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Abstract. We study properties of geodesic foliations on the flat, n-dimensional torus.
Using the isomorphism of the Hodge star, we obtain some facts concerning compact totally
geodesic surfaces (which are the leaves of geodesic foliations). We compute the p-module of
a geodesic foliation. On the basis of these results, we derive a kind of reciprocity formula for
the product of modules of two orthogonal foliations. We relate this product with the number
of intersections of their leaves. We also obtain a formula for a product of modules of a finite
number of geodesic foliations.
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Introduction

We study properties of geodesics of the flat, n-dimensional torus, which helps us
to investigate relations between geodesic foliations on this manifold. The leaves of
such a foliation have identical measures, since they are projections of the parallel
k-dimensional planes of Rn. We introduce the notion of a closing k-plane of Rn

(which can be treated as an element of the Grassmann algebra), that corresponds to
a compact totally geodesic (ctg) surface, being a leaf of a geodesic foliation. An im-
portant concept that appears in the first section of the paper is a fundamental domain,
which is a parallelepiped in a k-plane that has the same measure as the leaves of the
corresponding geodesic foliation. It is convenient to study ctg surfaces with the aid
of algebraic tools. A simple k-node (that is a specific element of the space Λk(Rn))
can be identified with a closing k-plane. Since the Hodge star acting on a multi vector
produces an orthogonal multi vector, we use this concept to obtain interesting facts
concerning ctg surfaces. The main results are: Theorem 17, which actually claims
that a totally geodesic surface orthogonal to a ctg surface (of complementary dimen-
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sion) is a ctg surface as well (it is also compact), and Theorem 29, saying that such
surfaces have identical measures.

The second section concentrates on the p-module of a geodesic foliation. In the
case of the flat torus, there is a simple formula for that quantity (Theorem 34).
One can notice that for the unit torus, it is independent of the exponent p. On the
basis of the results of the previous section, we obtain an interesting relation between
the modules of a pair of orthogonal geodesic foliations (Theorem 38). Their prod-
uct depends directly on the number of intersections of the leaves of these foliations.
This result can be understood as an extension of the reciprocity formula for a pair of
conjugate foliations (see [1]). We also obtain a formula for a product of modules
(with conjugate exponents) of a number of geodesic (not necessarily orthogonal)
foliations (Corollary 37). It depends exclusively on the measures of the leaves of
these foliations.

1. Properties of closing k-planes

First we introduce the necessary terminology.

Definition 1. A n-dimensional (unit) flat torus is the quotient manifold M = Rn/Zn.

We take on M the strongest topology in which the canonical projection π :Rn→M
is continuous. Then Rn is a covering of M. Therefore it is locally homeomorphic to
an open set in Rn and the differential structure on M can be defined by these home-
omorphisms. The canonical projection also carries to M the Riemannian structure
from Rn. We will use the same symbol µn for the Lebesgue measure defined on Rn

and on M.

Definition 2. A node is a vector v = (v1, ..,vn) ∈ Zn. An irreducible node
v = (v1, ..,vn) is such a node that GCD(v1, ..,vn) = 1 (we use the abbreviation GCD
for the greatest common divisor).

Let v1, ...,vk ∈ Rn be linearly independent. By a k-dimensional parallelepiped
R(v1, ...,vk) we call the set

R(v1, ...,vk) = {α1v1 + ...+αkvk, α1, ...,αk ∈ [0,1)}.

We say that it is spanned by vectors v1, ...,vk (if it is clear what vectors define
a parallelepiped, it will be denoted simply by R).

Definition 3. We say that R(v1, ...,vk) is a fundamental domain if v1, ...,vk are lin-
early independent nodes and R(v1, ...,vk) has the minimal k-dimensional Lebesgue
measure from all k-dimensional parallelepipeds that are spanned by nodes and lie in
lin(v1, ...,vk).
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Definition 4. A k-plane is a k-dimensional plane that contains the origin. If a k-plane
contains a set of k linearly independent nodes it will be called a closing k-plane.

By a direct computation we get

Lemma 5. Let v1, ...,vk ∈ Zn. Then π|R(v1,...,vk) : R(v1, ...,vk)→ π(lin(v1, ...,vk)) is
a surjection.

Lemma 6. Let v1, ...,vk ∈ Rn be linearly independent. If for certain different points
x1,x2 ∈ R(v1, ...,vk) we have: x1 ≡ x2, then R(v1, ...,vk) contains a (nonzero) node.

As a corollary we obtain:

Lemma 7. Take v1, ...,vk ∈ Rn. The projection

π|R(v1,...,vk) : R(v1, ...,vk)→ π(lin(v1, ...,vk))

is injective if and only if R(v1, ...,vk) does not contain a nonzero node.

The following auxiliary facts are easy to show, so we omit the proofs.

Lemma 8. Assume that a set U ⊂ Rn is such that π|U is injective. Then for every
c ∈ Rn also π|(U+c) is injective (here: U + c = {x+ c,x ∈U}).

Lemma 9. If R(v1, ...,vk) is spanned by nodes, then for arbitrary z ∈ lin(v1, ...,vk),
π(R+ z) = π(R).

Lemma 10. For arbitrary parallelepiped R and for every node z ∈ Zn,
π(R) = π(R+ z).

Definition 11. Set k > 0. An element of the vector space ΛkRn will be called
a k-vector (see[2]). Every k-vector ŵ can be expressed uniquely as

ŵ = ∑
1≤i1<...<ik≤n

ai1,...,ik ei1 ∧ ...∧ eik ,

where e1, ...,en stands for the canonical basis of Rn and ai1,...,ik ∈ R. We name these
numbers the coefficients of the k-vector ŵ (with respect to the canonical basis).
Moreover, the quantity:

|ŵ|=
√

∑
1≤i1<...<ik≤n

(ai1,...,ik)
2.

is the norm of ΛkRn (it can be shown that it does not depend on the choice of
an orthonormal basis).

We know (see, for example, [3]) that the k-measure of a parallelepiped can be
expressed by the coefficients of the exterior product of vectors that span it. Specifi-
cally:



64 A. Kaźmierczak

Lemma 12. For an arbitrary k-dimensional parallelepiped R(v1, ...,vk),

µk(R(v1, ...,vk)) = |v1∧ ...∧ vk|. (1)

It is easy to show that a fundamental domain has the following important property
(that also could serve as its definition).

Lemma 13. Let v1, ...,vk ∈Zn be linearly independent. A parallelepiped R(v1, ...,vk)
is a fundamental domain if and only if it does not contain a nonzero node.

Proof. (⇒) Suppose the contrary - that R is a fundamental domain and contains
a nonzero node. In other words: there exist z ∈ Zn and α1, ..,αk ∈ [0,1) such that
at least one of them is different from 0 and z = α1v1 + ..+αkvk. Then

µk(R1) = |v1∧ ...∧ (α1v1 + ..+αkvk)|= αk|v1∧ ...∧ vk|< |v1∧ ...∧ vk|= µk(R)

which would mean that R is not a fundamental domain. Contradiction.

(⇐) Assume that R(v1, ...,vk) is spanned by nodes and does not contain a nonzero
node. According to Lemma 7, ϕ = π|R : R→ lin(v1, ...,vk)≡ is injective. Moreover,
it is a local isometry. Suppose that R is not a fundamental domain and denote the
fundamental domain of lin(v1, ...,vk) by F . Then µk(F) < µk(R). From the already
proved implication (”⇒ ”) we know that a domain that contains a nonzero node is
not fundamental. Therefore F does not contain a (nonzero) node. So the mapping
ϕ1 = π|F : F → lin(v1, ...,vk)≡ has identical properties as ϕ . In consequence, the
composition ϕ−1 ◦ϕ1 : F → R is a bijective local isometry. It is not true, however,
since µk(F)< µk(R). Contradiction.

The next lemma gives a useful characterization of a k-plane.

Lemma 14. For every k-plane P⊂ Rn there exists such a permutation of the canon-
ical coordinates from Rn and such an arrangement of numbers αi, j ∈ R (where
i = 1, ...,n− k, j = 1, ...,k), that every vector v = (v1, ...,vn) ∈ P satisfies the fol-
lowing system of equations:

α1,1v1+ . . . +α1,kvk −vk+1 = 0
...

...
...

...
...

αn−k,1v1+ . . . +αn−k,kvk −vn = 0.
(2)

Definition 15. The numbers αi, j will be called the slope coefficients of the k-plane P
(with respect to the mentioned permutation of coordinates).

The following result formulates a necessary and sufficient condition for the close-
ness of a k-plane.
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Lemma 16. A k-plane P ⊂ Rn is closing if and only if its slope coefficients are
rational (for a certain permutation of coordinates and, in consequence, for every
permutation for which these coefficients are finite).

Proof. (⇒) The slope coefficients of P can be computed from the system (2). For
i = 1, ...,n− k we choose k linearly independent nodes x1,...,xk. Substituting them
to the i-th equation of (2), we get the system of linear equations with the unknowns
αi,1, ...,αi,k. Applying the Cramer formulas, it is easy to see that the solutions of this
system are rational.
(⇐) Assume that all the coefficients of (2) are rational. Treating k first unknowns
x1, ...,xk as the parameters, we get the system of independent equations. Substituting
integer numbers to these parameters, we obtain a rational solution (xk+1, ...,xn) (using
the Cramer formulas once more). Multiplying the vector (x1, ...,xn) by the proper
number, we get a node from P. Repeating this procedure for k linearly independent
sequences of parameters gives us the thesis.

Subsequent result will be very useful.

Theorem 17. For an arbitrary closing k-plane P⊂ Rn, P⊥ is also closing.

Proof. According to (2), we can write that P consists of the vectors of the form:

(x1, ...,xk,α1,1x1 + ...+α1,kxk, ...,αn−k,1x1 + ...+αn−k,kxk).

It is easy to see, that every vector from the following arrangement of n− k linearly
independent vectors:

(−α1,1, ...,−α1,k,1,0, ...,0),
...

(−αn−k,1, ...,−αn−k,k,0, ...,0,1),
(3)

is orthogonal to P - so these vectors span P⊥. Since the slope coefficients αi, j are
rational, then multiplying every vector from the arrangement (3) by an adequately
chosen integer number, we obtain n− k linearly independent nodes from P⊥.

An obvious consequence of the latter fact is

Corollary 18. If a k-plane P has rational slope coefficients, then also (n-k)-surface
P⊥ has this property.

Definition 19. A k-node is a k-vector that has integer coefficients. If the GCD of
these coefficients equals one, we name it an irreducible k-node.
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Definition 20. A k-vector that is the exterior product of k certain vectors of Rn is
called simple. Every such a k-vector determines the k-plane

P = {v ∈ Rn : v∧ ŵ = 0},

that will be named the k- plane generated by that k-vector.

It is easy to see that (simple) k-vectors that generate the same k-plane must be linearly
dependent.

The following implication holds

Theorem 21. Let v1, ..,vk ∈Rn be linearly independent nodes whose exterior product
v1∧ ...∧ vk is an irreducible k-node. Then R(v1, ...,vk) is a fundamental domain.

Proof. Suppose that R(v1, ...,vk) is not a fundamental domain. Thus, there exist
nodes w1, ...,wk and a parallelepiped R1(w1, ...,wk) such that µk(R1) < µk(R).
Obviously, w1∧ ...∧wk generates the same k-plane as v1∧ ...∧ vk, so it has the form
cv1∧ ...∧ vk, where c ∈ (0,1). Contradiction.

Recall the well-known formula for the coefficients of a simple k-vector:

Lemma 22. Assume that b1, ...,bn is an orthonormal basis of Rn and let v1, ...,vk ∈Rn

be an arrangement of arbitrary k-vectors (whose coefficients are written in that
basis). Denote by ai1,...,ik (1 ≤ i1 < ... < ik ≤ n) the coordinates of the k-vector
v1 ∧ ...,∧vk in that basis, and by Mi1,...,ik - determinants of the matrix that consists

of columns i1, ..., ik of the matrix

 v1
...

vk

. Then

Mi1,...,ik = ai1,...,ik . (4)

Applying the latter result, we get:

Lemma 23. The k-plane generated by a simple k-node is closing.

Proof. We will show that the slope coefficients α ji (i = 1, ...,k, j = 1, ...,n− k) of
this plane are rational. Since ŵ is simple, so there exist vectors v1, ...,vk, such that

v1∧ ...∧vk = ŵ. Define the matrix M =

 v1
...

vk

 and let Mi1,...,ik , 1≤ i1 < ... < ik ≤ n

be the determinant of the matrix built from these columns of M, that have numbers
i1, ..., ik. Without loss of generality, we can assume that M1,...,k 6= 0. For arbitrary
i ∈ {1, ..,k}, j ∈ {1, ...,n− k},

M1,...,i−1,i+1,..,k,k+ j = (−1)k−i
α jiM1,...,k.
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According to the previous lemma, the coefficients of the k-vector ŵ are the minors of
the maximal degree of M. From the assumption that ŵ is a k-node, M1,...,k = a1,...,k ∈Z
and ±α jiM1,...,k = M1,...,i−1,i+1,..,k,k+ j = a1,...,i−1,i+1,..,k,k+ j ∈ Z. Therefore α ji ∈ Q.
From Lemma 16 we get the thesis.

On the basis of that fact, we obtain

Theorem 24. The following conditions are equivalent:

1. The exterior product of k nodes that span a fundamental domain is an irreducible
k-node.

2. For an arbitrary simple k-node ŵ there exist such nodes v1, ...,vk, that
v1∧ ...∧ vk = ŵ.

Proof. 1.⇒ 2. Take any simple k-node ŵ. According to Lemma 23, it spans a closing
k-plane P. Choose the nodes z1, ...,zk in P such that R(z1, ...,zk) is a fundamental
domain. Obviously, cz1∧ ...∧ zk = ŵ for a certain c ∈R\{0}. From the assumption,
c ∈ Z. Substituting v1 = cz1, v2 = z2,...,vk = zk we get the thesis.

2.⇒ 1. Suppose that ¬1. Thus, there exists a fundamental domain R(v1, ...,vk), such
that v1 ∧ ...∧ vk = ŵ is an reducible k-node. Take such a p ∈ N, that p|ŵ. Then the
k-node 1

p ŵ cannot be the exterior product of any k-nodes, since it would contradict
the fact that R is a fundamental domain. Therefore ¬2.

Now we quote an important theorem ([3]) that will give us several conclusions:

Theorem 25. A system of linear equations (with integer coefficients)

ar1x1 + ...+arnxn = 0, (r = 1, ...,m), (5)

where m < n, has n−m solutions xs = (x1
s , ...,x

n
s ) ∈ Zn (s = 1, ...,n−m), such that

the matrix whose rows are the vectors of these solutions has a property that the GCD
of its minors of maximal rank equals 1.

A consequence of the above result is the implication converse to that of Theorem 21:

Corollary 26. The exterior product of the vectors that span the fundamental domain
(of a closing k-plane P) is an irreducible k-node.

Proof. Since P is closing, then, from Lemma 16, all its slope coefficients are
rational. Thus, the system of equations determining P can be transformed to (5),
for m = n− k. From the previous theorem, we know that it has k solutions w1, ...,wk,
such that minors of the rank k of the matrix composed from these solutions constitute
a set of relatively prime numbers. Therefore, from Lemma 22, the k-node w1∧ ...∧wk
is irreducible. According to Theorem 21, R(w1, ...,wk) is a fundamental domain. At
last, from the definition of the latter and Lemma 12 results that every fundamental
domain of P has to be irreducible.
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On the account of Theorem 24, the above conclusion implies the following

Corollary 27. For an arbitrary simple k-node ŵ, there exist nodes v1, ...,vk ∈Rn such
that v1∧ ...∧ vk = ŵ.

Definition 28. Let ai1,...,ik ∈ R (1≤ i1 < ... < ik ≤ n) be the coefficients of a k-vector
ŵ (with respect to the canonical basis). The Hodge star of ŵ is a (n− k)-vector ∗ŵ
of the form (see [4]):

∗ŵ = ∑
1≤i1<...<ik≤n

ai1,...,ik sgn(i1, ..., ik, j1, ..., jn−k)e j1 ∧ ...∧ e jn−k , (6)

where j1, ..., jn−k ∈ {1, ...,n}\{i1, ..., ik}, 1≤ j1 < ... < jn−k ≤ n.

Finally, as a consequence of the preceding facts, we obtain

Theorem 29. Assume that P ⊂ Rn is a closing k-plane and the nodes v1, ...,vk span
a fundamental domain in P and that v′1, ...,v

′
n−k are the nodes that span such a domain

in P⊥. Then ∗(v1∧ ...∧ vk) =±v′1∧ ...∧ v′n−k and

µk(R(v1, ...,vk)) = µn−k(R(v′1, ...,v
′
n−k)).

Proof. Let ŵ= v1∧ ...∧vk. From the definition, ∗ŵ is a (n-k)-node whose coefficients
are - in the absolute value - equal to the corresponding coefficients of ŵ. Thus, ∗ŵ is
irreducible. Moreover, ∗ŵ = cv′1∧ ...∧ v′n−k for a certain c ∈ R. However, from the
Conclusion 26, v′1 ∧ ...∧ v′n−k is irreducible as well. So |c| = 1 and we get the first
part of the thesis. Its second part follows from Lemma 12.

The reasoning presented above can be repeated also for a more general flat torus,
defined by replacing in Definition 1 the module Zn by the module generated by
a given basis of Rn (that can be named the basis of torus). In this case a node
(Def. 2) should be defined as a vector that has integer coefficients with respect to
the basis of a torus. Analogically, in the definition of a k-node (Def. 27) the canon-
ical basis should be replaced by the basis of torus. The same modification would be
applied in the definition of the slope coefficients of a k-plane. Taking those changes
into consideration, all the results that precede Theorem 17 hold (assuming that v∈Zn

denotes a vector having integer coordinates in the basis of torus), whereas that the-
orem itself is true if only the vectors that constitute the basis of torus have rational
coordinates (in the canonical basis). Other results, excluding Lemma 12 and Theo-
rem 29, transform automatically to another flat torus. Lemma 12 is true in its orig-
inal form - the coefficients of a k-node related with the fundamental domain should
be written in the canonical basis. In turn, the Theorem 29 holds only for the unit
(flat) torus, since the coefficients in the formula (6) for the Hodge star are taken
with respect to the canonical basis.
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2. Module on the flat torus

Set 0 < k < n. Recall that

Definition 30. Denote by M a family of smooth, k-dimensional submanifolds of
M. We call the function f p-admissible (p ≥ 1) for M with respect to M (writing:
f ∈ admp(M ,M)) if

1. f ∈ Lp(M)

2. f ≥ 0 almost everywhere on M

3.
∫

L f dµk ≥ 1 for almost every element L ∈M .

The p-module (or the module with exponent p) of a family M of smooth, k-dimensional
submanifolds of M is a number:

modp(M ,M) = in f
f∈admp(M ,M)

|| f ||Lp(M),

(setting: modp(M ,M) = ∞ if admp(M ,M) = /0).

A p-admissible function f0 is called p-extremal if

|| f0||Lp(M) = modp(M ,M).

Definition 31. ([5]) A k-dimensional foliation is a decomposition of M into a family
F of disjoint, connected submanifolds of dimension k with the property that for every
point x ∈ M there exists a neighborhood D of x and a chart
ϕ = (ϕ1,ϕ2, . . . ,ϕn) : D→Rn, such that ϕ(D) is an open cube and for every L ∈F ,
satisfying: L∩D 6= 0,

ϕ1
|L = const,

...
ϕ

j
|L = const,

and

ϕ
j+k+1
|L = const,

...
ϕn
|L = const,

for a given j ∈ {0, ...,n− k}. The elements of F are called leaves.

The next theorem ([6]) presents a useful formula for a module of a foliation defined
by a submersion (i.e. a foliation whose leaves are the level sets of that submersion).

Theorem 32. If a foliation F of M defined by a submersion φ and for a.e. L,∫
L J

1
p−1

φ
dµk < ∞, then for p > 1

modp
p(F ) =

∫
φ(M)

(∫
Lx

J
1

p−1
φ

dµLx

)1−pdµφ(M), (7)
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and if modp
p(F )< ∞, there exists exactly one extremal function v : M→ R,

v(x) =
Jφ (x)

1
p−1∫

Lx
J

1
p−1

φ
dµLx

, (8)

where Jφ is a function that assigns to every x∈M an absolute value of the determinant
of the matrix of the isomorfism: φ∗(x)|ker(φ∗(x))

⊥ (in orthonormal bases).

Definition 33. A totally geodesic (k-dimensional) surface is such a k-dimensional
surface G ⊂ M, that every geodesic curve tangent to G in one point, lies in G.
A compact totally geodesic surface will be briefly named a ctg surface.

A compact geodesic (k-dimensional) foliation on M is a foliation whose leaves are
k-dimensional ctg surfaces of M.

On the basis of Theorem 32, we compute the module of a geodesic foliation:

Lemma 34. Let F be a compact geodesic foliation on M. Then

modp(F ) =
µn(M)

1
p

v
, (9)

for p > 1, where v denotes the measure of a leaf of F

Proof. According to Theorem 32, F has the unique extremal function, that equals
1
v . Thus

modp(F ) = (
∫

M
(
1
v
)pdµn)

1
p =

µn(M)
1
p

v
.

In particular, it is easy to see that the module of such a foliation on a unit torus
does not depend on the exponent p.

Moreover, we get the following formula for the product of their modules with
conjugate exponents:

Theorem 35. Let F1, ..,Fk be compact geodesic foliations on M. For arbitrary
conjugate exponents p1, ..., pk,

modp1(F1) ·modp2(F2) · ... ·modpk(Fk) =
µn(M)

v1 · ... · vk
, (10)

where v1, ...,vk denote the measures of the leaves of the corresponding foliations.

Proof. This is a straightforward consequence of Lemma 34.

Since now, we assume that M is the unit flat torus.
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Lemma 36. Let R be a n-dimensional parallelepiped spanned by the nodes v1, ...,vn.
Assume that R has an integer volume v∈N. Then R contains exactly v representatives
of every equivalence class of M.

Proof. Let M̄ be the torus generated by the basis v1, ...,vk. Denote the equivalence
relation defining M̄ by ≡M̄. Choose an arbitraryx ∈ Rn and denote by x1, ...,xm ∈ R
such points, that x1, ...,xm ∈ [x]. Now, take any y ∈ Rn. Let s be such a point, that
y = x1 + s. Define yi = xi + s, for i = 1, ...,m. Then for every i, yi ∈ [y] (since yi−y =
xi− x1 ∈ Zn). Simultaneously, [y1]≡M̄

6= ... 6= [ym]≡M̄
(since [x1]≡M̄

6= ... 6= [xm]≡M̄
).

Next, from the definition of M̄ it results that for every z ∈ Rn, there exists z̃ ∈ R,
such that z̃ ∈ [z]≡M̄

. So, there exist points ỹi ∈ [yi]≡M̄
, satisfying: ỹi ∈ R. From the

arbitrariness of x and y we obtain that R contains the same number of representa-
tives of every equivalence class of M. From the fact that Jπ = 1 we get the thesis
(m = v).

An immediate consequence of this lemma is

Corollary 37. A parallelepiped of the measure n, that is spanned by nodes, contains
exactly n−1 nonzero nodes.

We will show a relation between the product of modules of two orthogonal geodesic
foliations with the number of intersections of their leaves.

Theorem 38. Fix 1 ≤ k < n. Assume that G1 is a k-dimensional compact geodesic
foliation on M, whereas G2 is a (n-k)-dimensional geodesic foliation, whose leaves
are orthogonal to the leaves of G1. Then, for p > 1,

modp(G1) ·modp(G2) =
1
I
, (11)

where I denotes the number of intersections of an arbitrary leaf of G1 with an arbi-
trary leaf of G2.

Proof. Let F1, F2 be fundamental domains of the (k- and (n-k)-) planes covering
the leaves of G1 ∈ G1 that go through [0]. Denote v = µk(F1) = µ(n−k)(F2) (this
equality results from the Conclusion 29). Define R = F1×F2. Then µn(R) = v2.
From the Conclusion 37 we know that R contains exactly v2 nodes (including 0).
Denote them by w1, ...,wv2 . Let F i

1 = F1 + ci, for i = 1, ...,v2, where ci ∈ F2 is such
a (k-dimensional) parallelepiped, that wi ∈ F i

1. From Lemmas 9 and 10 we have
that for every i, the projection π transforms F i

1 bijectively on G1. Now let G2 be
an arbitrary leaf of the foliation G2. From the definition of F2 and the fact that
π(R) = M, there exists a (n-k)-dimensional parallelepiped F1

2 = F2 + c (c ∈ F1), for
which π(F1

2 ) = G2. The orthogonality of F1 and F2 ensures that F1
2 intersects every

F i
1 exactly once. Denote the points of these intersections by si, i = 1, ...,v2. On the
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other hand, we know that π|F1
2

is bijective (since F1
2 is a translation of F2 - see Lemma

8). Thus π(si) are distinct points of M. In consequence, G2 = π(F1
2 ) intersects G1

exactly v2 times. The above argument, applied for G1, can be repeated for an arbitrary
leaf of G1. Application of formula (9) finishes the proof.

Final remarks

Theorem 38, that expresses the product of modules as a function of the number of
intersections of the leaves of two orthogonal, geodesic foliations, is a consequence of
the results present before: properties of compact totally geodesic surfaces on the flat
torus and the formula for the module of a geodesic foliation. It is also interesting if
any analogues of this relation can be found for other manifolds. It will be the subject
of our further research.
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