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ABSTRACT 

Non-alcoholic fatty disease (NAFLD) is a liver disorder that affects up to 

30% of the population, mainly in Western countries. It is estimated that up 

to 75% of NAFLD patients will develop a more aggressive form of the 

disease, non-alcoholic steatohepatitis (NASH). NAFLD can lead to 

fibrosis and liver failure; however, it is difficult to diagnose NAFLD due 

to its non-specific symptoms. Unfortunately, there is no treatment 

available for this disease. The risk factors of NAFLD are obesity and 

insulin resistance (IR). The molecular factors that seem to play an 

important role in the pathogenesis of NAFLD are oxidative stress as well 

as impaired DNA damage repair processes; a great body of evidence 

confirms an association with the base excision repair (BER) pathway. The 

activity of BER is decreased in patients with NAFLD and in animal 

models of this disease. In order to better understand the underlying basis 

of the disease, knowledge should be broadened in the area of DNA repair 

in NAFLD. 
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Introduction 

Non-alcoholic fatty liver disease 

(NAFLD) is a condition that affects up to 

30% of the population around the world, 

most prevalently in Western countries. 

It is estimated that up to 75% of people 

suffering from simple fatty liver disease 

will develop a more aggressive form of 

the disease, non-alcoholic steatohepatitis 

(NASH), which can lead to a cirrhosis, 

primary hepatocarcinoma or liver failure. 

However, it is difficult to diagnose 

the NAFLD due to the non-specific 

symptoms of the disease. NASH is 

characterised by the occurrence of 

inflammation and fibrosis in the liver 

(Abd El-Kader and El-Den Ashmawy 

2015; Paschos and Paletas 2009). 

Little is known about the molecular 

mechanisms involved in the pathogenesis 

of NAFLD. However, the current litera-

ture shows that NAFLD is associated 

with increased production of reactive 

oxygen species (ROS) and with elevated 

levels of 8-oxo-2'-deoxyguanosine 

(8-oxo-dG), which is characteristic of 

DNA damage caused by increased 
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oxidative stress. Mitochondria are 

essential organelles for cell survival, 

mainly due to their function as energy 

producers through the electron transport 

chain (ETC). On the other hand, ETC 

generates ROS and may contribute to 

increased oxidative stress. Oxidative 

stress and mitochondrial DNA (mtDNA) 

damage are linked and affect each other. 

ROS produced due to the electron 

transport chain may target mtDNA. In 

effect, damaged mtDNA needs to be 

repaired, mainly through the base 

excision repair (BER) pathway in 

mitochondria (Masarone et al. 2018; 

Yang et al. 2019). 

A growing number of reports, which 

have been presented in the review, 

indicate that oxidative stress as well as 

impaired processes responsible for repai-

ring DNA damage can play important in 

the development of NAFLD. The main 

factor that links DNA repair and NAFLD 

is an increased level of oxidative stress 

followed by an elevated level of 

oxidative damage in patients. In cases of 

faulty DNA repair, these lesions cannot 

be repaired (Nagahashi et al. 2016). The 

most important aspect of further research 

is the absence of a treatment that could 

prevent liver failure and eventually the 

death of the patient. 

The pathophysiology of non-alcoholic 

fatty liver disease 

NAFLD is a pathological condition in 

which fats build up in the liver; it can 

progress to a more aggressive form of 

the disorder, NASH. It can lead to 

cirrhosis and may develop into primary 

liver cancer (Pinter et al. 2016). 

Unfortunately, the disease has non-

specific symptoms like a feeling of 

discomfort in the upper right side of the 

abdomen; often, there are no symptoms 

until considerable liver cell damage 

occurs. One of the risk factors is obesity; 

the prevalence in obese population is in 

the range of 57–74% (Sharma et al. 

2015). Moreover, up to 75% of people 

suffering from NAFLD develop NASH 

(Chitturi et al. 2018). As there are no 

approved medicines to treat NAFLD 

(Wong and Singal 2019), doctors 

recommend vitamin E supplementation 

and losing weight as well as medicines 

for type 2 diabetes such as pioglitazone 

(Bril et al. 2018). 

NAFLD is a hepatic disorder charac-

terised by triglyceride (TG) accumulation 

in hepatocytes. It is caused by an 

imbalance between lipogenesis or fatty 

acid uptake and fatty acid removal, e.g. 

via mitochondrial fatty acid oxidation 

(Caligiuri et al. 2016). In the case of 

NASH, hepatic inflammation, hepato-

cellular ballooning and often fibrosis 

can occur (Cohen et al. 2011). The 

hypothesis explaining the pathogenesis of 

NAFLD assumes that (i) hepatic steatosis 

is a result of insulin resistance (IR), and 

(ii) the progression to NASH is 

associated with oxidative stress, lipid 

peroxidation, cytokine production or 

mitochondrial dysfunction (Day and 

James 1998). 

Particularly in obese patients with 

NAFLD, there is an overload of TG in 

adipose tissue, which is an energy 

storage organ and is involved in the 

secretion of hormones, cytokines and 

chemokines (Kershaw and Flier 2004). 

Excess TG is converted into free fatty 

acids (FFA) that can enter the liver, 

which can result in peripheral IR (Boden 

1997). Insulin, a lipolysis-inhibiting 

hormone, controls the release of FFA 

into the liver. Thus, IR leads to intense 

lipolysis of adipose tissue and, conse-

quently, to an increased influx of FFA 

into the liver. Additionally, FFA may 

serve as ligands for Toll-like receptor 4, 

thus inducing cytokine production and 

eventually inflammation, which play 

important roles in NAFLD development 

(Shi et al. 2006). IR is an effect of an 
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increased level of cytokines, such as 

interleukin (IL)-6, IL-8 and tumour 

necrosis factor (TNF)-α; high cytokine 

levels are correlated with a greater 

content of adipose tissue. NAFLD is 

more associated with visceral adipose 

tissue than with subcutaneous adipose 

tissue. (Parker 2018). Because of an 

excess of visceral adipose tissue, there is 

a dysregulation in a production of 

chemokines responsible for fatty acid 

oxidation (Rotter et al. 2003; Skurk et al. 

2007). However, the liver can eliminate 

TG through secretion as very low-density 

lipoprotein (VLDL) or by performing 

a fatty acid oxidation. Both reduced 

oxidation and increased TG levels have a 

place in NAFLD pathogenesis (Koo 

2013). 

The fat accumulation in the liver may 

trigger cellular injury and death because 

of fatty acid intermediates (Lee et al. 

1994; Tomita et al. 2014). Palmitic acid, 

a type of FFA, is able to cause inflam-

matory activation in endothelial cells 

(Maloney et al. 2009). Free cholesterol 

accumulation also induces lipotoxicity 

(Tomita et al. 2014). However, fatty acid 

oxidation can directly lead to the 

production of ROS (Neuschwander-Tetri 

2010). Oxidative stress induces hepato-

cellular damage through mechanisms 

such as lipid peroxidation, which is 

responsible for activation of cell necrosis 

and the intrinsic pathway of apoptosis. In 

effect, it can trigger fibrosis (Koek et al. 

2011). Palmitic acid can also activate the 

c-Jun N-terminal kinase (JNK) and the 

NF-κB proinflammatory pathways and 

may lead to mitochondrial dysfunction 

(Maloney et al. 2009). Additionally, free 

cholesterol induce the JNK pathway, thus 

generating a higher amount of ROS 

(Caballero et al. 2009). TG accumulation 

and steatosis can occur without liver 

damage, as shown by studies on genetic 

defects in diacylglycerol acyltransferase 

(DGAT), which catalyses the final step in 

TG synthesis, and in microsomal transfer 

protein (MTP), which influences VLDL 

synthesis (Liao et al. 2003; Monetti et al. 

2007). 

In pathophysiology of NAFLD also 

involves Kupffer cells, i.e. resident 

hepatic macrophages, which play a role 

in the activation of the macrophage M1 

phenotype and altered activation of M2 

macrophages (Stienstra et al. 2010). 

Toxic lipids accumulate in hepatocytes 

and may be phagocytised by Kupffer 

cells, which may indirectly lead to 

inflammation. Kupffer cells are involved 

in inflammation via inflammatory and 

apoptotic pathways mediated by NF-κB, 

which induce further release of 

proinflammatory cytokines (Seki et al. 

2007). 

Base excision repair pathway 

Mitochondria are crucial in the 

pathogenesis of NAFLD. This statement 

has been confirmed by the relationship 

between NAFLD and the metabolic 

syndrome, which is tightly associated 

with mitochondrial dysfunction and 

oxidative stress (Kim et al. 2018; 

Mabalirajan and Ghosh 2013). The most 

important DNA repair pathway in mito-

chondria is BER, because it eliminates 

oxidative lesions (Alexeyev et al. 2013). 

BER recognises forms of oxidative, 

deamination, alkylation and abasic sites. 

which are not significant alterations to 

the DNA helix shape. It is divided into 

four steps (Figure 1): (i) recognition of 

the DNA damage, (ii) excision, (iii) 

synthesis and (iv) ligation of DNA. The 

first two steps are executed by DNA 

glycosylases, e.g. OGG1, MYH, NEIL1 

and AP endonuclease (APE1) (Kim and 

Wilson 2012). DNA glycosylases are 

able to recognise and excise damaged 

bases, while the endonuclease cleaves the 

phosphodiester bonds. During synthesis, 

polymerase (POLG in mitochondria) 

inserts the correct nucleotide in the 
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generated gap. The final step of BER in 

mitochondria, i.e. ligation, is performed 

by the complex of X-ray repair cross-

complementing protein 1 (XRCC1) and 

DNA ligase III (LIG3) or ligase 1 (LIG1) 

(Chatterjee and Walker 2017; Kim and 

Wilson 2012). In the BER machinery, an 

important role is also played by structure-

specific nucleases that remove 5' 

overhanging flaps and process the 5' ends 

of Okazaki fragments in lagging strand 

DNA synthesis. This nuclease is encoded 

by flap structure-specific endonuclease 1 

(FEN1) (Kim and Wilson 2012). 

The relationship between non-

alcoholic fatty liver disease and base 

excision repair 

There is still little known about the 

relationship between NAFLD and DNA 

repair systems. However, the results of 

recent studies allow us to assume that 

fatty liver disease has a tight link with the 

BER pathway. These studies were 

conducted not only on NAFLD patients, 

but also on animal models mimicking 

human NAFLD, i.e. the high fat diet 

(HFD), methionine-choline-deficient diet 

(MCD) and fructose-rich diet models. 

The findings confirm that MCD 

upregulates gene expression of BER 

enzymes, i.e. DNA glycosylase and 

APE1, in mice and induces hepatic 

steatosis, confirming the link between 

diet and steatosis (Takumi et al. 2015). 

Furthermore, both MCD and HFD not 

only increase ROS production and 

oxidative damage DNA, but also reduce 

DNA repair by decreasing MYH 

expression (Gao et al. 2004). In addition, 

genetically modified OGG1 knockout 

mice fed an HFD had impaired glucose 

tolerance and a higher plasma insulin 

level, as well as downregulation of 

carnitine palmitoyl transferase-1, 

important in fatty acid oxidation and 

associated with the development of 

NAFLD (Sampath et al. 2012). 

Moreover, there are studies that 

confirm the appearance of single-

nucleotide polymorphisms (SNPs), which 

can contribute to impaired BER in 

mitochondria (Czarny et al. 2018; 

Ibarrola-Villava et al. 2011; Lillenes 

et al. 2017; Popanda et al. 2013). The 

SNPs are broadly present in other 

diseases, mainly in neurodegenerative 

disorders and carcinomas. However, they 

should be evaluated in the context of 

NAFLD. The SNPs mentioned above 

have been found in such genes as OGG1, 

MYH, POLG, POLB (polymerase β) 

NEIL1, APE1, FEN1, LIG1, LIG3 and 

XRCC1.  

In terms of therapeutic approaches to 

NAFLD, interesting results have been 

obtained in a study that used pioglitazone 

as treatment method. This drug is 

Figure 1. The scheme of base excision repair. 



FOLIA BIOLOGICA ET OECOLOGICA 

DNA REPAIR IN A NAFLD 9 

sometimes given to treat this disease, and 

has been beneficial in NASH patients. 

An HFD induced hepatic steatosis, but 

this effect was reversed by adding 

pioglitazone. Furthermore, treatment 

increased the expression level of OGG1 

and MYH, which could indicate that the 

improvement in the health of patients 

with steatosis may be related to an 

impact on DNA repair systems (Hsiao 

et al. 2008). Interestingly, in the liver of 

rats fed a high-fructose diet, an increase 

in mtDNA damage was found. The diet 

also caused a decrease in the expression 

level of DNA polymerase gamma and 

reduced mtDNA copy number (Cioffi 

et al. 2017). 

There are also some research findings 

that support an association between 

NAFLD and other DNA repair 

mechanisms. MCD-fed wild type mice 

were compared to MCD-fed growth 

arrest and DNA damage-inducible gene 

(Gadd45a) knockout mice. This gene 

plays a role in DNA survival and repair, 

in both the BER and nucleotide excision 

repair (NER) pathways. Knockout mice 

had significantly more severe hepatitis 

and fibrosis, elevated expression levels of 

pro-inflammatory proteins as well as 

decreased TG levels in comparison to 

wild type mice (Tanaka et al. 2017). 

Obese patients with steatotic livers have 

elevated oxidative stress in the liver and, 

at the same time, a significant decrease in 

NER activity (Schults et al. 2012). 

Summary 

Accordingly to the latest literature, a 

growing body of evidence suggests that 

mitochondrial dysfunction may play an 

important role in NAFLD, which can be 

triggered by impaired mitochondrial 

genome stability. Increased ROS 

production and elevated oxidative stress 

in mitochondria contribute to the 

development and progression of NAFLD. 

Many reports have shown that an 

important factor in the pathogenesis of 

fatty liver disease is impaired DNA 

repair systems. Furthermore, the 

expression of genes involved in DNA 

repair is increased upon treatment of this 

disease. This review suggests the need 

for further research into the molecular 

processes underlying NAFLD, especially 

in context of DNA damage and repair. 

This could contribute to the development 

of an appropriate treatment for this 

disease. 
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