC∼ become derivable.

Proof:

(i) For CCω, the positive axioms can be shown to be derivable as in the
intuitionistic case. We need to check [Ax9],[Ax10] and [RC].

[Ax9]

x ≤ x, xSx, x : A⇒ x : A, x : ∼A
(Ref)

xSx, x : A⇒ x : A, x : ∼A
(R∼)

xSx⇒ x : A, x : ∼A
(RefS)⇒ x : A, x : ∼A

(R∨)⇒ x : A ∨ ∼A
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[Ax10]

y ≤ y, x ≤ y, ySz, zSy, y : A⇒ z : ∼A, y : A
(Ref)

x ≤ y, ySz, zSy, y : A⇒ z : ∼A, y : A
(R∼)

x ≤ y, ySz, zSy ⇒ z : ∼A, y : A
(SymS)

x ≤ y, ySz ⇒ z : ∼A, y : A
(L∼)

x ≤ y, y : ∼∼A⇒ y : A
(R→)⇒ x : ∼∼A→ A

[RC]

We first observe that x : A→ B, x : A⇒ x : B is derivable:

x ≤ x, x : A→ B, x : A⇒ x : A x ≤ x, x : A→ B, x : B ⇒ x : B
(L→)

x ≤ x, x : A→ B, x : A⇒ x : B
(Ref)

x : A→ B, x : A⇒ x : B

Then

⇒ x : A→ B x : A→ B, x : A⇒ x : B
(Cut)

x : A⇒ x : B (Weakening)
y ≤ z, zSx, x : A⇒ x : B, z : ∼A

(R∼)
y ≤ z, zSx⇒ x : B, z : ∼A

(L∼)
y ≤ z, z : ∼B ⇒ z : ∼A

(R→)⇒ y : ∼B → ∼A
(Sub)⇒ x : ∼B → ∼A

(ii) We need to check each of the additional axioms are derivable in the
corresponding calculi.

daC

First we apply (L∨) to

x ≤ y, ySz, zSt, t ≤ y, t ≤ z, t : A⇒ z : ∼(A ∨B), z : A, y : B;

x ≤ y, ySz, zSt, t ≤ y, t ≤ z, t : B ⇒ z : ∼(A ∨B), z : A, y : B
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to obtain

x ≤ y, ySz, zSt, t ≤ y, t ≤ z, t : A ∨B ⇒ z : ∼(A ∨B), z : A, y : B

Then,

x ≤ y, ySz, zSt, t ≤ y, t ≤ z, t : A ∨B ⇒ z : ∼(A ∨B), z : A, y : B
(R∼)

x ≤ y, ySz, zSt, t ≤ y, t ≤ z ⇒ z : ∼(A ∨B), z : A, y : B
(Pr)

x ≤ y, ySz ⇒ z : ∼(A ∨B), z : A, y : B
(R∨)

x ≤ y, ySz ⇒ z : ∼(A ∨B) ∨A, y : B
(L∼)

x ≤ y, y : ∼(∼(A ∨B) ∨A)⇒ y : B
(R→)

⇒ x : ∼(∼(A ∨B) ∨ ∼A)→ B

TCCω

u ≤ u, y ≤ z, ySu, zSv, zSu, vSz, vSu, u : A⇒ u : A, v : ∼A
(Ref)

y ≤ z, ySu, zSv, zSu, vSz, vSu, u : A⇒ u : A, v : ∼A
(R∼)

y ≤ z, ySu, zSv, zSu, vSz, vSu⇒ u : A, v : ∼A
(TransS)

y ≤ z, ySu, zSv, zSu, vSz ⇒ u : A, v : ∼A
(SymS)

y ≤ z, ySu, zSv, zSu⇒ u : A, v : ∼A
(Up)

y ≤ z, ySu, zSv ⇒ u : A, v : ∼A
(L∼)

y ≤ z, ySu, z : ∼∼A⇒ u : A
(L∼)

y ≤ z, y : ∼A, z : ∼∼A⇒
(Weakening)

x ≤ y, y ≤ z, y : ∼A, z : ∼∼A⇒ z : B
(R→)

x ≤ y, y : ∼A⇒ y : ∼∼A→ B
(R→)

x : ∼A→ (∼∼A→ B)

IPC∼

First we apply (L∨) to

ySz, ySt, w : A,w ≤ z, w ≤ t, ySw ⇒ z : A, t : B, y : ∼(A ∨B);

ySz, ySt, w : B,w ≤ z, w ≤ t, ySw ⇒ z : A, t : B, y : ∼(A ∨B)

to obtain

ySz, ySt, w : A ∨B,w ≤ z, w ≤ t, ySw ⇒ z : A, t : B, y : ∼(A ∨B)
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Then

ySz, ySt, w : A ∨B,w ≤ z, w ≤ t, ySw ⇒ z : A, t : B, y : ∼(A ∨B)
(R∼)

ySz, ySt, w ≤ z, w ≤ t, ySw ⇒ z : A, t : B, y : ∼(A ∨B)
(De)

ySz, ySt⇒ z : A, t : B, y : ∼(A ∨B)
(L∼)

ySz, y : ∼B ⇒ z : A, y : ∼(A ∨B)
(L∼)

y : ∼A, y : ∼B ⇒ y : ∼(A ∨B)
(L∧)

y : ∼A ∧ ∼B ⇒ y : ∼(A ∨B)
(Weakening)

x ≤ y, y : ∼A ∧ ∼B ⇒ y : ∼(A ∨B)
(R→)

⇒ x : (∼A ∧ ∼B)→ ∼(A ∨B)

For the converse direction, we argue via completeness of the Hilbert-
style systems with respect to Kripke semantics. For this purpose the notion
of valuation has to be modified in the style of [8, Definition 11.25-26], to
accommodate labelled formulae and relational atoms.

Definition 3.12 (modified valuation for CCω-model). Let Fc
K be a CCω-

frame. A modified valuation Vm is a pair (V, l), where V is the ordinary
valuation for Fc

K introduced before, and l maps each label x into to a world
l(x)of Fc

K.
We say an item α is valid in a modified model Mmc

K = (Fc
K,Vm) (denoted

Mmc
K 
m

Kc α), when

• l(x) ≤ l(y) (or l(x)Sl(y)) in Fc
K, if α ≡ x ≤ y (or xSy).

• (Fc
K,V), l(x) 
Kc A, if α ≡ x : A.

We say a sequent Γ ⇒ ∆ is valid in Mmc
K (denoted Mmc

K �m
Kc Γ ⇒ ∆), if

Mmc
K 
m

Kc α for all α ∈ Γ implies Mmc
K 
m

Kc β for some β ∈ ∆. If Mmc
K is

arbitrary, we say Γ⇒ ∆ is valid and write �m
Kc Γ⇒ ∆.

Note that �m
Kc ⇒ x : A is valid if and only if �Kc A. Similar statements

hold when we restrict the class of frames. We now wish to demonstrate the
following.

Proposition 3.13.

(i) `Gc Γ⇒ ∆ implies �m
Kc Γ⇒ ∆.

(ii) (Pr)/(TransS)/(De) become sound if we restrict consideration to the
corresponding classes of frames.
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Proof:

(i) We argue by induction on the depth of deductions. The cases for the
intuitionistic rules follow straightforwardly from the definition of intuition-
istic Kripke models. We shall look at the cases for (L∼), (R∼). The other
cases are straightforward. In each case, we consider an arbitrary modified
model Mmc

K = (Fc
K,Vm) with Vm = (V, l).

(L∼) SupposeMmc
K 
m

Kc α for all α ∈ {x : ∼A}∪Γ. Then (Fc
K,V), l(x) 
Kc

∼A. So there is w such that l(x)Sw and (Fc
K,V), w 1Kc A. Take

V ′m = (V, l′) where l′ = l except l′(y) = w. Note, since y does not
occur in Γ and ∆, l and l′ evaluate them in the same way. Thus
(Fc
K,V ′m) 
m

Kc α for all α ∈ {xSy} ∪ Γ. So by I.H., (Fc
K,V ′m) 
m

Kc β
for some β ∈ {y : A} ∪ ∆. If it validates y : A, however, then
(Fc
K,V), l′(y) 
Kc A, a contradiction. Therefore (Fc

K,Vm) 
m
Kc β for

some β ∈ ∆. Since Mmc
K is arbitrary, �m

Kc x : ∼A,Γ⇒ ∆.

(R∼) Suppose Mmc
K 
m

Kc α for all α ∈ {xSy} ∪ Γ. If l(y) 1Kc A, then
l(x) 
Kc ∼A. Otherwise, l(y) 
Kc A, so by I.H., Mmc

K 
m
Kc α for

all α ∈ {xSy, y : A} ∪ Γ. So in either case (the latter with I.H.),
Mmc
K 
m

Kc β for some β ∈ ∆ ∪ {x : ∼A}.

(ii) The case for (TransS) is straightforward and (Pr), (De) are similar
to the case for (L∼); one needs to appeal to the frame condition to pick out
a world satisfying the desired order relation; then define a new modified
valuation which is identical to the original except it assigns the world to
the eigenvariable; then the rest follows as in the case for (L∼).

This allows us to conclude the other direction.

Corollary 3.14.

(i) `Gc ⇒ x : A implies `c A.

(ii) `Gc+ is sound with respect to the corresponding logics
(daC,TCCω,IPC∼).

Proof:

(i) If `Gc ⇒ x : A, then by the previous proposition, �m
Kc ⇒ x : A. Then

as we remarked before, �Kc A. Thus by the completeness of CCω, `c A.

(ii) Similar.
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4. Discussion

We have seen that TCCω can be regarded as the logic of empirical and co-
negation for Beth semantics, which differs from IPC∼ and daC for Kripke
semantics. According to the interpretation in [11, p.679], the difference
between Kripke and Beth semantics is the treatment of time. A node in
Kripke models signifies a state of information, whereas in Beth models it
signifies a moment in time. So for instance, to decide the forcing of a
disjunction in a Kripke model, one can stay in a world as much as one
likes, until one learns which of the disjuncts is true. In comparison, in
Beth models this waiting time is expressed by posterior nodes, so we need
to refer to those other worlds to decide the forcing of the disjunction in
the original world. The two kinds of empirical and co-negation can be
interpreted similarly.

The question remains, however, which empirical (or co- ) negation one
actually means in an assertion of negation. For example, if one says “There
is no proof of P=NP”, does it mean there is no proof at the present state
of information, or there is no proof at the present moment?

Changing perspective, from an intuitionistic viewpoint there is a cer-
tain advantage in considering Beth semantics. There is a relatively simple
proof of intuitionistic completeness (proving completeness with only intu-
itionistically accepted principles) for intuitionistic logic [3, 11]. The intu-
itionistic completeness proof for Kripke semantics [12] gives a more refined
result, but is comparatively more involved. A possible future direction is to
show the intuitionistic completeness for TCCω. An obstacle would be the
treatment of excluded middle, but classical logic also has an intuitionistic
completeness proof [5], so possibly this may be overcome. An intuitionistic
completeness would be desirable if one is a full-fledged intuitionist, espe-
cially when the logic is motivated from the semantics, rather than from the
syntax.
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