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OMITTING TYPES IN FRAGMENTS
AND EXTENSIONS OF FIRST ORDER LOGIC

Abstract

Fix 2 < n < ω. Let Ln denote first order logic restricted to the first n variables.

Using the machinery of algebraic logic, positive and negative results on omitting

types are obtained for Ln and for infinitary variants and extensions of Lω,ω.
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1. Introduction

Let L be an extension or reduct or variant of first order logic, like first
logic itself possibly without equality, Ln as defined in the abstract with
2 < n < ω, Lω1,ω, Lω as defined in [10, § 4.3], . . . , etc. An omitting
types theorem for L, briefly an OTT, is typically of the form ‘A countable
family of non-isolated types in a countable L theory T can be omitted in
a countable model of T . From this it directly follows, that if a type is
realizable in every model of a countable theory T , then there should be a
formula consistent with T that isolates this type. A type is simply a set of
formulas Γ say. The type Γ is realizable in a model if there is an assignment
that satisfies (uniformly) all formulas in Γ. Finally, φ isolates Γ means that
T ` φ→ ψ for all ψ ∈ Γ. What Orey and Henkin proved is that the OTT
holds for Lω,ω when such types are finitary meaning that they all consist
of n-variable formulas for some n < ω. For Ln, as defined in the abstract,
the situation turns out drastically different. It is known [2] that the OTT
fails in the following (strong) sense. For every 2 < n ≤ l < ω, there is a
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countable and complete Ln theory T , and a type that is realizable in every
model of T , but cannot be isolated by a formula using l variables.

In this paper we prove other negative OTTs for Ln when types are
required to be omitted with respect to certain generalized semantics.

By imposing extra conditions on theories and / or types required to be
omitted (like quantifier elimination and maximality, respectively), we ob-
tain positive OTTs for Ln theories; addressing possibly uncountably many
types. Also, we study OTTs for algebraizable extensions of Lω,ω, namely,
the (algebraizable) so–called infinitary logics of infinitary relations studied
extensively in [10, § 4.3]. In this context, we prove negative results on
OTTs. Here semantics are the usual Tarskian semantics respecting com-
mutativity of cylindrifiers. Sometimes such logics are referred to as typless
logics; the adjective typless pointing out to dropping the arity of relation
symbols in their formalism.

Conversely, we prove positive OTTs for logics corresponding to variants
of ω–dimensional polyadic algebras with equality (PEAωs) with equality
studied in [8, 18] by taking reducts and/or weakening the axioms of PEAω.
In the logics studied in [8], Tarskian semantics are relativized, and con-
sequently we do not have full fledged commutativity of cylindrifiers. The
logic studied in [18] can be regarded as a classical algebraizable extension
of Lω,ω without equality; here by classical we understand that Tarskian
semantics are preserved in such extensions.

We follow the notation of [1] which is in conformity with the notation
in the monograph [10]. In particular, for any pair of ordinal α < β, CAα
stands for the class of cylindric algebras of dimension α, RCAα denotes
the class of representable CAαs and NrαCAβ(⊆ CAα) denotes the class
of α–neat reducts of CAβs. The last class is studied extensively in the
chapter [20] of [1] as a key notion in the representation theory of cylindric
algebras. S denotes the operation of forming subalgebras and P denotes
the operation of forming direct products. For any ordinal α, Csα denotes
the class of cylindric set algebras of dimension α whose top elements are
α–dimensional cartesian spaces and Gsα denotes the class of generalized
cylindric set algebras of dimension α, whose top elements are generalized
α–dimensional cartesian spaces. An α–dimensional cartesian space is a
set of the form αU (U a non-empty set) and a generalized α–dimensional
cartesian space is a disjoint union of α dimensional cartesian spaces. By
definition RCAα = SPCsα and it is known (and indeed not hard to show
that) RCAα = IGsα where I is the operation of forming isomorphic images.
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In cylindric–polyadic algebras of dimension α (α an infinite ordinal) studied
in [8], units are unions of cartesian spaces that are not necessarily disjoint.
We assume familiarity with the basics of duality theory of Boolean algebras
with operators BAOs, like atom structures and complex algebras. A more
than an adequate reference is [12, Chapter 2]. Throughout the paper,
unless otherwise indicated, we fix 2 < n < ω.

Layout

• In § 2 we recall the needed basic concepts to be used in the sequel.

• In § 3 we prove negative results on OTT for Ln algebraically by
proving that infintely mjany varities of CAns are not atom-canonical
(to be defined below).

• In § 4 we prove positive results on OTT for Ln and a multitude of
algebraizable versions of Lω,ω.

2. Some basics

We fix the notation, in the process recalling some basic needed definitions:

Definition 2.1. Let α be an ordinal and λ be a cardinal.

(1) A weak space of dimension α is a set V of the form {s ∈ αU : |{i ∈
α : si 6= pi}| < ω} where U is a non-empty set and p ∈ αU . We denote V
by αU (p). We write Gwsα short hand for the class of generalized weak set
algebras as defined in [10, Definition 3.1.2, item (iv)]. By definition Gwsα =
SPWsα, where Wsα denotes the class of weak set algebra of dimension α.
The top elements of Gwsαs are generalized weak spaces of dimension α;
these are disjoint unions of weak spaces of the same dimension. Plainly
when α < ω, Wsα = Csα and Gwsα = Gsα, in which case we use the
notation Csα and Gsα.

Fix A ∈ RCAα.

(2) Let K ∈ {Gsα,Gwsα}. If X = (Xi : i < λ) is family of subsets of A,
we say that X is omitted with respect to K if there exist in C ∈ Kα, and
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an isomorphism f : A → C such that
⋂
f(Xi) = ∅ for all i < λ. When we

want to stress the role of f , we say that X is omitted in C via f .

(3) If X ⊆ A and
∏
X = 0, then we refer to X as a non-principal type

of A.

(4) If K ∈ {Gsα,Gwsα}, A is atomic and the non-principal type consisting
of co-atoms (a co-atom is the complement of an atom) omitted in C ∈ K
via f , then we say that C is a complete representation of A via f or simply
a complete representation of A, and that A is completely representable with
respect to K.

Let K ∈ {Gsα,Gwsα}. It is known that an atomic A ∈ CAα is com-
pletely representable with respect to K via f ⇐⇒ there exists C ∈ K
such that for all X ⊆ A, f(

∑
X) =

⋃
x∈X f(x), whenever

∑
X exists in

A, hence the term complete representation. We note that in the last part
(after the equivalence) atomicity is redundant, cf. [11].

For some time we fix 2 < n < ω. The subtle phenomena of complete
representability is closely related to the algebraic notion of atom–canonicity
of (certain supervarieties of) RCAn (like SNrnCAm for 2 < n < m < ω),
and to the metalogical property of omitting types in n–variable fragments
of first order logic [19, Theorems 3.1.1, 3.1.2, p. 211, Theorems 3.2.8, 3.2.9,
3.2.10], when non-principal types are omitted with respect to (relativized)
semantics.

Atom–canonicity is an important persistence property in various modal
logics, that applies to the class of their modal algebras; for example the vari-
ety RCAn viewed as the class of modal algebras of the (modal formalism) of
Ln is not atom–canonical, because applying the complex algebra operator
to countable atom structures of RCAns, can give non-representable CAns,
more succintly, Cm(AtRCAn) * RCAn. The term algebra on any such atom
structure At say, cannot be completely representable, for a complete rep-
resentation of TmAt (the term algebra) induces a representation of CmAt.
This implies that OTT fails for Ln as indicated in the introduction when
n = l. That OTT fails for Ln in the stronger sense indicated also in the in-
troduction when n < l < ω, follows from the fact that for all 2 < n ≤ l < ω,
there exists a countable A ∈ RCAn ∩ NrnCAl that is not completely rep-
resentable. The last statement is proved in [2]. We start by showing that
infinitely many varieties of CAns (containing and including RCAn) are not
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atom–canonical. This will imply that OTT fails strongly but in a differ-
ent way; the OTT fails for Ln with respect to so–called clique guarded
semantics [13] which is a form of generalized semantics. Here the class
of models allowed to omit non-principal types is broadened considerably.
Models can be only n+ 3–flat a notion to be defined below. To get an idea
of the how much broadening the permissable models is occuring here; for
2 < n < m < l ≤ ω, the notion of l– flatness is not finitely axiomatizable
over the notion of m–flatness in a precise sense given in theorem 3.9 below,
and that ordinary countable models coincide with ω–flat models. We show
that even one–non principal type in a complete and countable Ln theory
may not be omitted in any n+ k–flat model when k ≥ 3.

3. Non-atom–canonicity of SNrnCAn+k for k ≥ 3 and
failure of OTT with respect to clique-guarded
semantics

For sequences f, g having the same domain an ordinal α say, and i ∈ domf ,
we write f ≡i g ⇐⇒ f and g agree off of i, that is to say f(x) = g(x) for
all x ∈ dom(f) ∼ {i}.

Definition 3.1. Let 2 < n < ω and assume that A ∈ CAn is atomic.

(1) An n–dimensional atomic network on an A is a map N : n∆ → AtA,
where ∆ is a non-empty set of nodes, denoted by nodes(N), satisfying the
following consistency conditions for all i < j < n:

• If x̄ ∈ nnodes(N) then N(x̄) ≤ dij ⇐⇒ xi = xj ,

• If x̄, ȳ ∈ nnodes(N), i < n and x ≡i y, then N(x̄) ≤ ciN(ȳ),

(2) Assume that m, k ≤ ω. The atomic game Gmk (AtA), or simply Gmk ,
is the game played on atomic networks of A using m nodes, each node
only once, so that any node being used is not alllowed to be reused; and
having k rounds [13, Definition 3.3.2], where ∀ is offered only one move,
namely, a cylindrifier move: Suppose that we are at round t > 0. Then ∀
picks a previously played network Nt (nodes(Nt) ⊆ m), i < n, a ∈ AtA,
x ∈ nnodes(Nt), such that Nt(x̄) ≤ cia. For her response, ∃ has to deliver a
network M such that nodes(M) ⊆ m, M ≡i N , and there is ȳ ∈ nnodes(M)
that satisfies ȳ ≡i x̄ and M(ȳ) = a, cf. [12, Definition 12.5(2)] for the
notation M ≡i N .
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(3) We write Gk(AtA), or simply Gk, for Gmk (AtA) if m ≥ ω.

(4) The ω–rounded game Gm(AtA) or simply Gm is like the gameGmω (AtA)
except that ∀ has the option to reuse the m nodes in play.

For BAOs, A and B say, having the same signature, we say that A
is dense in B if A ⊆ B and for all non-zero b ∈ B, there is a non-zero
a ∈ A such that a ≤ b. An atom structure will be denoted by At. An
atom structure At has the signature of CAα, α an ordinal, if CmAt has the
signature of CAα.

Definition 3.2. Let V be a completely additive variety of BAOs. Then V is
atom–canonical if whenever A ∈ V and A is atomic, then
CmAtA ∈ V. The Dedekind–MacNeille completion of A ∈ V, is the unique
(up to isomorphisms that fix A pointwise) complete B such that A ⊆ B
and A is dense in B.

From now on fix 2 < n < ω. If A ∈ CAn is atomic, then CmAtA is the
Dedekind–MacNeille completion of A. If A ∈ CAn, then its atom structure
will be denoted by AtA with domain the set of atoms of A denoted by AtA.

Lemma 3.3. Let 2 < n < m < ω and assume that A ∈ CAn is atomic. If
A ∈ ScNrnCAm, then ∃ has a winning strategy in Gm(AtA). In particular,
If A is finite and ∀ has a winning strategy in Gm

ω (AtA), then A /∈ SNrnCAm.

Proof: [23, Lemma 4.3].

In the next theorem 3.5, we show non-atom canonicity of the varieties
SNrnCAn+k for k ≥ 3. The gist of the idea is a combination of the model–
theoretic techniques of Hodkinson’s used in [15] conjuncted with a blow up
and blur construction in the sense of [2]. The idea of a ‘a blow up and blur’
construction is simple, but powerful and subtle. We give the general idea.
One starts with a finite algebra D ∈ CAn, blowing its atom structure, by
splitting one or more of its atoms into infinitely many thereby obtaining a
new infinite atom structure, call it At, such that D embeds into CmAt. If D
is not representable, or even has only finite representations (representations
on finite bases) and TmAt happens to be representable, then the Dedekind–
MacNeille completion CmAt of TmAt will not be representable, because
a representation of the infinite algebra CmAt necessarily has an infinite
base, inducing an infinite representation of D, since D embeds in CmAt
and RCAn is a variety. So one thereby obtains a weakly representable atom
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structure At, that is not strongly representable. But this same idea can
also be applied to the varieties Vk = SNrnCAn+k for k > 1, approximating
RCAn. One blows up and blur a finite algebra D outside the (larger) Vk

(when k < ω), thereby obtaining a weakly representable atom structure
At, such CmAt is outside Vk because D embeds into CmAt. If for some
k0 > 1, the atom structure At obtained after blowing up and blurring the
finite algebra that is outside Vk0 is representable, it will readily follow that
Vk, for all k ≥ k0 is not atom–canonical. The term blur refers to the fact
that the algebraic structure of D is blurred at the level of TmAt, it does not
embed into TmAt prohibiting its representability, but it it is not blurred
on the ‘global level’ of CmAt, in the sense that D embeds into CmAt.

One might be tempted to think that our next result can be obtained
by ‘lifting somehow’ to higher dimensions the construction for RAs proving
that SRaCAk, k ≥ 6 is not atom–canonical proved in [12] using a blow
up and blur construction for relation algebras. In [12], an representable
atomic relation algebra R, whose Dedekind–MacNeille completion is out-
side SRaCA6, is constructed. But this cannot be done with the lifting
construction in [18] as it stands, for given an atomic R ∈ RA, it does not
necessarily embed in the Ra reduct of the atomic CAn constructed from the
R as described in op.cit if n ≥ 6. It can only be done for n = 3. We briefly
review the blow up and blur construction in [12, 17.32, 17.34, 17.36] for
relation algebras proving that SRaCAk, for k ≥ 6 is not atom canonical.
We need some preparation. Let 2 ≤ n ≤ ω and r ≤ ω. Let R be an atomic
relation algebra. Then the r–rounded game Gnr (AtR) [12, Definition 12.24]
is the (usual) atomic game played on networks of an atomic relation algebra
R using n nodes.

Let L be a relational signature. Let G (the greens) and R (the reds) be
L structures and p, r ≤ ω. The game EFpr(G,R), defined in [12, Definition
16.1.2], is an Ehrenfeucht–Fräıssé forth ‘pebble game’ with r rounds and p
pairs of pebbles. In [12, 16.2], a relation algebra rainbow atom structure is
associated for relational structures G and R. We denote by RA,B the (full)
complex algebra over this atom structure. The Rainbow Theorem [12,
Theorem 16.5] states that: If G,R are relational structures and p, r ≤ ω,
then ∃ has a winning strategy in G2+p

1+r(RG,R) ⇐⇒ she has a winning
strategy in EFpr(G,R).

For 5 ≤ l < ω, RAl is the class of relation algebras whose canonical
extensions have an l–dimensional relational basis [12, Definition 12.30]. RAl
is a variety containing properly the variety SRaCAl. Furthermore, ∃ has
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a winning strategy in Gnω(AtR) =⇒ R ∈ RAl, cf. [12, Proposition 12.31]
and [12, Remark 15.13]. We now show:

Theorem 3.4. For any k ≥ 6, the varieties RAk and SRaCAk are not
atom–canonical.

Proof: We follow the notation in [12, lemmas 17.32, 17.34, 17.35, 17.36]
with the sole exception that we denote by m (instead of Km) the complete
irreflexive graph on m defined the obvious way; that is we identify this
graph with its set of vertices. Fix 2 < n < m < ω. Let R = Rm,n. Then
by the rainbow theorem ∀ has a winning strategy in Gm+2

m+1(AtR), since it
clealy has a winning strategy in the Ehrenfeucht–Fräıssé game EFmm(m,n)
because m is ‘longer’ than n. Then R /∈ RAm+2 by [12, Propsition 12.25,
Theorem 13.46 (4) ⇐⇒ (5)], so R /∈ SRaCAm+2. Next one ‘splits’ every
red atom to ω–many copies obtaining the infinite atomic countable (term)
relation algebra denoted in op.cit by T , with atom structure α, cf. [12, item
(4) top of p. 532]. Then Cmα /∈ SRaCAm+2 because R embeds into Cmα
by mapping every red to the join of its copies, and SRaCAm+2 is closed
under S. Finally, one (completely) represents (the canonical extension of)
T like in [12]. By taking m = 4 and n = 3 the required follows.

We next blow up and blur a finite rainbow CAn(2 < n < ω). The proof,
otherwise, is presented in a model–theoretic framework as done in [15],
where it is proved that RCAn is not atom–canonical. We briefly review
rainbow constructions for CAs [11, 13]. Fix 2 < n < ω. Given relational
structures G (the greens) and R (the reds) the rainbow atom structure of a
CAn consists of equivalence classes of surjective maps a : n→ ∆, where ∆
is a coloured graph. A coloured graph is a complete graph labelled by the
rainbow colours, the greens g ∈ G, reds r ∈ R, and whites; and some n− 1
tuples are labelled by ‘shades of yellow’. In coloured graphs certain triangles
are not allowed for example all green triangles are forbidden. Some (but
not all) of the red triples are forbidden. cf. [11, 4.3.3]. The equivalence
relation relates two such maps ⇐⇒ they essentially define the same graph
[11, 4.3.4]. We let [a] denote the equivalence class containing a. The
accessibilty (binary relations) corresponding to cylindric operations are like
in [11]. Special coloured graphs typically used by ∀ during implementing
his winning strategy are called cones: Let i ∈ G, and let M be a coloured
graph consisting of n nodes x0, . . . , xn−2, z. We call M an i – cone if
M(x0, z) = gi0 and for every 1 ≤ j ≤ n − 2, M(xj , z) = gj, and no other
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edge of M is coloured green. (x0, . . . , xn−2) is called the base of the cone,
z the apex of the cone and i the tint of the cone. For 2 < n < ω, we
use the graph version of the games Gmω (β) and Gm(β) where β is a CAn
rainbow atom structure, cf. [11, 4.3.3]. The (complex) rainbow algebra
based on G and R is denoted by AG,R. The dimension n will always be clear
from context. For relation algebras the relation algebra R4.3 was blown up
and blurred, now we blow up and blur CAn+1,n

Theorem 3.5. Let 2 < n < ω. Then there exists B ∈ Csn such that
CmAtB /∈ SNrnCAn+3. In particular, SNrnCAn+k is not atom canonical
for all k ≥ 3

Proof: We finish off with the second part modulo the first. Then we prove
the first part. We have B ∈ RCAn =

⋂
m>0 SNrnCAn+m but CmAtB /∈

SNrnCAn+k for all k ≥ 3.
The proof of the first part is divided to three parts:

(a) Blowing up and blurring a finite rainbow algebra: Take the
finite CA rainbow algebra D as defined in [13] where the reds R is the com-
plete irreflexive graph n, and the greens are G = {gi : 1 ≤ i < n−1}∪{gi0 :
1 ≤ i ≤ n + 1}, endowed with the polyadic operations. Denote D by
CAn+1,n and for the sake of brevity, denote its finite atom structure by
Atf ; so that Atf = At(CAn+1,n). One then replaces the red colours of
the finite rainbow algebra of CAn+1,n each by infinitely many reds (get-
ting their superscripts from ω), obtaining this way a weakly representable
atom structure At. The resulting atom structure after ‘splitting the reds’,
namely, At, is like the weakly but not strongly representable atom struc-
ture of the atomic, countable and simple algebra A constructed in [15], the
sole difference is that we have n + 1 greens and not infinitely many as is
the case in [15]. We denote our algebra also by A. No confusion is likely
to ensue. We will go further by showing that CmAtA /∈ SNrnCAn+3. The
rainbow signature [13, Definition 3.6.9] L now consists of gi : 1 ≤ i < n−1,
gi0 : 1 ≤ i ≤ n + 1, wi : i < n − 1, rtkl : k < l < n, t ∈ ω, binary rela-
tions, and n − 1 ary relations yS , S ⊆ n + 1. There is a shade of red ρ;
the latter is a binary relation that is outside the rainbow signature, but
it labels coloured graphs during a ‘rainbow game’. ∃ can win the rainbow
ω–rounded game and build an n–homogeneous model M by using ρ when
she is forced a red; [15, Proposition 2.6, Lemma 2.7]. From now on, forget
about ρ; having done its task as a colour to (weakly) represent A, it will
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play no further role. Having M at hand, one constructs two atomic n–
dimensional set algebras based on M, sharing the same atom structure and
having the same top element. The atoms of each will be the set of coloured
graphs, seeing as how, quoting Hodkinson [15] such coloured graphs are
‘literally indivisible’. Now Ln and Ln∞,ω are taken in the rainbow signature
(without ρ). Continuing like in op.cit, deleting the one available red shade,
set W = {ā ∈ nM : M |= (

∧
i<j<n ¬ρ(xi, xj))(ā)}, and for φ ∈ Ln∞,ω, let

φW = {s ∈ W : M |= φ[s]}. Here W is the set of all n–ary assignments in
nM, that have no edge labelled by ρ. We note that ρ is used by ∃ infinitely
many times during the game forming a ‘red clique’ in M [15]. Let A be the
relativized set algebra with domain {ϕW : ϕ a first-order Ln − formula}
and unit W , endowed with the usual concrete operations read off the con-
nectives. Classical semantics for Ln rainbow formulas and their semantics
by relativizing to W coincide [15, Proposition 3.13] but not with respect
to Ln∞,ω rainbow formulas. This depends essentially on [15, Lemma 3.10],
which is the heart and soul of the proof in [15], and for what matters this
proof. The referred to lemma says that any permutation χ of ω ∪ {ρ},
Θχ as defined in [15, Definitions 3.9, 3.10] is an n back–and–forth system
induced by any permutation of ω∪{ρ}. Let χ be such a permutation. Thee
system Θχ consists of isomorphisms between coloured graphs such that the
superscripts of reds are ’re-shuffled along’ χ in such a way that rainbow red
labels are permuted ρ is replaced by a red rainbow colour, and all other
colours are preserved. One uses such n-back-and-forth systems mapping a
tuple b̄ ∈ nM ∼W to a tuple c̄ ∈W preserving any formula in the rainbow
signature not containing the non-red symbols that are ’moved’ by the sys-
tem, so if b̄ ∈ nM refutes the Ln rainbow formula φ, then there is a c̄ ∈W
refuting φ, as well. The rainbow algebra A is then isomorphic to cylindric
set algebra having top element nM, so A is simple, in fact it can be shown
that even its diagonal free reduct is simple. Let E = {φW : φ ∈ Ln∞,ω}
[15, Definition 4.1] with the operations defined like on A the usual way.
CmAt is complete and, so like in [15, Lemma 5.3] we have an isomorphism
from CmAt to E defined via X 7→

⋃
X. We have AtA = AtTm(AtA) = At

(where Tm(AtA) denotes the subalgebra of CmAtA generated by the atoms;
the term algebra) and TmAtA ⊆ A, hence TmAtA is representable. The
atoms of A, TmAtA and CmAtA = CmAt are the coloured graphs whose
edges are not labelled by ρ. These atoms are uniquely determined (syntacti-
cally) by MCA formulas in the rainbow signature of At as in [15, Definition
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4.3]. The expression blow up and blur is an indicative term introduced in
[2]. Blowing up means splitting the atoms of a finite algebra; in our context
CAn+1,n each into infinitely many obtaining a new atom structure denoted
above by At. Blurring, means that the algebraic structure of CAn+1,n is
blurred in TmAt, its algebraic structure is disorganized or distorted in such
a way that it does not embed into TmAt. Nevertheless, it reapperas in the
Dedekind–MacNeille completion of TmAt, namely, in CmAt as we shall see
in a moment; CAn+1,n embeds into CmAt by mapping every splitted ‘red
atom’ to the suprema of the subatoms into which it was split. This sprema
exists because (the Boolean reduct of) CmAt is a complete algebra, which
is not the case with TmAt. The last is not complete,

(b) Embedding CAn+1,n into the complex algebra CmAt: Now to
embed CAn+1,n into CmAt = CmAtA, we need some preparing to do. To
start with, we Identify r with r0, so that we consider that Atf ⊆ At. Let
CRGf be the class of coulored graphs on Atf and CRG be the class of
coloured graph on At. By the above identification, we can assume that
CRGf ⊆ CRG. Write Ma for the atom that is the (equivalence class of the)
surjection a : n → M , M ∈ CGR. Here we identify a with [a]; no harm
will ensue. We define the (equivalence) relation ∼ on At by Mb ∼ Na,
(M,N ∈ CGR)

• a(i) = a(j)⇐⇒ b(i) = b(j),

• Ma(a(i), a(j)) = rl ⇐⇒ Nb(b(i), b(j)) = rk, for some l, k ∈ ω,
• Ma(a(i), a(j)) = Nb(b(i), b(j)), if they are not red,

• Ma(a(k0), . . . , a(kn−2)) = Nb(b(k0), . . . , b(kn−2)), whenever defined.

We say that Ma is a copy of Nb if Ma ∼ Nb (by symmetry Nb is a copy of
Ma.) Indeed, the relation ‘copy of’ is an equivalence relation on At. An
atom Ma is called a red atom, if M has at least one red edge. Any red
atom plainly has ω-many copies (including itself); furthermore (as is the
case with splitting arguments) all such copies are cylindrically equivalent, in
the sense that, ifNa ∼Mb with one (equivalently both) red, with a : n→ N
and b : n → M , then we can assume that nodes(N) = nodes(M) and that
for all i < n, a � n ∼ {i} = b � n ∼ {i}. In CmAt, we write Ma for
{Ma} and we denote suprema taken in CmAt, possibly finite, by

∑
. If

Nb is a red copy of Ma, then we may denote Nb by M
(j)
a (j ∈ ω). Note

that a red atom Ma has ω many copies forming a countable (infinite) set
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{M (j)
a : j ∈ ω} of red graphs. If Ma is a red atom, then by

∑
jM

(j)
a we

understand the infinite sum of its copies evaluated in CmAt. If Ma is not
red, then it has only one copy, namely, itself. Now we define the map Θ
from CAn+1,n = CmAtf to CmAt, by Θ(X) =

⋃
x∈Atf

Θ(x) (X ⊆ Atf ), by

specifing first its values on Atf , via Ma 7→
∑
jM

(j)
a ; each atom maps to the

suprema of its copies. If Ma is not red, then by
∑
jM

(j)
a , we understand

Ma. This map is well-defined because CmAt is complete. We check that f
is an injective homomorphim. Injectivity follows from Ma ≤ f(Ma), hence
f(x) 6= 0 for every atom x ∈ At(CAn+1,n). Now we check presevation of
operations. The Boolean join is obvious.

• For complementation: It suffices to check preservation of comple-
mentation ‘at atoms’ of Atf . So let Ma ∈ Atf with a : n → M ,
M ∈ CGRf ⊆ CGR. Then:

Θ(∼Ma) = Θ(
⋃

[b]6=[a]

Mb) =
⋃

[b]6=[a]

f(Mb) =
⋃

[b]6=[a]

∑
j

M
(j)
b

=
⋃

[b]6=[a]

∼
∑
j

[∼ (Ma)(j)] =
⋃

[b]6=[a]

∼
∑
j

[(∼Mb)
j ]

=
⋃

[b]6=[a]

∧
j

M
(j)
b =

∧
j

⋃
[b]6=[a]

M
(j)
b =

∧
j

(∼Ma)j=∼ (
∑

M j
a)

=∼ Θ(a).

• Diagonal elements. Let l < k < n. Then:

Mx ≤ f(dCmAtf
lk ) ⇐⇒ Mx ≤

∑
j

⋃
al=ak

M (j)
a

⇐⇒ Mx ≤
⋃

al=ak

∑
j

M (j)
a

⇐⇒ Mx = M (j)
a for some a : n → M such that

a(l) = a(k)

⇐⇒ Mx ∈ dCmAt
lk .

• Cylindrifiers. Let i < n. By additivity of cylindrifiers, we restrict our
attention to atoms Ma ∈ Atf with a : n→M , and M ∈ CRGf ⊆ CRG.
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Then:

f(cCmAtf
i Ma) = f(

⋃
[c]≡i[a]

Mc) =
⋃

[c]≡i[a]

f(Mc)

=
⋃

[c]≡i[a]

∑
j

M (j)
c =

∑
j

⋃
[c]≡i[a]

M (j)
c

=
∑
j

cCmAt
i M (j)

a = cCmAt
i (

∑
j

M (j)
a )

= cCmAt
i f(Ma).

We have proved that CAn+1,n embeds into CmAt, so that it is not blurred
at the level of the last complex algebra.

(c) ∀ s winning strategy in Gn+3(AtCAn+1,n): It is straightforward to
show that, like in the relation algebra case that ∀ has a winning strategy in
the Ehrenfeucht–Fräıssé forth private game played between ∃ and ∀ on the
complete irreflexive graphs n+ 1 and n, namely, in EFn+1

n+1(n+ 1, n) (using
n + 1 pebble pairs in n + 1 rounds). This game lifts to a graph game [11,
pp.841] on Atf which in this case is equivalent to the graph version of Gn+3,
but here ∀ does not need to re-use pebbles, so that the game is actually
Gn+3 but of course it ends after only finitely many rounds. ∀ lifts his
winning strategy from the private Ehrenfeucht–Fräıssé forth game, to the
graph game on Atf = At(CAn+1,n) using the standard rainbow strategy
[11]. He bombards ∃ with cones having the same base with green tints,
demanding that ∃ delivers a red label each time for the succesive appexes of
the cones he plays. It is not hard to show that he will need two more nodes
in the graph game to win. Thus by lemma 3.3, CAn+1,n /∈ SNrnCAn+3.
Since CAn+1,n embeds into CmAtA, hence CmAtA is outside SNrnCAn+3,
too.

Remark 3.6. One can describe CAn+1,n differently as a subalgebra of the
algebra C in [15, Defnition 5.1] as foillows. Let Z be the finite subsignature
of L obtained by deletng all rijk for i > 0 but keeping r0

jk. For each Zn∞ω

formulu φ, Define the L∞ω formula (̂φ) to be the result of replacing each
subformula r0

jk(x, y) in φ by
∨
i∈ω r

i
jk(x, y). It is clearly a finite subagebra

of C with atoms α̂W where α is an MCA Zn formula as defined in [15].
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Corollary 3.7. There are infinitely many subvarieties of CAn containing
RCAn that are not atom-canonical.

Proof: It is known that for any pair of ordinals α < β, SNrαCAβ is a
variety, and that for k ≥ 1 an 2 < n < ω, SNrnCAn+k+1 ( SNrnCAn+k

[12, Chapter 15]

Using the previous algebraic result on non atom canonicity, we adress
algebraically a version of the omitting types theorems in the framework of
the clique guarded n–variable fragments of first order logic. We define the
notion of clique guarded semantics.

Definition 3.8. Let 2 < n ≤ m < ω. Let M be the base of a relativized
representation of A ∈ CAn witnessed by an injective homomorphism f :
A → ℘(V ), where V ⊆ nM and

⋃
s∈V rng(s) = M. We write M |= a(s) for

s ∈ f(a). Let L(A)m be the first order signature using m variables and one
n–ary relation symbol for each element in A. Let L(A)m∞,ω be the infinitary
extension of L(A)m allowing infinite conjunctions. Then an n–clique is a
set C ⊆ M such (a1, . . . , an) ∈ V = 1M for distinct a1, . . . , an ∈ C.

Let Cm(M) = {s ∈ mM : rng(s) is an n–clique}. Cm(M) is called the
n–Gaifman hypergraph of M, with the n–hyperedge relation 1M.
The clique guarded semantics |=c are defined inductively. For atomic for-
mulas and Boolean connectives they are defined like the classical case and
for existential quantifiers (cylindrifiers) they are defined as follows: for
s̄ ∈ mM, i < m, M, s̄ |=c ∃xiφ ⇐⇒ there is a t̄ ∈ Cm(M), t̄ ≡i s̄ such that
M, t̄ |= φ.

(1) We say that M is an m–square representation of A, if for all s̄ ∈
Cm(M), a ∈ A, i < n, and injective map l : n → m, whenever M |=
cia(sl(0), . . . , sl(n−1)), then there is a t̄ ∈ Cm(M) with t̄ ≡i s̄, and M |=
a(tl(0), . . . , tl(n−1)). M is a complete m–square representation of A via f ,
or simply a complete representation of A if f(

∑
X) =

⋃
x∈X f(x), for all

X ⊆ A for which
∑
X exists. (Like in the classical case this is equivalent

to that A is atomic and that
⋃
x∈AtA f(x) = 1M).

(2) We say that M is an (infinitary) m–flat representation of A if it is m–
square and for all φ ∈ (L(A)m∞,ω)L(A)m, for all s̄ ∈ Cm(M), for all distinct
i, j < m, M |=c [∃xi∃xjφ ←→ ∃xj∃xiφ](s̄). Complete representability is
defined like for squareness.
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The proof of the following lemma can be distilled from its RA analogue
[12, Theorem 13.20], by reformulating deep concepts originally introduced
by Hirsch and Hodkinson for RAs in the CA context. cf. [12, Definitions
12.1, 12.9, 12.10, 12.25, Propositions 12.25, 12.27].

Theorem 3.9. [12, Theorems 13.45, 13.36]. Assume that 2 < n < m < ω
and let A ∈ CAn. Then A ∈ SNrnCAm ⇐⇒ A has an infinitary m–flat
representation ⇐⇒ A has an m–flat representation. In particular, the
variety of algebras having m+ 1-flat representations is not finitely axiom-
atizable over the variety of algebras having m–flat representations.

Proof: We give (more than) a glimpse of the ideas used. We prove first
that the existence of m–flat representations, implies the existence of m–
dilations. Let M be an m–flat representation of A. We show that A ⊆
NrnD, for some D ∈ CAm, For φ ∈ L(A)m (as defined above), let φM =
{ā ∈ Cm(M) : M |=c φ(ā)}, where Cm(M) is the n–Gaifman hypergraph.
Let D be the algebra with universe {φM : φ ∈ L(A)m} and with cylindric
operations induced by the n-clique–guarded (flat) semantics. Recall that
for r ∈ A, and x̄ ∈ Cm(M), we identify r with the formula it defines in
L(A)m, and we write r(x̄)M ⇐⇒ M, x̄ |=c r. Then certainly D is a
subalgebra of the Crsm (the class of algebras whose units are arbitrary
sets of m–ary sequences) with domain ℘(Cm(M)), so D ∈ Crsm with unit
1D = Cm(M). Since M is m–flat, then cylindrifiers in D commute, and so
D ∈ CAm. Now define θ : A→ D, via r 7→ r(x̄)M. Then exactly like in the
proof of [12, Theorem 13.20], θ is a neat embedding, that is, θ(A) ⊆ NrnD.
It is straightforward to check that θ is a homomorphism. We show that θ
is injective. Let r ∈ A be non-zero. Then M is a relativized representation,
so there is ā ∈M with r(ā), hence ā is a clique in M, and so M |= r(x̄)(ā),
and ā ∈ θ(r), proving the required. M itself might not be infinitary m–flat,
but one can build an infinitary m–flat representation of A, whose base is
an ω–saturated model of the consistent first order theory, stipulating the
existence of an m–flat representation, cf. [12, Proposition 13.17, Theorem
13.46 items (6) and (7)]. The inverse implication (existence of m–dilations
=⇒ existence of m–flat represenations) is harder. One constructs from
the given m–dilation, an m–dimensional hyperbasis (redeined to adapt to
CAns without too much difficulty) from which the required m– relativized
representation is built. This can be done in a step–by step manner treating
the hyperbasis as a ‘saturated set of mosaics’, cf. [12, Proposition 12.37].
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The last part follows from [13, §15.1-3] where it is proved that SNrnCAm+1

is not finitely axiomatizable over SNrnCAm.

Lemma 3.10. Let 2 < n < m < ω, and A ∈ CAn be an atomic algebra.
Then A has a complete m-square representation ⇐⇒ ∃ has a winning
strategy in Gmω (AtA).

Proof: [22, Lemma 5.8].

Corollary 3.11. There exists A ∈ Csn such that CmAtA does not have
an n+ 3-square representation.

Proof: This follows from the previous Lemma, together with the proof
of (c) in Theorem 3.5 by observing that ∀ has a winning strategy in
Gn+3
ω CAn+1,n (in finitely many rounds of course) without the need to reuse

nodes. The game Gm is stronger than what is really needed.

Lemma 3.12. if A ∈ CAn has a complete m–flat representation, then A is
atomic and CmAtA has an m-flat representation. An entirely anhalogous
result holds by replacing m-flat by m-square.

Proof: Atomicity is like the classical case [11]. Now let f : A → ℘(V )
be a complete m–flat representation A with V ⊆ nM where M is the base
of the representation, so that M =

⋃
s∈V rng(s). For a ∈ CmAtA, let

a ↓= {x ∈ AtA : x ≤ a}. Define g : CmAtA→ ℘(V ) by g(a) =
⋃
x∈↓a f(x).

Then g is a complete m-flat representation of CmAtA with base M.

For an Ln theory T , FmT , denotes the Tarski–Lindenbaum quotient
RCAn corresponding to T where the quoitent modulo T is defined seman-
tically. Given an Ln theory T and m > n, by an m–flat model of T , we
understand an m– flat representation of FmT when m < ω, and an ordinary
representation of FmT if m is infinite. An atomic Ln theory T is one for
which FmT is atomic. A co-atom of T is a formula φ such that (¬φ)T is an
atom in FmT .

Corollary 3.13. There is a countable, atomic and complete Ln theory T
such that the non-principal type consisting of co–atoms cannot be omitted
in an n+ 3-square, a fortiori n+ 3-flat model.

Proof: Let A ∈ Csn be countable (and simple) such that its Dedekind–
MacNeille completion does not have an n + 3-square representation. This
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A exists by Theorem 3.5. By [10, § 4.3], we can (and will) assume that
A = FmT for a countable, atomic theory Ln theory T . Let Γ be the n–type
consisting of co–atoms of T . Then Γ is a non principal type that cannot
be omitted in any n + 3–square model, for if M is an n + 3–square model
omitting Γ, then M would be the base of a complete n + 3-square repre-
sentation of A, giving, by Lemma 3.12, representation of CmAtA, which is
impossible.

There exists a countable, complete and atomic Ln first order theory T
in a signature L such that the type Γ consisting of co-atoms in the cylindric
Tarski–Lindenbaum quotient algebra FmT is realizable in every m–square
model, but Γ cannot be isolated using ≤ l variables, where n ≤ l < m ≤ ω.
A co-atom of FmT is the negation of an atom in FmT , that is to say, is
an element of the form Ψ/ ≡T , where Ψ/ ≡T= (¬φ/≡T ) =∼ (φ/≡T )
and φ/≡T is an atom in FmT (for L-fomrulas, φ and ψ). Here the quo-
tient algebra FmT is formed relative to the congruence relaton of semantical
equivalence moduol T ; for formulas φ and θ in the signature L , φ ≡T θ
⇐⇒ T |= φ ←→ θ. An m-square model of T is an m-square represen-
ation of FmT . The statement Ψ(l,m), short for Vaught’s Theorem (VT)
fails at (the parameters) l and m. Let VT(l,m) stand for VT holds at
l and m, so that by definition Ψ(l,m) ⇐⇒ ¬VT(l,m). We also in-
clude l = ω in the equation by defining VT(ω, ω) as VT holds for Lω,ω:
Atomic countable first order theories have atomic countable models. It
is well known that VT(ω, ω) is a direct consequence of the Orey-Henkin
OTT. Let 2 < n ≤ l < m ≤ ω. Consider the statemens Ψ(l,m) and
VT(l,m) = ¬Ψ(l,m) as defined in the introduction. Recall that VT(ω, ω)
is just Vaught’s theorem, namely, countable atomic theories have atomic
countable models. For 2 < n ≤ l < m ≤ ω and l = m = ω, it is likely and
plausible that (**): VT(l,m) ⇐⇒ l = m = ω. In other words: Vaught’s
theorem holds only in the limiting case when l → ∞ and m = ω and not
‘before’. We give sufficient condition for (**) to happen.

Theorem 3.14. For 2 < n < ω and n ≤ l < ω, Ψ(n, n + 3) and Ψ(l, ω)
hold. Furthermore, if for each n < m < ω, there exists a finite relation
algebra Rm having m−1 strong blur and no m-dimensional relational basis,
then (**) above for VT holds.

Proof: We start by the last part. Let Rm be as in the hypothesis with
strong m − 1–blur (J,E) and m-dimensional relational basis. We ‘blow
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up and blur’ Rm in place of the Maddux algebra Ek(2, 3) blown up and
blurred in [2, Lemma 5.1], where k < ω is the number of non-identity
atoms and k depends recursively on l, giving the desired strong l–blurness,
cf. [2, Lemmata 4.2, 4.3]. Now take A = Bbn(Rm, J, E) the term algebra
obtained after blowing up and blurring R to a weakly representable atom
structure [2]. Then A ∈ RCAn ∩ NrnCAl but A has no complete m-square
representation. For if it did, then a complete m–square representation of
an atomic B ∈ CAn induces an m–square representation of CmAtB. But
CmAtA does not have an m-square representation, because R does not have
an m-dimensional relational basis, and R ⊆ RaCmAtA. So an m-square
representation of CmAtA induces one of R which by Lemma 3.9 implies
that R has no m-dimensional relational basis, a contradiction.

We prove Ψ(m−1,m), hence the required, namely, (**). By [10, § 4.3],
we can (and will) assume that A = FmT for a countable, simple and atomic
theory Ln theory T . Let Γ be the n–type consisting of co–atoms of T . Then
Γ is realizable in everym–square model, for if M is anm–square model omit-
ting Γ, then M would be the base of a complete m–square representation
of A, and so by Theorem 3.9 A ∈ ScNrnDm which is impossible. Suppose
for contradiction that φ is an m − 1 witness, so that T |= φ → α, for all
α ∈ Γ, where recall that Γ is the set of coatoms. Then since A is simple,
we can assume without loss that A is a set algebra with base M say. Let
M = (M,Ri)i∈ω be the corresponding model (in a relational signature) to
this set algebra in the sense of [10, § 4.3]. Let φM denote the set of all
assignments satisfying φ in M. We have M |= T and φM ∈ A, because
A ∈ NrnCAm−1. But T |= ∃xφ, hence φM 6= 0, from which it follows that
φM must intersect an atom α ∈ A (recall that the latter is atomic). Let
ψ be the formula, such that ψM = α. Then it cannot be the case that
T |= φ → ¬ψ, hence φ is not a witness, contradiction and we are done.
Finally, Ψ(n, n + 3) and Ψ(l, ω) (n ≤ l < ω) follow from Corollary 3.13
and [2].

Corollary 3.15. There exists an atomic T ∈ RRA and an atomic A ∈
RCAn such that their Dedekind–MacNeille completions do not embed into
their canonical extensions.

Proof: We prove the CA case only. The RA case is entirely analagous.
Since RCAn is canonical [10] and A ∈ RCAn, then its canonical extension
A+ ∈ RCAn. But CmAtA /∈ RCAn, so it does not embed into A+, because
RCAn is a variety, a fortiori closed under S.
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Algebraically, so–called persistence properties refer to closure of a vari-
ety V under passage from a given algebra A ∈ V to some ‘larger’ algebra
A∗. Atom–canonicity is concerned with closure under forming Dedekind–
MacNeille completions. Atom–canonicity, implies the algebraic property of
single-persistence which in turn corresponds in modal logic to the notion
of a formula being di-persistent. A formula is di-persistent if whenever it is
valid in some general discrete frame (F, P ), that is, P contains all single-
tions, then is valid in the Kripke frame F [4, §5.6]. Sometimes Dedekind–
MacNeille completions, investigated for cylindric algebras by Monk, are
referred to as minimal completions, the name suggesting that Dedekind–
MacNeille completion of an algebra A is the ‘smallest’ in the sense that it
embeds into other any completion of A. Here by a completion we under-
stand any complete algebra containing A. Canonicity, which is the most
prominent persistence property in modal logic, the ‘large algebra’ A∗ is the
canonical embedding algebra (or perfect) extension of A, a complex algebra
based on the ultrafilter frame of A, in symbols UfA, whose underlying set
is the set of all Boolean ultrafilters of A. This is another completion of A.
The Dedekind–MacNeille completion of a BAO and its canonical extension
coincide ⇐⇒ A is finite. By the last result formulated in Corollary 3.15
the term minimal is misleading. A minimal completion of A ∈ RCAns,
namely CmAtA, may not embed into its canonical extension A+ = CmUfA.

Canonicity corresponds to the notion of a formula being dpersistent [4,
Definition 5.65, Proposition 5.85]. A modal formula in Ln is canonical if it
is validated in the canonical frame of every normal modal logic containing
φ [4, Definition 4.30]. Algebraically, φ is canonical ⇐⇒ φ translates to an
equation in the signature of RCAn that is preserved under canonical exten-
sions. An example of formulas that are both di-persistent and canonical
(d-persistent) are the so-called very simple Sahlqvist formulas [4, Theorem
5.90] which are, as the name suggests, instances of Sahlqvist formulas [12,
Definition 3.51].

Sahlqvist formulas are a certain kind of modal formula with remark-
able properties. The Sahlqvist correspondence theorem states that every
Sahlqvist formula corresponds to a first order definable class of Kripke
frames. Sahlqvist’s definition characterizes a decidable set of modal formu-
las with first-order correspondents. Since it is undecidable, by Chagrova’s
theorem, whether an arbitrary modal formula has a first-order correspon-
dent [4, Theorem 3.56], there are formulas with first-order frame conditions
that are not Sahlqvist. But this is not the end of the story, for it might
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be the case that every modal formula with a first order correspondant is
equivalent to a Sahlqvist one, which is not the case [4, Example 3.57]. The
reader is referred to [4] and [12, 2.7] for more on aspects of duality for
BAOs and in particular for Sahlvist axiomatizability in general. By the
dualiity theory betwem BAOs and multimodal logic, Sahlqvist formulas in
the latter transfrm to Sahlqvist equations in modal algebras. A variety V
of BAOs is Sahlqvist if it can be axiomatized by Sahlvist equations.

Theorem 3.16. For any 2 < n < m ≤ ω the variety SNrnCAm is not
Sahlqvist. Conversely, for any pair of infinite ordinals α < β, the varieties
SNrαPAβ and SNrαPEAβ are Sahlqvist, and is closed under Dedekind–Mac-
Neille completions.

Proof: Let α < β be infinite ordinals. Then SNrαPAβ = NrαPAβ = PAα,
cf. the remark before [10, Theorem 5.4.17]. The last is axiomatized by
positive equations [10, Definition 5.4.1] which are Sahlqvist. Applying [25]
we are done. The PEA case is entirely analogous using the axiomatization
in the aforementioned definition.

Let 2 < n < ω. We approach the modal version of Ln without equality,
namely, S5n. The corresponding class of modal algebras is the variety
RDfn of diagonal free RCAns [10]. Let Rddf denote ’diagonal free reduct’.

Lemma 3.17. Let 2 < n < ω. If A ∈ CAn is such that RddfA ∈ RDfn,
and A is generated by {x ∈ A : ∆x 6= n} (with other CA operations) using
infinite intersections, then A ∈ RCAn.

Proof: Easily follows from [10, Lemma 5.1.50, Theorem 5.1.51]. Assume
that A ∈ CAn, RddfA is a set algebra (of dimension n) with base U ,
and R ⊆ U × U are as in the hypothesis of [10, Theorem 5.1.49]. Let
E = {x ∈ A : (∀x, y ∈ nU)(∀i < n)(xiRyi =⇒ (x ∈ X ⇐⇒ y ∈ X))}.
Then {x ∈ A : ∆x 6= n} ⊆ E and E ∈ CAn is closed under infinite
intersections. The required follows.

Theorem 3.18. For 2 < n < ω, RDfn is not atom–canonical, hence not
Sahlqvist.

Proof: It is enough to show that CmAtA, where A is constructed in The-
orem 3.5 is generated by elements whose dimension sets have cardinality
< n using infinite unions, for in this case RddfA will be atomic, count-
able and representable, but having no complete representation. Indeed,
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by Lemma 3.17 and Theorem 3.5, RddfCmAtA = CmAtRddfA will not
be representable. We show that for any rainbow atom [a], a : n → Γ,
Γ a coloured graph, that [a] =

∏
i<n ci[a]. Clearly ≤ holds. Assume

that b : n → ∆, ∆ a coloured graph, and [a] 6= [b]. We show that
[b] /∈

∏
i<n ci[a] by which we will be done. Because a is not equivalent

to b, we have one of two possibilities; either (∃i, j < n)(∆(b(i), b(j) 6=
Γ(a(i), a(j)) or (∃i1, . . . , in−1 < n)(∆(bi1 , . . . , bin−1) 6= Γ(ai1 , . . . , ain−1)).
Assume the first possibility: Choose k /∈ {i, j}. This is possible be-
cause n > 2. Assume for contradiction that [b] ∈ ck[a]. Then (∀i, j ∈
n \ {k})(∆(b(i), b(j)) = Γ(a(i)a(j))). By assumption and the choice of k,
(∃i, j ∈ n \ k)(∆(b(i), b(j)) 6= Γ(a(i), a(j))), contradiction. For the second
possibility, one chooses k /∈ {i1, . . . in−1} and proceeds like the first case
deriving an analogous contradiction.

Kn is the logic of n-ary product frames, of the form (Wi, Ri)i<n where
for each i < n, Ri is any any relation on Wi. On the other hand, S5n can
be regarded as the logic of n–ary product frames of the form (Wi, Ri)i<n
such that for each i < n, Ri is an equivalence relation. It is known that
logics between Kn and S5n are quite complicated, cf. [16] for a detailed
overview. Theorem 3.19 to be proved in a moment adds to their complexity.

It is known that modal languages can come to grips with a strong
fragment of second order logic. Modal formulas translate to second order
formulas, their correspondants on frames. Some of these formulas can be
genuinely second order; they are not equivalent to first order formulas. An
example is the McKinsey formula: �♦p → ♦�p. This can be proved by
showing that its correspondant violates the downward Löwenheim- Skolem
Theorem. The next proposition bears on the last two issues. For a class L
of frames, let L(L) be the class of modal formulas valid in L. It is difficult
to find explicity (necessarily) infinite axiomatizations for S5n as well:

Theorem 3.19. Let 2 < n < ω. There is no axiomatization of S5n with
formulas having first order correspondence. For any canonical logic L be-
tween Kn and S5n, it is undecidable to tell whether a finite frame is a
frame for L, L cannot be finitely axiomatized in kth order logic (for any
finite k), and L cannot be axiomatized by canonical formulas, a fortiori
Sahlqvist formulas.

Proof: Let L be the class of square frames for S5n. Then L(L) = S5n

[16, p. 192]. But the class of frames F valid in L(L) coincides with the
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class of strongly representable Dfn atom structures which is not elementary
as proved in [5]. This gives the first required result for S5n. With lemma
3.17 at our disposal, a slightly different proof can be easily distilled from
the construction adressing CAs in [13] or [14]. We adopt the construction
in the former reference, using the Monk–like CAns M(Γ), Γ a graph, as
defined in [13, Top of p.78]. For a graph G, let χ(G) denote it chromatic
number. Then it is proved in op.cit that for any graph Γ, M(Γ) ∈ RCAn
⇐⇒ χ(Γ) = ∞. By lemma 3.17, RddfM(Γ) ∈ RDfn ⇐⇒ χ(Γ) = ∞,
because M(Γ) is generated by the set {x ∈M(Γ) : ∆x 6= n} using infinite
unions.

Now we adopt the argument in [13]. Using Erdos’ probabalistic graphs
[7], for each finite κ, there is a finite graph Gκ with χ(Gκ) > κ and with
no cycles of length < κ. Let Γκ be the disjoint union of the Gl for l > κ.
Then χ(Γκ) =∞, and so RddfM(Γκ) is representable. Now let Γ be a non-
principal ultraproduct ΠDΓκ for the Γκs. For κ < ω, let σκ be a first-order
sentence of the signature of the graphs stating that there are no cycles of
length less than κ. Then Γl |= σκ for all l ≥ κ. By Loś’s Theorem, Γ |= σκ
for all κ. So Γ has no cycles, and hence by χ(Γ) ≤ 2. Thus RddfM(Γ)
is not representable. (Observe that the the term algebra TmAt(M(Γ)) is
representable (as a CAn), because the class of weakly representable atom
structures is elementary [12, Theorem 2.84].) Since Sahlqvist formulas have
first order correspondants, then S5n is not Sahlqvist. In [14], it is proved
that it is undecidable to tell whether a finite frame is a frame for L, and this
gives the non-finite axiomatizability result required as indicated in op. cit,
and obviously implies undecidability. The rest follows by transferring the
required results holding for S5n [5, 14] to L since S5n is finitely axiomatiz-
able over L, and any axiomatization of RDfn must contain infinitely many
non-canonical equations.

Results involving notions like atom–canonicity, for the infinite dimen-
sional case, are extremely rare in algebraic logic [13, Problem 3.8.3]; in
fact, almost non-existent. We present a conditional result (the condition is
very likely to be true). For each finite k ≥ 3, let A(k) be an atomic count-
able simple representable CAk such that B(k) = CmAtA(k) /∈ SNrkCAk+3.
We know that such algebras exist by Theorem 3.5. We make the follow-
ing assumption: (*) Assume that B(m) embeds into RdmB(t), whenever
3 ≤ m < t < ω. Our next theorem lifts Theorem 3.5 to the transfinite
conditionally (modulo (*)).
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Theorem 3.20. Assume that (*) above holds for the algebras constructed
in Theorem 3.5 (or any other algebras). Then for k ≥ 3, SNrωCAω+k

is not atom–canonical. In particular, RCAω cannot be axiomatized by (a
necessarily infinite schema of) Sahlqvist equations.

Proof: For each finite k ≥ 3, let A(k) and B(k) be the algebras con-
structed in Theorem 3.5 (of dimension k) and assume further that the as-
sumption abbreviated by (*) preceding the theorem holds for the algebras
constructed in op.cit. Let Ak be an (atomic) algebra having the signature
of CAω such that RdkAk = A(k). Analogously, let Bk be an algebra having
the signature of CAω such that RdkBk = B(k), and we require in addi-
tion that Bk = Cm(AtAk). We use a lifting argument using ultraproducts.
Let B = Πi∈ω\3Bi/F . It is easy to show that A = Πi∈ω\3Ai/F ∈ RCAω.
Furthermore, a direct computation gives:

CmAtA = Cm(At[Πi∈ω\3Ai/F ]) = Cm[Πi∈ω\3(AtAi)/F )]

= Πi∈ω\3(Cm(AtAi)/F ) = Πi∈ω\3Bi/F

= B.

By the same token, B ∈ CAω. Assume for contradiction that
B ∈ SNrωCAω+3. Then B ⊆ NrωC for some C ∈ CAω+3. Let 3 ≤ m < ω
and let λ : m + 3 → ω + 3 be the function defined by λ(i) = i for i < m
and λ(m + i) = ω + i for i < 3. Then we get (**): RdλC ∈ CAm+3 and
RdmB ⊆ NrmRdλC. By assumption let It : Bm → RdmBt be an injective
homomorphism for 3 ≤ m < t < ω. Let ι(b) = (Itb : t ≥ m)/F for b ∈ Bm.
Then ι is an injective homomorphism that embeds Bm into RdmB. By
(**) we know that RdmB ∈ SNrmCAm+3, hence Bm ∈ SNrmCAm+3, too.
This is a contradiction, and we are done.

4. Positive results on omitting types

We start by recalling certain cardinals that play a key role in (positive)
omitting types theorems for Lω,ω. Let covK be the cardinal used in [19,
Theorem 3.3.4]. The cardinal p satisfies ω < p ≤ 2ω and has the following
property: If λ < p, and (Ai : i < λ) is a family of meager subsets of
a Polish space X (of which Stone spaces of countable Boolean algebras
are examples) then

⋃
i∈λAi is meager. For the definition and required

properties of p, witness [9, pp. 3, 44–45, Corollary 22c].
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It is consistent that ω < p < covK ≤ 2ω [9], but it is also consistent
that they are equal; equality holds for example in the Cohen real model
of Solovay and Cohen. Martin’s axiom implies that both cardinals are the
continuum. To prove the main result on positive omitting types theorems,
we need the following lemma due to Shelah:

Lemma 4.1. Assume that λ is an infinite regular cardinal. Suppose that
T is a first order theory, |T | ≤ λ and φ is a formula consistent with T ,
then there exist models Mi : i < λ2, each of cardinality λ, such that φ is
satisfiable in each, and if i(1) 6= i(2), āi(l) ∈ Mi(l), l = 1, 2,, tp(āl(1)) =
tp(āl(2)), then there are pi ⊆ tp(āl(i)), |pi| < λ and pi ` tp(āl(i)) (tp(ā)
denotes the complete type realized by the tuple ā)

Proof: [24, Theorem 5.16, Chapter IV].

In the next theorem n < ω. Furthermore the maximality condition
expressed in ultrafilters (which are maximal filters) delineates the edge of
an independent statement to a provable one. Considering only filters leads
to an independent statement, cf. [19, Theorem 3.2.8]:

Theorem 4.2. Let µ be a countable or regular uncountable cardinal. Let
A ∈ ScNrnCAω be such that |A| ≤ 2µ. Let λ < 2µ and let X = (Xi : i < λ)
be a family of non-principal types of A. Then the following hold:

(1) If A ∈ NrnCAω and the Xis are non-principal ultrafilters, then X can
be omitted in a Gsn. Furthrmore, the condition of maximality cannot
be dispensed with,

(2) If A is countable, then every subfamily of X of cardinality < p can
be omitted in a Gsn; in particular, every countable subfamily of X
can be omitted in a Gsn, If A is simple, then every subfamily of X of
cardinlity < covK can be omitted in a Csn.

Proof: For the first item we prove the special case when µω. The general
case follows from the fact that (**) below holds for any infinite regular
cardinal. We assume that A is simple (a condition that can be easily

removed). We have
∏B

Xi = 0 for all i < κ because, A is a complete
subalgebra of B. Since B is a locally finite (if not replace B by SgBA),
we can assume that B = FmT for some countable consistent theory T .
For each i < κ, let Γi = {φ/T : φ ∈ Xi}. Let F = (Γj : j < κ) be the
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corresponding set of types in T . Then each Γj (j < κ) is a non-principal
and complete n-type in T , because each Xj is a maximal filter in A = NrnB.

(**) Let (Mi : i < 2ω) be a set of countable models for T that over-
lap only on principal maximal types; these exist by lemma 4.1. Asssume
for contradiction that for all i < 2ω, there exists Γ ∈ F, such that Γ is
realized in Mi. Let ψ : 2ω → ℘(F), be defined by ψ(i) = {F ∈ F :
F is realized in Mi}. Then for all i < 2ω, ψ(i) 6= ∅. Furthermore, for i 6= j,
ψ(i)∩ψ(j) = ∅, for if F ∈ ψ(i)∩ψ(j), then it will be realized in Mi and Mj ,
and so it will be principal. This implies that |F| = 2ω which is impossible.
Hence we obtain a model M |= T omitting X in which φ is satisfiable. The
map f defined from A = FmT to CsMn (the set algebra based on M [10,
4.3.4]) via φT 7→ φM, where the latter is the set of n–ary assignments in M
satisfying φ, omits X. Injectivity follows from the facts that f is non-zero
and A is simple. For the second part of (1), we use the construction in
[23, Thgeorem 4.5], where an atomic B ∈ NrnCAω with uncountably many
atoms that is not completely representable is constructed. This implies
that the maximality condition cannot be dispensed with; else the set of co–
atoms of B call it X will be a non-principal type that cannot be omitted,
because any Gsn omitting X yields a complete representation of B, witness
the last paragraph in [19].

For (2), we can assume that A ⊆c NrnB, B ∈ Lfω. We work in B.
Using the notation on [19, p. 216 of proof of Theorem 3.3.4] replacing FmT
by B, we have H =

⋃
i∈λ

⋃
τ∈V Hi,τ where λ < p, and V is the weak space

ωω(Id), can be written as a countable union of nowhere dense sets, and so
can the countable union G =

⋃
j∈ω

⋃
x∈B Gj,x. So for any a 6= 0, there is

an ultrafilter F ∈ Na ∩ (S \H ∪G) by the Baire category theorem. This
induces a homomorphism fa : A → Ca, Ca ∈ Csn that omits the given
types, such that fa(a) 6= 0. (First one defines f with domain B as on
p. 216, then restricts f to A obtaining fa the obvious way.) The map
g : A → Pa∈A\{0}Ca defined via x 7→ (ga(x) : a ∈ A \ {0})(x ∈ A) is as
required. In case A is simple, then by properties of covK, S \ (H ∪G) is
non-empty, so if F ∈ S\(H∪G), then F induces a non-zero homomorphism
f with domain A into a Csn omitting the given types. By simplicity of A,
f is injective.
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Corollary 4.3.

(1) If T is a countable theory that admits elmination of quantifiers, and
λ is a cardinal < 2ℵ0 , and F = 〈Γi : i < λ〉 is a family of complete
non-principal types, then F can be omitted in a countable model of
T.

(2) If T is any countable theory, then < p non-principal types can be
omitted; if T is complete, we can further replace p by covK.

Proof: Let T be as given in a signature L having n variables. Let
A = FmT , and Gi = {φT : φ ∈ Γi}. Then Gi is a a non-principal ul-
trafilter; maximality follows fom the completeness of types considered. By
completeness of T , A is simple. Since T admits elimination of quantifiers,
then FmT ∈ NrnCAω. Indeed, let Tω be the theory in the same signature
L but using ω many variables. Let C = FmTω be the Tarski–Lindenbaum
quotient algebra. Then C ∈ CAω; in fact C ∈ ICsω, and the map Φ defined
from A to NrnC via φ/ ≡T 7→ φ/ ≡Tω is injective and bijective, that is to
say, Φ having domain A and codomain NrnC is in fact onto NrnC due to
quantifier elimination. An application of Theorem 4.2 finishes the proof.
The second part is proved exactly like the proof of [19, Theorem 3.2.4]
replacing covK by p.

Here we adress omitting types theorems for certain infinitary extensions
of first order logic. Our treatment remains to be purely algebraic. For
α ≥ ω, we let Dcα denote the class of dimension complemented CAαs, so
that A ∈ Dcα ⇐⇒ α \∆x is infinite for every x ∈ A.

Theorem 4.4. Let α be a countable infinite ordinal.

(1) There exists a countable atomic A ∈ RCAα such that the non-princi-
pal types of co–atoms cannot be omitted in a Gsα,

(2) If A ∈ ScNrαCAα+ω is countable, λ a cardinal < p and X = (Xi :
i < λ) is a family of non-principal types, then X can be omited in a
Gwsα (in the sense of definition 2.1 upon replacing Gsα by Gwsα).

(3) Assume that the assumption (*) formulated before Theorem 3.20
holds. Then there exists an atomic A ∈ RCAα such that its Dedekind–
MacNeille completion, namely, CmAtA is not in SNrαCAα+k for any
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k ≥ 3. Furthermore, A cannot be completely represented by any alge-
bra in Gwsα.

Proof:

(1) Using exactly the same argument in [11], one shows that if C ∈ CAω is
completely representable C |= d01 < 1, then |AtC| ≥ 2ω. The argument is
as follows: Suppose that C |= d01 < 1. Then there is s ∈ h(−d01) so that if
x = s0 and y = s1, we have x 6= y. Fix such x and y. For any J ⊆ ω such
that 0 ∈ J , set aJ to be the sequence with ith co-ordinate is x if i ∈ J , and
is y if i ∈ ω \ J . By complete representability every aJ is in h(1C) and so
it is in h(x) for some unique atom x, since the representation is an atomic
one. Let J, J ′ ⊆ ω be distinct sets containing 0. Then there exists i < ω
such that i ∈ J and i /∈ J ′. So aJ ∈ h(d0i) and a′J ∈ h(−d0i), hence atoms
corresponding to different aJ ’s with 0 ∈ J are distinct. It now follows that
|AtC| = |{J ⊆ ω : 0 ∈ J}| ≥ 2ω.
Take D ∈ Csω with universe ℘(ω2). Then D |= d01 < 1 and plainly
D is completely representable. Using the downward Löwenheim–Skolem–
Tarski theorem, take a countable elementary subalgebra B of D. This is
possible because the signature of CAω is countable. Then in B we have
B |= d01 < 1 because B ≡ C. But B cannot be completely representable,
because if it were then by the above argument, we get that |AtB| ≥ 2ω,
which is impossible because B is countable.

(2) Now we prove the second item, which is a generalization of [19, The-
orem 3.2.4]. Though the generalization is strict, in the sense that Dcω (
ScNrωCAω+ω

1 the proof is the same. Without loss, we can take α = ω. Let
A ∈ CAω be as in the hypothesis. For brevity, let β = ω+ω. By hypothesis,
we have A ⊆c NrαD, with D ∈ CAβ . We can also assume that D ∈ Dcβ
by replacing, if necessary, D by SgDA. Since A is a complete sublgebra of
NrωD which in turn is a complete subalgebra of D, we have A ⊆c D. Thus
given < p non-principal types in A they stay non-principal in D. Next one
proceeds like in op.cit since D ∈ Dcβ is countable; this way omitting any X
consisting of < p non-principal types. For all non-zero a ∈ D, there exists
B ∈ Wsβ and a homomorphism fa : D → B (not necessarily injective)
such that fa(a) 6= ∅ and fa omits X. Let C = Pa∈D,a 6=0Ba ∈ Gwsβ . Define

1It is not hard to see that the full set algebra with universe ℘(ωω) is in NrωCAω+ω ⊆
ScNrωCAω+ω but it is not in Dcω because for any s ∈ ωU , ∆{s} = ω.
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g : D → C by g(x) = (fa(x) : a ∈ D \ {0}), and then relativize g to A as

follows: Let W be the top element of C. Then W =
⋃
i∈I

βU
(pi)
i , where

pi ∈ βUi and βU
(pi)
i ∩ βU

(pj)
j = ∅, for i 6= j ∈ I. Let V =

⋃
i∈I

αU
(pi�α)
i .

For s ∈ V , s ∈ αU
(pi�α)
i (for a unique i), let s+ = s∪ pi � β \α. Now define

f : A→ ℘(V ), via a 7→ {s ∈ V : s+ ∈ g(a)}. Then f is as required.

The proof of (3) is like the proof of Theorem 3.20

4.1. Other variants of Lω,ω

Now we prove an omitting types theorem for a countable version of the so–
called ω–dimensional cylindric polyadic algebras with equality, in symbols
CPEω, as defined in [8]. Consider the semigroup T generated by the set of
transformations {[i|j], [i, j], i, j ∈ ω, suc, pred} defined on ω. Then T is a
strongly rich subsemigroup of (ωω, ◦) in the sense of [18], where suc and pred
are the successor and predecessor functions on ω, respectively. For a set X,
let B(X) denote the Boolean set algebra 〈℘(X),∪,∩,∼〉. Let KT be the
class of set algebras of the form 〈B(V ),Ci,Sτ 〉i∈ω,τ∈T, where V ⊆ ωU, V is

a compressed space, that is V =
⋃
i∈I

αU
(p)
i where for each i, j ∈ I, Ui = Uj

or Ui ∩Uj = ∅. Let Σ1 be the set of equations defined in [18] axiomatizing
KT; that is ModΣ1 = KT. Here we do not have diagonal elements in
the signature; the corresponding logic is a conservative extension of Lω,ω
without equality, and it is a proper extension.

Let GpT be the class of set algebras of the form
〈B(V ),Ci,Dij ,Sτ 〉i,j∈ω,τ∈T, where V ⊆ ωU, V a non-empty union (not
necessarily a disjoint one) of cartesian spaces. Here we have diagonal ele-
ments in the signature; the corresponding logic is a variant of Lω,ω where
quantifiers do not necessarily commute, so Lω,ω does not ‘embed’ in this
logic its (square Tarskian) semantics are different. Let Σ2 be the set of
equations defining CPEω in [8, Definition 6.3.7] restricted to the countable
signature of GpT. In the next theorem complete additivity is given explic-
itly in the second item only. Any algebra A satisifying Σ2 is completely
additive (due to the presence of diagonal elements), cf. [8].

Theorem 4.5.

(1) If A |= Σ2 is countable and X = (Xi : i < λ), λ < p is a family
of subsets of A, such that

∏
Xi = 0 for all i < λ, then there exists
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B ∈ GpT and an isomorphism f : A → B such that
⋂
x∈Xi f(x) = ∅

for all i < λ.

(2) If A |= Σ1 is countable, and completely additive and X = (Xi : i < λ),
λ < p is a family of subsets of A, such that

∏
Xi = 0 for all i < λ,

then there exists B ∈ KT and an isomorphism f : A → B such that⋂
x∈Xi f(x) = ∅ for all i < λ.

(3) In particular, for both cases any countable atomic algebra is com-
pletely representable.

Proof: For brevity, throughout the proof of the first two items, let α =
ω + ω. By strong richness of T, it can be proved that A = NrωB where
B is an α–dimensional dilation with substitution operators coming from a
countable subsemigroup S ⊆ (αα, ◦) [22]. It suffices to show that for any
non-zero a ∈ A, there exist a countable D ∈ GpT and a homomorphism
(that is not necessarily injective) f : A → D, such that

⋂
x∈Xi f(x) = ∅

for all i ∈ ω and f(a) 6= 0. So fix non-zero a ∈ A. For τ ∈ S, set
dom(τ) = {i ∈ α : τ(i) 6= i} and rng(τ) = {τ(i) : i ∈ dom(τ)}. Let adm be
the set of admissible substitutions in S, where now τ ∈ adm if domτ ⊆ ω and
rngτ∩ω = ∅. Since S is countable, we have |adm| ≤ ω; in fact it can be easily
shown that |adm| = ω. Then for all i < α, p ∈ B and σ ∈ adm, sσcip =∑
j∈α sσs

i
jp. By A = NrωB we also have, for each i < ω,

∏B
Xi = 0, since

A is a complete subalgebra of B. Because substitutions are completely
additive, for all τ ∈ adm and all i < λ,

∏
sBτ Xi = 0. For better readability,

for each τ ∈ adm, for each i ∈ ω, let Xi,τ = {sτx : x ∈ Xi}. Then
by complete additivity, we have: (∀τ ∈ adm)(∀i ∈ λ)

∏
BXi,τ = 0. Let

S be the Stone space of B, whose underlying set consists of all Boolean
ultrafilters of B and for b ∈ B, let Nb denote the clopen set consisting
of all ultrafilters containing b. Then from the suprema obtained above,
it follows that for x ∈ B, j < α, i < λ and τ ∈ adm, the sets Gτ,j,x =
Nsτ cjx \

⋃
iNsτ s

j
ix

and Hi,τ =
⋂
x∈Xi Nsτx are closed nowhere dense sets in

S. Also each Hi,τ is closed and nowhere dense. Like before, we can assume
that B is countable by assuming that A generates B is the presence of |
alpha| = (|A| = ω) many operations. Let G =

⋃
τ∈adm

⋃
i∈α

⋃
x∈B Gτ,i,x

and H =
⋃
i∈λ

⋃
τ∈adm Hi,τ . Then H is meager, that is it can be written as

a countable union of nowghere dense sets. This follows from the properties
of p By the Baire Category theorem for compact Hausdorff spaces, we
get that X = S r H ∪G is dense in S, since H ∪G is meager, because
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G is meager, too, since adm, α and B are all countable. Accordingly,
let F be an ultrafilter in Na ∩ X, then by its construction F is a perfect
ultrafilter [20, p. 128]. Let Γ = {i ∈ α : ∃j ∈ ω : cidij ∈ F}. Since
cidii = 1, then ω ⊆ Γ. Furthermore the inclusion is proper, because for
every i ∈ ω, there is a j ∈ α \ ω such that dij ∈ F . Define the relation
∼ on Γ via m ∼ n ⇐⇒ dmn ∈ F. Then ∼ is an equivalence relation
because for all i, j, k ∈ α, dii = 1 ∈ F , dij = dji, dik · dkj ≤ dlk and
filters are closed upwards. Now we show that the required representation
will be a GpT with base M = Γ/ ∼. One defines the homomorphism f
using the hitherto obtained perfect ultrafilter F as follows: For τ ∈ ωΓ,
such that rng(τ) ⊆ Γ \ ω (the last set is non-empty, because ω ( Γ), let
τ̄ : ω → M be defined by τ̄(i) = τ(i)/ ∼ and write τ+ for τ ∪ Idα\ω.
Then τ+ ∈ adm, because τ+ � ω = τ , rng(τ) ∩ ω = ∅, and τ+(i) = i for
all i ∈ α \ ω. Let V = {τ̄ ∈ ωM : τ : ω → Γ, rng(τ) ∩ ω = ∅}. Then
V ⊆ ωM is non-empty (because ω ( Γ). Now define f with domain A via:
a 7→ {τ̄ ∈ V : sBτ+a ∈ F}. Then f is well defined, that is, whenever σ, τ ∈ ωΓ
and τ(i) \ σ(i) for all i ∈ ω, then for any x ∈ A, sBτ+x ∈ F ⇐⇒ sBσ+x ∈ F .
Furthermore f(a) 6= 0, since sIda = a ∈ F and Id is clearly admissable. The
congruence relation just defined on Γ guarantees that the hitherto defined
homomorphism respects the diagonal elements. As before, for the other
operations, preservation of cylindrifiers is guaranteed by the condition that
F /∈ Gτ,i,p for all τ ∈ adm, i ∈ α and all p ∈ A. For omitting the given
family of non-principal types, we use that F is outside H, too. This means
(by definition) that for each i < λ and each τ ∈ adm there exists x ∈ Xi,
such that sBτ x /∈ F . Let i < λ. If τ̄ ∈ V ∩

⋂
x∈Xi f(x), then sBτ+x ∈ F

which is impossible because τ+ ∈ adm. We have shown that for each i < ω,⋂
x∈Xi f(x) = ∅.

For the second required one deals with all substitutions in the semigroup
S determining the signature of the dilation not just adm, namely, the ad-
missable ones as defined above. More succintly, now all substitutions in S
are admissable. Other than that, the idea is essentially the same appealing
to the Baire category theorem. Let T be as above. Assume that A |= Σ1

is countable, and fix non-zero a ∈ A. Similarly to the first part we will
construct a set algebra C in KT and a homomorphism f : A→ C omitting
the given non-principal types and satisfying that f(a) 6= 0. By [18], there
exists B such that A = NrωB and the signature of B has, besides all the
Boolean operations, all cylindrifiers ci : i ∈ α, and the substitutions are
determined by a semigroup defined from the rich semigroup T. Substitu-
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tions in the signature of B are indexed by transformations in S; which we
explicitly describe. The semigroup S is the subsemigroup of αα generated
by the set {τ̄ : τ ∈ T} together with all replacements and transpositions
on α. Here τ̄ is the transformation that agrees with τ on ω and otherwise
is the identity. For all i < α, p ∈ B, we have cip =

∑
j∈α s

i
jp.

By A = NrωB we also have, for each i < ω,
∏B

Xi = 0, since A is a
complete subalgebra of B. Let V be the generalized ω-dimensional weak
space

⋃
τ∈S

ωα(τ). Recall that ωα(τ) = {s ∈ ωα : |{i ∈ ω : si 6= τi}| < ω}.
For each τ ∈ V and for each i ∈ λ, let Xi,τ = {sBτ̄ x : x ∈ Xi}. Here we are
using that for any τ ∈ V , τ̄ ∈ S. By complete additivity which is given as
an assumption, it follows that (∀τ ∈ V )(∀i ∈ κ)

∏
BXi,τ = 0.

Let S denote the Stone space of the boolean part of B. Like before,
for p ∈ B, let Np be the clopen set of S consisting of all ultrafilters of the
boolean part of B containing p. Then for x ∈ B, j < α, i < λ, τ ∈ S (using
the suprema just established) , the sets Gj,x = Ncjx \

⋃
iNsjix

and Hi,τ =⋂
x∈Xi Nsτx are closed nowhere dense sets in S. Also each Hi,τ is closed

and nowhere dense.
Let G =

⋃
i∈α

⋃
x∈B Gi,x and H =

⋃
i∈λ

⋃
τ∈S Hi,τ . Then H is meager,

since it is a countable union of nowhere dense sets. Once more by the
Baire Category theorem for compact Hausdorff spaces, we get that X =
SrH∪G is dense in S, Let F be an ultrafilter in Na ∩X. One builds the
required represention from F as follows [18]: Let ℘(V ) be the full boolean
set algebra with unit V . Let f be the function with domain A such that
f(a) = {τ ∈ V : sBτ̄ a ∈ F}. Then f is the desired homorphism from A
into the set algebra 〈℘(V ), ci, sτ 〉i∈ω,τ∈T. In particular, f(a) 6= 0, because
Id ∈ f(a). That f omits the given non-principal types is exactly like the
first part, modulo replacing adm by (the whole of the semigroup) S.

Given A as in the hypothesis, the last required follows by omitting the
non-principal type consisting of co-atoms obtaining a complete representa-
tion of A.

The cylindric reduct of the algebra TmAt in the proof of Theorem 3.5
is representable, but not completely representable, for a complete repre-
sentation of TmAt induces an ordinary representation for CmAt. In fact,
it is known that for 2 < n < ω the class CRCAn is not elementary [11]. We
give a short proof. Let A ∈ NrnCAω be an atomic algebra with uncount-
able many atoms having no complete representation. This algebra exists
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[23, Theorem 4.5]. Let LCAn be the class of CAns satifying the Lyndon
conditions in the sense of [13]. Then using Lemma 3.3, ∃ has a winning
strategyin Gω(AtA), hence she has winning strategyin Gωω(AtA), a fortiori
in the usual k rounded atomic game Gk(AtA) for all k ∈ ω. Thus by def-
inition A ∈ LCAn. But LCAn is the elementary closure of CRCAn and we
are done. For a class K, let Kad be the class of completey additive algebras
in K. In contrast for polyadic (equality) algebras of infinite dimension, we
have the following result proved in [21, 23]. We give a unifted proof.

Theorem 4.6. Let α be an infinite ordinal and n < ω(≤ α). If D ∈ PEAα
(PAα is completely additive and ) is atomic, then any complete subalgebra
of NrnD is completely representable as a PEAn (PAn). In particular,
ScPA

ad
α ∩At = PAad

α ∩At = CRPAα and the class CRPAα is elementary.

Proof sketch. Assume that A ⊆c NrnD, where D ∈ PEAα is atomic.
Let c ∈ A be non-zero. We will find a homomorphism f : A → ℘(nU)
such that f(c) 6= 0, and preserves infinitary joins. Assume for the moment
(to be proved in a while) that A ⊆c D. Then by [12, Lemma 2.16] A
is atomic because D is. For brevity, let X = AtA. Let m be the local
degree of D, c its effective cardinality and let β be any cardinal such that
β ≥ c and

∑
s<m β

s = β; such notions are defined in [6]. We can assume
that D = NrαB, with B ∈ PEAβ [10, Theorem 5.4.17]. For any ordinal
µ ∈ β, and τ ∈ µβ, write τ+ for τ ∪ Idβ\µ(∈ ββ). Consider the following
family of joins evaluated in B, where p ∈ D, Γ ⊆ β and τ ∈ αβ: (*)

c(Γ)p =
∑B{sτ+p : τ ∈ ωβ, τ � α \ Γ = Id}, and (**):

∑
sBτ+X = 1. The

first family of joins exists [6, Proof of Theorem 6.1], and the second exists,

because
∑A

X =
∑D

X =
∑B

X = 1 and τ+ is completely additive,
since B ∈ PEAβ . The last equality of suprema follows from the fact that
D = NrαB ⊆c B and the first from the fact that A ⊆c D. All this is
proved in [23]. Let F be any Boolean ultrafilter of B generated by an
atom below a. We show that F will preserve the family of joins in (*) and
(**). While in proving a positive a OTT for Ln in item (2) of Theorem
4.2 we resorted to the Baire Category Theorem, now we use a far more
basic less sophisticated topological argument. One forms nowhere dense
sets in the Stone space of B corresponding to the aforementioned family
of joins as follows: The Stone space of (the Boolean reduct of) B has
underlying set S, the set of all Boolean ultrafilters of B. For b ∈ B, let Nb
be the clopen set {F ∈ S : b ∈ F}. The required nowhere dense sets are
defined for Γ ⊆ β, p ∈ D and τ ∈ αβ via: AΓ,p = Nc(Γ)p \

⋃
τ :α→β Nsτ+p,
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and Aτ = S \
⋃
x∈X Nsτ+x. The principal ultrafilters are isolated points

in the Stone topology, so they lie outside the nowhere dense sets defined
above. Hence any such ultrafilter preserve the joins in (*) and (**). Fix a
principal ultrafilter F with a ∈ F . Define the equivalence relation E (on
β) by setting iEj ⇐⇒ dBij ∈ F (i, j ∈ β). Define f : A → ℘(n(β/E)), via

x 7→ {t̄ ∈ n(β/E) : sBt∪Idβ∼nx ∈ F}, where t̄(i/E) = t(i) (i < n) and t ∈ nβ.
Then f is a well–defined homomorphism; preserving cylindrifiers depends
on (*). f defines a complete representation such that Also f(c) 6= 0 because
Id ∈ f(c). To show that f is an atomic, hence complete representation, one
uses (**) as follows: By construction, for every s ∈ n(β/E), there exists
x ∈ X(= AtA), such that sBs∪Idβ∼nx ∈ F , from which we get

⋃
x∈X f(x) =

n(β/E). If A ∈PAα, we do not need to bother about diagonal elements
and so the base of the representation will be simply β (as defined above for
PEAα), not β/E, and the desired homomorphism, with n ≤ α, is defined
via g : A → ℘(nβ), via x 7→ t ∈ nβ : sBt∪Idβ∼nx ∈ F}. Checking that g
preserves the operations and that g is atomic, hence complete, is exactly
like the PEA case. For PAα, atomicity can be expressed by a first order
sentence, and complete additivity can be captured by continuum many first
order formulas [21]

5. Concluding remarks and related results

(1) A Theorem of Vaught in basic model theory, says that a countable
atomic Lω,ω theory T has a unique atomic (equivalently in this context
prime) model. This can be proved by a direct application of the clssical
Orey-Henkin Omitting Types Theorem. The unique atomic atomic model
is the ’smallest’ models of T , in the sense that it elementary embeds into
other models of T . The last theorem says that Keisler’s logics which allow
formulas of infinite length and quantification on infinitely many variables,
enjoys a form of Vaught’s theorem. And in Keisler’s logics there is the ad-
ditional advantage that there is no restrictions on the cardinality of atomic
theories (algebras) considered. For Lω,ω, Vaught’s theorem is known to
fail for theories having uncountable cadinality. If T is an atomic theory in
Keisler’s logic, and the Tarski–Lindenbaum atomic quotient algebra FmT
happens to be completely additve, then T has an atomic model. In con-
trast, in Corollary 3.13, we actually showed that Vaught’s theorem fails
for Ln when we substantially broaden the class of permissable models; it
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fails even for ‘n + 3-square models.’ For 2 < n < ω, there is a countable
atomic Ln theory that lacks even an atomic n+ 3-square model (let alone
an ordinary atomic model), i.e a complete n + 3-square representation of
the Tarski–Lindenbaum quotient algebra FmT (∈ RCAn).

(2) Let 2 < n < l ≤ m ≤ ω. Consider the statemet notVT(l,m): There
exists a countable, complete and atomic Ln first order theory T in a signa-
ture L such that the type Γ consisting of co-atoms in the cylindric Tarski–
Lindenbaum quotient algebra FmT is realizable in every m–square model,
but Γ cannot be isolated using ≤ l variables, where n ≤ l < m ≤ ω. An
m-square model of T is an m-square represenation of FmT . The statement
notVT(l,m), short for Vaught’s Theorem (VT) fails at (the parameters) l
and m. Let VT(l,m) stand for VT holds at l and m, so that by definition
notVT(l,m) ⇐⇒ ¬VT(l,m). We also include l = ω in the equation by
defining VT(ω, ω) as VT holds for Lω,ω: Atomic countable first order theo-
ries have atomic countable models. For 2 < n < l ≤ m ≤ ω and l = m = ω,
it is likely and plausible that (***): VT(l,m) ⇐⇒ l = m = ω. In other
words: Vaught’s theorem holds only in the limiting case when l → ∞ and
m = ω and not ‘before’. We give sufficient condition for (***) to happen.
The following definition to be used in the sequel is taken from [2]:

Definition 5.1. [2, Definition 3.1] Let R be a relation algebra, with non-
identity atoms I and 2 < n < ω. Assume that J ⊆ ℘(I) and E ⊆ 3ω. We
say that (J,E) is a strong n–blur for R if it (J,E) is an n–blur of R in the
sense of [2, Definition 3.1], that is to say J is a complex n blur and E is an
index blur such that the complex n–blur satisfies:

(∀V1, . . . Vn,W2, . . .Wn ∈ J)(∀T ∈ J)(∀2 ≤ i ≤ n)safe(Vi,Wi, T ).

Theorem 5.2. For 2 < n < ω and n ≤ l < ω, notVT(n, n + 3) and
notVT(l, ω) hold. Furthermore, if for each n < m < ω, there exists a
finite relation algebra Rm having m− 1 strong blur and no m-dimensional
relational basis, then (***) above for VT holds.

Proof: We start by the last part. Let Rm be as in the hypothesis with
strong m − 1–blur (J,E) and m-dimensional relational basis. We ‘blow
up and blur’ Rm in place of the Maddux algebra Ek(2, 3) blown up and
blurred in [2, Lemma 5.1], where k < ω is the number of non-identity
atoms and k depends recursively on l, giving the desired‘strong’ l–blurness,
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cf. [2, Lemmata 4.2, 4.3]. The relation algebra Bb(Rm, J, E), obtained
by blowing up and blurring Rm with respect to (J,E), is TmAt (the
term algebra). For brevity call it R. Now take A = Bbn(Rm, J, E)
as defined in [2] to be the CAn obtained after blowing up and blurring
Rm to a weakly representable relation algebra atom structure, namely,
At = AtR. Here by [2, Theorem 3.2 9(iii)], MatnAtR (the set of n-basic
matrices on AtR) is a CAn atom structure and A is an atomic subalgebra
of CmMatn(AtR) containing TmMatn(AtR), cf. [2]. In fact, by [2, item
(3) p. 80], A ∼= NrnBbl(Rm, J, E).The last algebra Bbl(Rm, J, E) is de-
fined and the isomorphism holds because Rm has a strong l-blur. The
embedding h : RdnBbl(Rm, J, E) → A defined via x 7→ {M � n : M ∈ x}
restricted to NrnBbl(Rm, J, E) is an isomorphism onto A [2, p. 80]. Surjec-
tiveness uses the displayed condition in Definition 5.1 of strong l-blurness.
Then A ∈ RCAn ∩ NrnCAl, but A has no complete m-square representa-
tion. For if it did, then this induces an m–square representation of CmAtA,
But CmAtA does not have an m-square representation, because R does
not have an m-dimensional relational basis, and R ⊆ RaCmAtA. So an
m-square representation of CmAtA induces one of R which that R has no
m-dimensional relational basis, a contradiction. We prove notVT(m−1,m),
hence the required, namely, (***). By [10, § 4.3], we can (and will) assume
that A = FmT for a countable, simple and atomic theory Ln theory T . Let
Γ be the n–type consisting of co–atoms of T . Then Γ is realizable in every
m–square model, for if M is an m–square model omitting Γ, then M would
be the base of a complete m–square representation of A, and so by Theo-
rem 3.9 A ∈ ScNrnDm which is impossible. Suppose for contradiction that
φ is an m− 1 witness, so that T |= φ→ α, for all α ∈ Γ, where recall that
Γ is the set of coatoms. Then since A is simple, we can assume without
loss that A is a set algebra with base M say. Let M = (M,Ri)i∈ω be the
corresponding model (in a relational signature) to this set algebra in the
sense of [10, § 4.3]. Let φM denote the set of all assignments satisfying φ in
M. We have M |= T and φM ∈ A, because A ∈ NrnCAm−1. But T |= ∃xφ,
hence φM 6= 0, from which it follows that φM must intersect an atom α ∈ A
(recall that the latter is atomic). Let ψ be the formula, such that ψM = α.
Then it cannot be the case that T |= φ → ¬ψ, hence φ is not a witness,
contradiction and we are done. Finally, notVT(n, n + 3) and notVT(l, ω)
(n ≤ l < ω) follow from Theorm 3.5 and [2] using the same reasoning as
above.
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(3) Let 2 < n < ω. For any m > n there exists an n–variable formula
that cannot be proved using m − 1 variables, but can be proved using
m variables [12, Theorem 15.17], using any standard Hilbert style proof
system [10, § 4.3]. To prove this, for each m > n+ 1 Hirsch and Hodkinson
constructed a finite relation algebra, such that Rm has an m−1 dimensional
hyperbasis, but no m–dimensional hyperbasis [12, § 15.2–15.4]. To prove
that VT fails everywhere, as defined above, one needs to construct, for each
n+1 < m < ω, a finite relation algebra Rm having a strong m−1 blur, but
no m–dimensional basis. In this case blowing up and blurring Rm gives
a(n infinite) relation algebra having an m− 1 dimensional cylindric basis,
whose Dedekind–MacNeille completion has no m–dimensional basis.

(4) Coming back full circle we reprove strong non-finite axiomatizibility
results refining Monk’s obtained by Maddux and Biro. Let 2 < n ≤ l <
m ≤ ω. In VT(l,m), while the parameter l measures how close we are to
Lω,ω, m measures the ‘degree’ of squareness of permitted models. Using
elementary calculas terminology one can view liml→∞VT(l, ω) = VT(ω, ω)
algebraically using ultraproducts as follows. Fix 2 < n < ω. For each 2 <
n ≤ l < ω, let Rl be the finite Maddux algebra Ef(l)(2, 3) with strong l–blur
(Jl, El) and f(l) ≥ l as specified in [2, Lemma 5.1] (denoted by k therein).
Let Rl = Bb(Rl, Jl, El) ∈ RRA and let Al = NrnBbl(Rl, Jl, El) ∈ RCAn.
Then (AtRl : l ∈ ω ∼ n), and (AtAl : l ∈ ω ∼ n) are sequences of weakly
representable atom structures that are not strongly representable with a
completely representable ultraproduct.

Corollary 5.3. Let 2 < n < ω. Then the varieties RCAn and RRA,
together with any finite first order definable expansion of each, cannot be
derived from any finite set of equations valid in the variety [3, 17].

We used a rainbow construction to show ultimatey that the m-clique
guraded-fragments of Ln with respect to m square and m flat models,
equivalently the m-packed fragments of Ln are not Sahlqvist. We show
thay notVT(l,m) fails on the ‘horizontal x axis’ and the ‘vertical y-axis.’
To show that VTfails everywhere, that is to prove that VT(l,m) ⇐⇒
l = m = ω, we reduced the problem in Theorem 5.2 to finding a finite
relation algebra having a strong l blur and no m-dimensional relational
basis. Using elemenatary Calculus terminogy, we can express this fact via
the following double limit. liml→ω,m→ωVT(l,m) = VT(l → ω,m → ω) =
VT(ω, ω) = VT. This notation admittedly may be misleading, since it can
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be interpretated as that the limit of a constant sequence whose every term
is False is True. This course is blatantly absurd. What is meant by this
double limit is rather the following: For l < l′ ≤ ω and m ≤ m′ with m < l
and m′ < l′, VT(l,m) and VT(l′,m′) are both false, but the last is closer to
the truth. At the limit, it becomes actually true. For 2 < n ≤ l < m < ω,
VT(l,m) is not regarded in this context as False nor True, but rather
having a ’fuzzy’ value if you like, or VT(l,m) is a probablity function whose
values are between 0 and 1. The fuzziness decreases and the probability
increases to reach certainty, namely, probability 1, asserting that Atomic
countable theories have countable models, namely, that VT holds for Lω,ω.
Having said that, perhaps the more suitable notation would be the (double)∑
m

∑
l VT(l,m) = VT.
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[1] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and

Algebraic Logic, vol. 22 of Bolyai Society Mathematical Studies, Springer

Verlag (2013), DOI: https://doi.org/10.1007/978-3-642-35025-2.

[2] H. Andrka, I. Nmeti, T. Sayed Ahmed, Omitting types for finite vari-

able fragments and complete representations of algebras, Journal of Sym-

bolic Logic, vol. 73(1) (2008), pp. 65–89, DOI: https://doi.org/10.2178/

jsl/1208358743.

[3] B. Bir, Non-finite-axiomatizability results in algebraic logic, Journal of

Symbolic Logic, vol. 57(3) (1992), pp. 832–843, DOI: https://doi.org/

10.2307/2275434.

[4] P. Blackburn, M. d. Rijke, Y. Venema, Modal Logic, Cambridge Tracts

in Theoretical Computer Science, Cambridge University Press (2001), DOI:

https://doi.org/10.1017/CBO9781107050884.

[5] J. Bulian, I. Hodkinson, Bare canonicity of representable cylindric and

polyadic algebras, Annals of Pure and Applied Logic, vol. 164(9) (2013),

pp. 884–906, DOI: https://doi.org/10.1016/j.apal.2013.04.002.

[6] A. Daigneault, J. Monk, Representation Theory for Polyadic algebras,

Fundamenta Mathematicae, vol. 52 (1963), pp. 151–176, DOI: https:

//doi.org/10.4064/fm-52-2-151-176.

https://doi.org/10.1007/978-3-642-35025-2
https://doi.org/10.2178/jsl/1208358743
https://doi.org/10.2178/jsl/1208358743
https://doi.org/10.2307/2275434
https://doi.org/10.2307/2275434
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1016/j.apal.2013.04.002
https://doi.org/10.4064/fm-52-2-151-176
https://doi.org/10.4064/fm-52-2-151-176


286 Tarek Sayed Ahmed

[7] P. Erds, Graph Theory and Probability, Canadian Journal of Mathemat-

ics, vol. 11 (1959), pp. 34–38, DOI: https://doi.org/10.4153/CJM-1959-003-9.

[8] M. Ferenczi, A new representation theory: Representing cylindric-like al-

gebras by relativized set algebras, [in:] H. Andréka, M. Ferenczi, I. Németi
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[in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras

and Algebraic Logic, vol. 22 of Bolyai Society Mathematical Studies,

Springer Verlag (2013), pp. 105–134, DOI: https://doi.org/10.1007/978-3-

642-35025-2 6.

[21] T. Sayed Ahmed, The class of completely representable polyadic algebras of

infinite dimensions is elementary, Algebra Universalis, vol. 72(1) (2014),

pp. 371–390, DOI: https://doi.org/10.1007/s00012-014-0307-y.

[22] T. Sayed Ahmed, On notions of representability for cylindric-polyadic al-

gebras, and a solution to the finitizability problem for quantifier logics with

equality, Mathematical Logic Quarterly, vol. 61(6) (2015), pp. 418–477,

DOI: https://doi.org/10.1002/malq.201300064.

[23] T. Sayed Ahmed, Representability for cylindric and polyadic algebras, Stu-

dia Mathematicea Hungarica, vol. 56(3) (2019), pp. 335–363.

[24] S. Shelah, Classification Theory, vol. 92 of Studies in Logic and the Foun-

dations of Mathematics, Elsevier (1978).

[25] Y. Venema, Atom structures and Sahlqvist equations, Algebra Universalis,

vol. 38 (1997), pp. 185–199, DOI: https://doi.org/10.1007/s000120050047.

Tarek Sayed Ahmed

Cairo University
Department of Mathematics
Faculty of Science
Giza, Egypt

e-mail: rutahmed@gmail.com

https://doi.org/10.2307/2274756
https://doi.org/10.1007/s00012-004-1807-y
https://doi.org/10.1007/s00012-004-1807-y
https://doi.org/10.1007/978-3-642-35025-2_10
https://doi.org/10.1007/978-3-642-35025-2_10
https://doi.org/10.1007/978-3-642-35025-2_6
https://doi.org/10.1007/978-3-642-35025-2_6
https://doi.org/10.1007/s00012-014-0307-y
https://doi.org/10.1002/malq.201300064
https://doi.org/10.1007/s000120050047
mailto:rutahmed@gmail.com

	Introduction
	Some basics
	Non-atom–canonicity of SNrnCAn+k for k3 and failure of OTT with respect to clique-guardedsemantics
	Positive results on omitting types
	Other variants of L, 

	Concluding remarks and related results
	Introduction
	Free NS33–algebras
	The lattice (NS33) of all subvarieties of NS33
	Introduction
	Preliminaries
	Tense Operators on BL-algebras 
	Tense filters in BL-algebras and simple tense BL-algebras
	Tense congruence relations in tense BL-algebras
	Conclusion
	Introduction
	IPC plus (AB)[(BC)(CA)]
	A sequence of axioms equivalent to Dummett'saxiom
	 A couple of remarks
	Introduction
	Preliminaries
	Falling fuzzy subhoops and filters
	Conclusions and future work
	Introduction
	Preliminaries
	Generalizations of neutrosophic ideals basedon neutrosophic points
	Conclusions
	Introduction
	Preliminaries
	Graded modal logic
	Monotonic modal logic

	Graded modal logics are monotonic modal logics
	Graded neighbourhood frames
	Graded neighbourhood frames are first-orderdefinable
	Graded neighbourhood frames are not modallydefinable
	Bisimulation
	From monotonic bisimulation to graded bisimulation
	Graded bisimulation is equivalent to graded tuplebisimulation

	Conclusion



