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CONSTRUCTING A HOOP USING ROUGH FILTERS

Abstract

When it comes to making decisions in vague problems, Rough is one of the

best tools to help analyzers. So based on rough and hoop concepts, two kinds of

approximations (Lower and Upper) for filters in hoops are defined, and then some

properties of them are investigated by us. We prove that these approximations-

lower and upper- are interior and closure operators, respectively. Also after

defining a hyper operation in hoops, we show that by using this hyper operation,

set of all rough filters is monoid. For more study, we define the implicative

operation on the set of all rough filters and prove that this set with implication

and intersection is made a hoop.
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1. Introduction

Pawlak proposed the theory of rough sets in 1982 as a new method for
modelling and processing uncertain data. There are different fields such as
machine learning, intelligence system, decision making, and etc, in which
rough set theory can help to solve some problems. So it has received al-
gebraic researchers attention too, and leads to apply rough set theory in
different algebraic systems such as BCK-algebra [13], BCC-algebra [14],
MV -algebra [17] and so on.
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Rough set theory includes different concepts some of them which are used
in rough controllers are rough relations and rough functions. From alge-
braic point of view, Iwinski [11] is the first one who algebraically approach
to the rough sets. In [16, 4], application of rough set can be seen in groups
and semigroups. Till today, relation between rough theory and some alge-
bras are studied, BCK-algebras by Jun [13], and MV-algebras by Rasouli
and Davvaz [17]. Bosbach [8] introduced hoop algebra as special groups
of monoids: naturally ordered commutative resituated integral monoids.
In recent decades, many mathematicians have worked on it and developed
structure theory by using the nation of hoop (see [3, 8]). Fuzzy logic and
hoops have strong impact on each other results. One of the famous ex-
amples is the short proof of the completeness theorem for propositional
basic logic introduced by Hájek in [10] which is obtained from the struc-
ture theorem of finite basic hoops. There are a lot of areas that hoops are
being implemented for algebraic structures such as (see [1, 2, 5, 6, 7]). By
considering the impact of rough set theory and since there was no study
on the relation between hoop and rough set theory, we decided to apply
the rough set theory in hoops. Experience of implementing soft set theory
in hoops [6], and the logic used in [15] helped us a lot to have a better
view. For this purpose, we defined the concept of the lower and the up-
per approximations in hoops and then investigated their properties. Also,
it is proved that the lower (upper) approximations is an interior operator
(closure operator). Moreover, we define a hyper operation on hoop and
then we show that by using this operation, the set of all rough filters is a
monoid. For more study, we define the implicative operation on the set of
all rough filters and prove that this set with implication and intersection is
made a hoop.

2. Preliminaries

Some definitions that may be required in the further discussions are re-
viewed in this part.
A hoop [8] is an algebraic structure ℏ = (ℏ,⊙,→, 1) of type (2, 2, 0) such
that, for all κ, ν, δ ∈ ℏ the following conditions hold:

(HP1) (ℏ,⊙, 1) is a commutative monoid,

(HP2) κ → κ = 1,
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(HP3) (κ⊙ ν) → δ = κ → (ν → δ),

(HP4) κ⊙ (κ → ν) = ν ⊙ (ν → κ).

A relation ≤ on hoop ℏ which is defined by κ ≤ ν if and only if κ → ν = 1,
is a partial order relation on ℏ. A hoop ℏ is called bounded if there is an
element 0 ∈ ℏ such that 0 ≤ κ, for all κ ∈ ℏ (see [8]).
Fundamental properties of hoops are provided in the next proposition.

Proposition 2.1 ([8]). Let ℏ be a hoop. Then, for all κ, ν, δ ∈ ℏ the
following properties hold:

(i) (ℏ,≤) is a ∧-semilattice with κ ∧ ν = κ⊙ (κ → ν);

(ii) κ⊙ ν ≤ δ if and only if κ ≤ ν → δ;

(iii) κ⊙ ν ≤ κ, ν;

(iv) κ ≤ ν → κ;

(v) 1 → κ = κ;

(vi) κ → 1 = 1;

(vii) ν ≤ (ν → κ) → κ;

(viii) κ ≤ (κ → ν) → κ;

(ix) κ → ν ≤ (ν → δ) → (κ → δ);

(x) (κ → ν)⊙ (ν → δ) ≤ κ → δ;

(xi) κ ≤ ν implies κ⊙ δ ≤ ν ⊙ δ, δ → κ ≤ δ → ν and ν → δ ≤ κ → δ.

Uninary operation “¬” on a bounded hoop ℏ is defined such that for
any κ ∈ ℏ,¬κ = κ → 0.
Then for any nonempty subset R of a bounded hoop ℏ, consider the sets
¬R := {¬κ ∈ ℏ | κ ∈ R} and DNP (ℏ) := {κ ∈ ℏ | ¬(¬κ) = κ}.

Double negation property (briefly, DNP of a bounded hoop ℏ is when
DNP (ℏ) = ℏ.
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Proposition 2.2 ([8, 9]). Let ℏ be a bounded hoop. Then, for any κ, ν ∈ ℏ,
the following conditions hold:

(i) κ ≤ ¬¬κ and κ⊙ ¬κ = 0

(ii) ¬κ ≤ κ → ν.

(iii) ¬¬¬κ = ¬κ.

(iv) If ℏ has (DNP), then κ → ν = ¬ν → ¬κ.

(v) If ℏ has (DNP), then (κ → ν) → ν = (ν → κ) → κ.

Let ϱ be an equivalence relation on a hoop ℏ and P(ℏ) denote the
power set of ℏ. For all κ ∈ ℏ, let [κ] ϱ denote the equivalence class of κ
with respect to ϱ . Let ϱ ∗ and ϱ ∗ be mappings from P(ℏ) to P(ℏ) defined
by ϱ ∗(F ) = {κ ∈ ℏ | [κ] ϱ ⊆ 𭟋} and ϱ ∗(F ) = {κ ∈ ℏ | [κ] ϱ ∩ 𭟋 ̸= ∅},
respectively.
The pair (ℏ, ϱ ) is called an approximation space based on ϱ . A subset 𭟋
of a hoop ℏ is definable if ϱ ∗(𭟋) = ϱ ∗(𭟋), and rough otherwise. The set
ϱ ∗(𭟋) (resp. ϱ ∗(𭟋)) is called the lower (resp. upper) approximation. (See
[14])

Proposition 2.3 ([14]). Let (ℏ, ϱ ) be a ϱ -approximation space. For any
R,M ∈ P(ℏ), we have

(i) ϱ ∗(R) ⊆ R ⊆ ϱ ∗(R),

(ii) ϱ ∗(R ∩M) = ϱ ∗(R) ∩ ϱ ∗(M),

(iii) ϱ ∗(R) ∪ ϱ ∗(M) ⊆ ϱ ∗(R ∪M),

(iv) ϱ ∗(R ∩M) ⊆ ϱ ∗(R) ∩ ϱ ∗(M),

(v) ϱ ∗(R) ∪ ϱ ∗(M) = ϱ ∗(R ∪M).

(vi) ϱ ∗( ϱ
∗(R)) ⊆ ϱ ∗( ϱ ∗(R)),

(vii) ϱ ∗( ϱ ∗(R)) ⊆ ϱ ∗( ϱ ∗(R)),

(viii) ϱ ∗(R
c) = ( ϱ ∗(R))

c
,

(ix) ϱ ∗(Rc) = ( ϱ ∗(R))
c
,

(x) ϱ ∗(R) = ∅ for R ̸= ℏ,
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(xi) ϱ ∗(R) = R for R ̸= ∅.

(xii) ϱ ∗(R) = R ⇔ ϱ ∗(Rc) = Rc.

Function ∁ : P(S) → P(S) on a set S is a closure operator [12] if the
following conditions are held for all subsets X,Y ⊆ S:

(i) X ⊆ ∁(X),

(ii) if X ⊆ Y , then ∁(X) ⊆ ∁(Y ),

(iii) ∁(∁(X)) = ∁(X).

Function T : P(S) → P(S) on a set S is an interior operator [12] in
which for all subsets X,Y ⊆ S the following conditions are held:

(i) T(X) ⊆ X,

(ii) if X ⊆ Y , then T(X) ⊆ T(Y ),

(iii) T(T(X)) = T(X).

3. Roughness of filters in hoops

In this section, roughness of hoops is introduced and some properties of it
are investigated. Soppose 𭟋 is a filter of a hoop ℏ. We define a relation
“C𭟋” on ℏ for any κ, ν ∈ ℏ as follows:

(κ, ν) ∈ C𭟋 if and only if κ → ν ∈ 𭟋 and ν → κ ∈ 𭟋.

Then C𭟋 is a congruence relation on ℏ. Hence approximation space
(ℏ, C𭟋) is called an 𭟋-approximation space. The equivalence class of κ ∈ ℏ
under C𭟋 is denoted by C𭟋[κ].

Let (ℏ, C𭟋) be an 𭟋-approximation space. For any nonempty subset R
of ℏ, the sets

C𭟋(R) := {κ ∈ ℏ | C𭟋[κ] ⊆ R} and C𭟋(R) := {κ ∈ ℏ | C𭟋[κ] ∩R ̸= ∅},

are called lower and upper rough approximation, respectively, of R with
respect to the filter 𭟋.
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Example 3.1. Let ℏ = {0, η, β, 1} be a poset such that 0 ≤ η, β ≤ 1. Define
the operations → and ⊙ on ℏ as follows,

→ 0 η β 1
0 1 1 1 1
η β 1 β 1
β η η 1 1
1 0 η β 1

⊙ 0 η β 1
0 0 0 0 0
η 0 η 0 η
β 0 0 β β
1 0 η β 1

Then (ℏ,⊙,→, 0, 1) is a bounded hoop. Let 𭟋 = {η, 1}. Then C𭟋[η] =
C𭟋[1] = 𭟋 and C𭟋[β] = C𭟋[0] = {0, β}. Suppose R = {η, β, 1}. Then
C𭟋(R) = {η, 1} and C𭟋(R) = ℏ.

Theorem 3.2. If (ℏ, C𭟋) is an 𭟋-approximation space, then the lower
rough approximation operator C𭟋 is an interior operator and the upper

rough approximation operator C𭟋 is a closure operator.

Proof: Let R be a nonempty subset of ℏ and κ ∈ C𭟋(R). Then C𭟋[κ] ⊆ R.
Since κ ∈ C𭟋[κ], we have κ ∈ R. Hence, C𭟋(R) ⊆ R. If R1 and R2

are two subsets of ℏ such that R1 ⊆ R2 and κ ∈ C𭟋(R1), then C𭟋[κ] ⊆
R1. Thus C𭟋[κ] ⊆ R2, and so κ ∈ C𭟋(R2). Hence, C𭟋(R1) ⊆ C𭟋(R2).
Since C𭟋(R) ⊆ R, we have C𭟋(C𭟋(R)) ⊆ C𭟋(R). Conversely, suppose
κ ∈ C𭟋(R). Then C𭟋[κ] ⊆ R. Let δ ∈ C𭟋[κ]. Then C𭟋[δ] = C𭟋[κ] ⊆ R,
and so δ ∈ C𭟋(R). Thus, C𭟋[κ] ⊆ C𭟋(R). Hence, κ ∈ C𭟋(C𭟋(R)), and so
C𭟋(C𭟋(R)) = C𭟋(R). Therefore, the lower rough approximation operator
C𭟋 is an interior operator.

Let R be a nonempty subset of ℏ and κ ∈ R. Since κ ∈ C𭟋[κ], we
have κ ∈ C𭟋[κ] ∩ R ̸= ∅. Thus κ ∈ C𭟋(R). If R1 and R2 are two subsets
of ℏ such that R1 ⊆ R2 and κ ∈ C𭟋(R1). Then C𭟋[κ] ∩ R1 ̸= ∅. Thus
C𭟋[κ] ∩R2 ̸= ∅, and so κ ∈ C𭟋(R2). Hence, C𭟋(R1) ⊆ C𭟋(R2). Since R ⊆
C𭟋(R), we have C𭟋(R) ⊆ C𭟋(C𭟋(R)). Conversely, suppose κ ∈ C𭟋(C𭟋(R)).
Then C𭟋[κ] ∩ C𭟋(R) ̸= ∅. Let δ ∈ C𭟋[κ] ∩ C𭟋(R). Then C𭟋[δ] = C𭟋[κ]
and C𭟋[δ] ∩ R ̸= ∅, and so C𭟋[κ] ∩ R ̸= ∅. Thus, κ ∈ C𭟋(R). Hence,
C𭟋(C𭟋(R)) = C𭟋(R). Therefore, the upper rough approximation operator
C𭟋 is a closure operator.

Let (ℏ, C𭟋) be an 𭟋-approximation space. A subset R of ℏ is said to be
definable with respect to 𭟋 if C𭟋(R) = C𭟋(R), and rough otherwise.
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It is clear that ∅, ℏ and C𭟋[κ] are definable with respect to 𭟋 in an
𭟋-approximation space (ℏ, C𭟋).

Example 3.3. Let ℏ be a hoop as in Example 3.1 and 𭟋 = {η, 1}. Suppose
R = {0, β}. Then C𭟋(R) = C𭟋(R) = {0, β}. Hence R is definable.

Theorem 3.4. If (ℏ, C𭟋) is an 𭟋-approximation space with 𭟋 = {1}, then
every subset of ℏ is definable with respect to 𭟋.

Proof: Let R be an arbitrary subset of ℏ. Since 𭟋 = {1}, for all κ ∈ ℏ
we have

C𭟋[κ] = {δ ∈ ℏ | κ → δ = 1, δ → κ = 1} = {δ ∈ ℏ | κ = δ} = {κ}.

Thus,

C𭟋(R) = {κ ∈ ℏ | C𭟋[κ] ⊆ R} = {κ ∈ ℏ | {κ} ⊆ R} = R,

C𭟋(R) = {κ ∈ ℏ | C𭟋[κ] ∩R ̸= ∅} = {κ ∈ ℏ | {κ} ∩R ̸= ∅} = R.

Therefore, R is definable with respect to 𭟋.

For any subsets R and P of a hoop ℏ, we define:

R → P = {κ → ν | κ ∈ R and ν ∈ P},
R⊙ P = {κ⊙ ν | κ ∈ R and ν ∈ P}.

Proposition 3.5. If (ℏ, C𭟋) is an 𭟋-approximation space, then C𭟋(R) →
C𭟋(P ) ⊆ C𭟋(R → P ) and C𭟋(R)⊙C𭟋(P ) ⊆ C𭟋(R⊙P ) for any nonempty
subsets R and P of a hoop ℏ.

Proof: If δ ∈ C𭟋(R) → C𭟋(P ), then δ = a → b for some a ∈ C𭟋(R) and
b ∈ C𭟋(P ). It follows that C𭟋[a] ∩R ̸= ∅ and C𭟋[b] ∩ P ̸= ∅. Hence, there
exist κ ∈ R and ν ∈ P such that C𭟋[a] = C𭟋[κ] and C𭟋[b] = C𭟋[ν]. Since

δ = a → b ∈ C𭟋[a] → C𭟋[b] = C𭟋[a → b] = C𭟋[κ → ν],

we get C[δ] = C[κ → ν]. Moreover since κ → ν ∈ R → P and C[δ] = C[κ →
ν], we get C[δ] ∩ (R → P ) ̸= ∅, and so δ ∈ C𭟋(R → P ). Similarly, we can
verify C𭟋(R)⊙ C𭟋(P ) ⊆ C𭟋(R⊙ P ).

Definition 3.6. Let (ℏ, C𭟋) be an 𭟋-approximation space. A subset R of
ℏ is called a lower (resp. upper) rough filter of ℏ if C𭟋(R) (resp., C𭟋(R))
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is a filter of ℏ. If R is both a lower rough filter and an upper rough filter
of ℏ, we say R is a rough filter of ℏ.

Example 3.7. Let ℏ be a hoop as in Example 3.1. Suppose 𭟋 = {β, 1}.
Then 𭟋 is a filter of ℏ. C𭟋[1] = C𭟋[β] = {β, 1} and C𭟋[0] = C𭟋[η] = {0, η}.
If R = {η, β, 1}, then C𭟋[R] = {β, 1} and C𭟋[R] = ℏ. Hence, R is a
rough filter of ℏ. If R = {η, 1} which is a filter of ℏ, then C𭟋[R] = ∅ and

C𭟋[R] = ℏ. Hence R is not a rough filter of ℏ.

Theorem 3.8. If (ℏ, C𭟋) is an 𭟋-approximation space and R is a nonempty
subset of ℏ, then

(i) 𭟋 ⊆ R if and only if 𭟋 ⊆ C𭟋(R).

(ii) R ⊆ 𭟋 if and only if C𭟋(R) = 𭟋.

(iii) If G is a filter of ℏ, then 𭟋 ⊆ C𭟋(G). Also, 𭟋 ⊆ G if and only if
C𭟋(G) = G = C𭟋(G).

(iv) Every filter which is contained in 𭟋 is an upper rough filter of ℏ.

Proof: (i) Assume that 𭟋 ⊆ R and δ ∈ 𭟋. Then C𭟋[δ] = 𭟋 ⊆ R and so
δ ∈ C𭟋(R), that is, 𭟋 ⊆ C𭟋(R). The converse is clear.

(ii) By Proposition 2.3(i), it is clear that if C𭟋(R) = 𭟋, then R ⊆ 𭟋.
Suppose R ⊆ 𭟋 and δ ∈ C𭟋(R). Then C𭟋[δ] ∩R ̸= ∅. Thus κ ∈ C𭟋[δ] ∩ L.
Since L ⊆ 𭟋, we have κ ∈ 𭟋 and C𭟋[δ] = C𭟋[κ] = 𭟋. Thus δ ∈ 𭟋,
which shows that C𭟋(R) ⊆ 𭟋. Now, if δ ∈ 𭟋, then C𭟋[δ] = 𭟋 and so
C𭟋[δ] ∩ R = 𭟋 ∩ R = R ̸= ∅. Hence δ ∈ C𭟋(R) and so F ⊆ C𭟋(R).
Therefore, C𭟋(R) = 𭟋.

(iii) Let G be a filter of ℏ. If ν ∈ 𭟋, then C𭟋[ν] = 𭟋 and 1 ∈ 𭟋 ∩G =
C𭟋[ν] ∩ G and so ν ∈ C𭟋(G). Hence 𭟋 ⊆ C𭟋(G). Assume that 𭟋 ⊆ G.
By Proposition 2.3(i), it is clear that G ⊆ C𭟋(G) and C𭟋(G) ⊆ G. If

δ ∈ C𭟋(G), then C𭟋[δ] ∩ G ̸= ∅. Hence C𭟋[δ] = C𭟋[κ], for some κ ∈ G. It
follows that δ → κ ∈ 𭟋 ⊆ G and κ → δ ∈ 𭟋 ⊆ G. Since G is a filter of ℏ
and κ ∈ G, we have δ ∈ G and so G = C𭟋(G). Let ν ∈ G. If a ∈ C𭟋[ν],
then a → ν, ν → a ∈ 𭟋 ⊆ G. Since G is a filter of ℏ, it follows that a ∈ G,
and so C𭟋[ν] ⊆ G and ν ∈ C𭟋(G). Thus C𭟋(G) = G. Conversely, suppose

C𭟋(G) = G = C𭟋(G) and ν ∈ 𭟋. Since 1 ∈ C𭟋[ν] ∩ G = 𭟋 ∩ G, we have

ν ∈ C𭟋(G) = G. Thus 𭟋 ⊆ G.
(iv) It is clear by (ii).
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The following corollary is obtained from Theorem 3.8.

Corollary 3.9. In an 𭟋-approximation space (ℏ, C𭟋), every filter con-
taining 𭟋 is a rough filter of ℏ and every nonempty subset contained in 𭟋
is an upper rough filter of ℏ.

Proposition 3.10. Let (ℏ, C𭟋) be an 𭟋-approximation space in which ℏ
is bounded. Then the upper rough approximation operator C𭟋 satisfies
¬C𭟋(R) ⊆ C𭟋(¬R) for all nonempty subset R of ℏ.

Proof: Let ν ∈ ¬C𭟋(R). Then ν = ¬δ for some δ ∈ ℏ such that C𭟋[δ] ∩
R ̸= ∅. Hence there exists κ ∈ R such that C𭟋[δ] = C𭟋[κ], which implies
that C𭟋[ν] = C𭟋[¬δ] = C𭟋[¬κ]. Since ¬κ ∈ ¬R, we get C𭟋[ν] ∩ ¬R =
C𭟋[¬κ] ∩ ¬R ̸= ∅. Hence ν ∈ C𭟋(¬R). Therefore, ¬C𭟋(R) ⊆ C𭟋(¬R).

Now by below example we show that the reverse inclusion in Proposition
3.10 is not true, in general.

Example 3.11. Let ℏ = {0, η, β, ζ, 1} be a poset with the following Hasse
diagram. Define the operations ⊙ and → on ℏ as follows,

1

ζ

η β

0

→ 0 η β ζ 1
0 1 1 1 1 1
η β 1 β 1 1
β η η 1 1 1
ζ 0 η β 1 1
1 0 η β ζ 1

⊙ 0 η β ζ 1
0 0 0 0 0 0
η 0 η 0 η η
β 0 0 β β β
ζ 0 η β ζ ζ
1 0 η β ζ 1

Then (ℏ,⊙,→, 0, 1) is a bounded hoop. Suppose 𭟋 = {ζ, 1}. Then
C𭟋[ζ] = C𭟋[1] = {ζ, 1}, C𭟋[η] = {η}, C𭟋[β] = {β} and C𭟋[0] = {0}.
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Thus C𭟋(ℏ) = ℏ and ¬C𭟋(ℏ) = {0, η, β, 1}. Also, ¬ℏ = {0, η, β, 1} and so
C𭟋(¬ℏ) = ℏ. Hence, C𭟋(¬ℏ) ⊈ ¬C𭟋(ℏ).

In the following example we show that lower rough approximation op-
erator C𭟋 does not satisfies in the condition of Proposition 3.10.

Example 3.12. Let ℏ be the hoop as in Example 3.11 and R = {β, 1}.
Then C𭟋(R) = {β} and so ¬C𭟋(R) = {η}. Moreover, ¬R = {0, η} and so
C𭟋(¬R) = {0, η}. Hence, C𭟋(¬R) ⊈ ¬C𭟋(R). Also, if R = {0, η, β}, then
C𭟋(R) = {0, η, β} and so ¬C𭟋(R) = {η, β, 1}. Moreover, ¬R = {η, β, 1}.
Then C𭟋(¬R) = {η, β}. Hence, ¬C𭟋(R) ⊈ C𭟋(¬R). Therefore, lower
rough approximation operator C𭟋 does not satisfies in the condition of
Proposition 3.10.

Proposition 3.13. If (ℏ, C𭟋) is an 𭟋-approximation space and R is a
nonempty subset of ℏ, then

(i) DNP (ℏ) ∩ C𭟋(¬R) ⊆ ¬C𭟋(¬(¬R)).

(ii) DNP (ℏ) ∩ C𭟋(¬(R ∩DNP (ℏ))) ⊆ ¬C𭟋(R).

Proof: (i) If κ ∈ DNP (ℏ) ∩ C𭟋(¬R), then ¬(¬κ) = κ and since κ ∈
C𭟋(¬R), there exists ν ∈ R such that C𭟋[κ] = C𭟋[¬ν].

It follows that C𭟋[¬κ]∩¬(¬R) = C𭟋(¬[¬ν])∩¬(¬R) ̸= ∅, that is, ¬κ ∈
C𭟋(¬(¬R)). Hence κ ∈ ¬C𭟋(¬(¬R)). Therefore, DNP (ℏ) ∩ C𭟋(¬R) ⊆
¬C𭟋(¬(¬R)).

(ii) Let δ ∈ DNP (ℏ) ∩ C𭟋(¬(R ∩ DNP (ℏ))). Then ¬(¬δ) = δ and
C𭟋[δ]∩¬(R∩DNP (ℏ)) ̸= ∅. Thus there exists κ ∈ C𭟋[δ]∩¬(R∩DNP (ℏ)),
it means that, C𭟋[δ] = C𭟋[κ] and there exists ν ∈ R ∩DNP (ℏ) such that
κ = ¬ν and so C𭟋[δ] = C𭟋[¬ν]. Then C𭟋[¬δ]∩R = C𭟋[¬(¬ν)]∩R = C𭟋[ν]∩
R ̸= ∅, that is, δ ∈ ¬C𭟋(R). Therefore, DNP (ℏ)∩ C𭟋(¬(R∩DNP (ℏ))) ⊆
¬C𭟋(R).

Proposition 3.14. If ℏ is a bounded hoop, then the set ℏ⋆ := {κ ∈ ℏ |
¬κ = 0} is a filter of ℏ.

Proof: Since ¬1 = 0, we have 1 ∈ ℏ⋆. Consider κ, ν ∈ ℏ so that κ, κ →
ν ∈ ℏ⋆. Then ¬κ = 0 and ¬(κ → ν) = 0. Considering Proposition 2.2(i)
and ν ≤ ¬¬ν, we get κ → ν ≤ κ → ¬¬ν = ¬ν → ¬κ. Hence

¬ν = ¬¬¬ν = ¬(¬ν → 0) = ¬(¬ν → ¬κ) ≤ ¬(κ → ν) = 0,

and so ¬ν = 0, that is, ν ∈ ℏ⋆. So it is proved that ℏ⋆ is a filter of ℏ.
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Corollary 3.15. If (ℏ, C𭟋) is an 𭟋-approximation space in which ℏ is
bounded, then

𭟋 ⊆ C𭟋(ℏ⋆) ⊆ 𭟋⋆,

where 𭟋⋆ := {δ ∈ ℏ | ¬(¬δ) ∈ 𭟋}.

Proof: By Theorem 3.8(iii) and Proposition 3.14, we know that 𭟋 ⊆
C𭟋(ℏ⋆). Let κ ∈ C𭟋(ℏ⋆). Then C𭟋[κ] ∩ ℏ⋆ ̸= ∅, which implies that there
exists a ∈ C𭟋[κ] such that ¬a = 0. Thus C𭟋[0] = C𭟋[¬a] = C𭟋[¬κ], and so
¬(¬κ) = ¬κ → 0 ∈ 𭟋, i.e., κ ∈ 𭟋⋆.

We provide conditions for a nonempty subset to be definable with re-
spect to a filter of ℏ.

Theorem 3.16. Let (ℏ, C𭟋) be an 𭟋-approximation space. Then a non-
empty subset R of ℏ is definable with respect to 𭟋 if and only if C𭟋(R) = R

or C𭟋(R) = R.

Proof: The necessity is clear. Conversely, suppose C𭟋(R) = R. By

Proposition 2.3(i), it is clear that R ⊆ C𭟋(R). Suppose κ ∈ C𭟋(R). Then
C𭟋[κ] ∩ L ̸= ∅. Thus, there exists ν ∈ C𭟋[κ] ∩ L, such that C𭟋[κ] = C𭟋[ν].
Since ν ∈ R and C𭟋(R) = R, we have ν ∈ C𭟋(R). Then C𭟋[ν] ⊆ R.

Thus, C𭟋[κ] ⊆ R, and so κ ∈ R. Hence, C𭟋(R) ⊆ R and so C𭟋(R) = R.
Therefore, C𭟋(R) = R = C𭟋(R) and R is definable. Now, assume that

C𭟋(R) = R. Obviously, C𭟋(R) ⊆ R. For any κ ∈ R, let δ ∈ C𭟋[κ]. Then

C𭟋[δ] ∩ R = C𭟋[κ] ∩ R ̸= ∅ and so δ ∈ C𭟋(R) = R. Hence C𭟋[κ] ⊆ R, i.e.,
κ ∈ C𭟋(R). Then C𭟋(R) = R = C𭟋(R). Therefore, R is definable with
respect to 𭟋.

Theorem 3.17. Let 𭟋 and G be two filters of a hoop ℏ. For any nonempty
subset 𭟋 of a hoop ℏ, we have

(i) If R ⊆ 𭟋 ∩G, then C𭟋∩G(R) = C𭟋(R) ∩ CG(R).

(ii) If R is definable with respect to 𭟋, then C𭟋∩G(R) = C𭟋(R)∩CG(R).

(iii) If R contains 𭟋 and G, then C𭟋∩G(R) = C𭟋(R) ∩ CG(R).

Proof: (i) Let κ ∈ C𭟋∩G(R). Then C𭟋∩G[κ] ∩ R ̸= ∅. Thus there exists
a ∈ C𭟋∩G[κ] ∩ R. Since a ∈ R and R ⊆ 𭟋 ∩ G, we get a ∈ 𭟋 and
a ∈ G. Moreover, from a ∈ C𭟋∩G[κ], we get a → κ, κ → a ∈ 𭟋 ∩ G.
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Since 𭟋 and G are two filters of ℏ, we have κ ∈ 𭟋 and κ ∈ G. Then
C𭟋[κ] = C𭟋[a], and so C𭟋[κ] ∩ R ̸= ∅. By the similar way, CG[κ] ∩ R ̸= ∅.
Hence, κ ∈ C𭟋(R) ∩ CG(R). Therefore, C𭟋∩G(R) ⊆ C𭟋(R) ∩ CG(R).

Conversely, suppose κ ∈ C𭟋(R) ∩ CG(R). Since κ ∈ C𭟋(R), we have
C𭟋[κ]∩R ̸= ∅. Then there exists a ∈ C𭟋[κ]∩R such that κ → a, a → κ ∈ 𭟋.
By the similar way, there exists b ∈ CG[κ]∩R such that b → κ, κ → b ∈ G.
Since a, b ∈ R, R ⊆ 𭟋 ∩ G and 𭟋 and G are two filters of ℏ, we have
κ ∈ 𭟋 ∩ G and a, b ∈ 𭟋 ∩ G. The C𭟋∩G[κ] = C𭟋∩G[a] = C𭟋∩G[b]. Hence,
C𭟋∩G[κ]∩R ̸= ∅, and so κ ∈ C𭟋∩G(R). Thus, C𭟋(R)∩ CG(R) ⊆ C𭟋∩G(R).
Therefore, C𭟋(R) ∩ CG(R) = C𭟋∩G(R).

(ii) Suppose R is definable with respect to 𭟋. Then C𭟋(R) = R =
C𭟋(R). Thus, C𭟋(R)∩CG(R) = R∩CG(R) = R. Moreover, by defination of

upper approximation, we have R ⊆ C𭟋∩G(R). Now, suppose κ ∈ C𭟋∩G(R).
Then C𭟋∩G[κ]∩R ̸= ∅. Let ν ∈ C𭟋∩G[κ]∩R. Since ν ∈ R and R is definable
with respect to 𭟋, we get C𭟋[ν] ⊆ R. Also, from ν ∈ C𭟋∩G[κ], we obtain,
κ → ν, ν → κ ∈ 𭟋 ∩ G ⊆ 𭟋. Then κ ∈ C𭟋[ν] ⊆ R, and so κ ∈ R.
Hence, C𭟋∩G(R) ⊆ R. Thus, C𭟋∩G(R) = R. Therefore, C𭟋∩G(R) =
C𭟋(R) ∩ CG(R).

(iii) Let R be a filter of a hoop ℏ containing 𭟋 and G and κ ∈ C𭟋∩G(R).
Then C𭟋∩G[κ] ⊆ R, and so κ ∈ R. Thus, for any a ∈ C𭟋[κ], we have
a → κ, κ → a ∈ 𭟋. Since R is a filter of ℏ such that 𭟋 ⊆ R and κ ∈ R,
we get a ∈ R. By the similar way, for any b ∈ CG[κ], we have b ∈ R.
Hence, C𭟋[κ] ⊆ R and CG[κ] ⊆ R. Then κ ∈ C𭟋(R) and κ ∈ CG(R), and
so κ ∈ C𭟋(R) ∩ CG(R). Hence, C𭟋∩G(R) ⊆ C𭟋(R) ∩ CG(R).

Conversely, suppose κ ∈ C𭟋(R) ∩ CG(R). Then κ ∈ C𭟋(R) and κ ∈
CG(R), C𭟋[κ] ⊆ R, CG[κ] ⊆ R and so κ ∈ R. Let ν ∈ C𭟋∩G[κ]. Then by
assumption, ν → κ, κ → ν ∈ 𭟋∩G ⊆ R. Since κ → ν ∈ R, κ ∈ R and R is a
filter of ℏ, we get ν ∈ R, and so C𭟋∩G[κ] ⊆ R. Thus, κ ∈ C𭟋∩G(R). Hence,
C𭟋(R) ∩ CG(R) ⊆ C𭟋∩G(R). Therefore, C𭟋(R) ∩ CG(R) = C𭟋∩G(R).

Lemma 3.18. Let f : ℏ → k be a homomorphism of hoops. Then

(i) ker(f) = {κ ∈ ℏ | f(κ) = 1} is a filter of ℏ.

(ii) If f is an epimorphism such that 𭟋 is a filter of ℏ and Kerf ⊆ 𭟋 ,
then f(𭟋) is a filter of k.

Proof: (i) Since f is a homomorphism of hoops, it is clear that f(1) =
1 ∈ kerf . Suppose κ, ν ∈ ℏ such that κ, κ → ν ∈ kerf . Then f(κ) =
f(κ → ν) = 1. Since f is a homomorphism of hoop, we have f(ν) = 1 →
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f(ν) = f(κ) → f(ν) = f(κ → ν) = 1. Hence, f(ν) = 1, and so ν ∈ kerf .
Therefore, kerf is a filter of ℏ.

(ii) Since f is a hoop homomorphism and 𭟋 is a filter of ℏ, it is clear that
1 = f(1) ∈ f(𭟋). Suppose κ, κ → ν ∈ f(𭟋). Then there are a, b ∈ 𭟋 such
that f(a) = κ and f(b) = κ → ν. Since f is onto and ν ∈ k, there exists
c ∈ ℏ such that f(c) = ν. Thus f(b) = κ → ν = f(a) → f(c) = f(a → c).
Thus b → (a → c) ∈ Kerf ⊆ 𭟋. Since b ∈ 𭟋 and 𭟋 is a filter of ℏ, we have
a → c ∈ 𭟋. From 𭟋 is a filter of ℏ, a ∈ 𭟋 and a → c ∈ 𭟋, we get c ∈ 𭟋.
Hence, ν = f(c) ∈ f(𭟋). Therefore, f(𭟋) is a filter of k.

Theorem 3.19. Let f : ℏ → k be an isomorphism of hoops. Then

(i) f(Cker(f)(R)) = f(R) for any nonempty subset R of ℏ.

(ii) If G is a filter of k, then f−1(CG(f(R)) = Cf−1(G)(R) for any
nonempty subset R of ℏ.

(iii) Assume that f is onto. If 𭟋 is a filter of ℏ which contains ker(f),
then f(C𭟋(R)) = Cf(𭟋)(f(R)) for any nonempty subset R of ℏ.

Proof: (i) Since by Lemma 3.18, kerf is a filter of ℏ, by Proposition 2.3(i),
we have R ⊆ Cker(f)(R), and so it is clear that f(R) ⊆ f(Cker(f)(R)).

Suppose ν ∈ f(Cker(f)(R)). Then there exists κ ∈ Cker(f)(R) such that

f(κ) = ν. Since κ ∈ Cker(f)(R), we have Cker(f)[κ] ∩ R ̸= ∅. Then there
is δ ∈ Cker(f)[κ] ∩ R such that Cker(f)[κ] = Cker(f)[δ] and δ ∈ R. Thus,
κ → δ, δ → κ ∈ ker(f). So, f(κ) → f(δ) = f(δ) → f(κ) = 1. Hence,
f(κ) = f(δ). Since δ ∈ R, we have ν = f(κ) = f(δ) ∈ f(R). Hence,
f(Cker(f)(R)) ⊆ f(R). Therefore, f(Cker(f)(R)) = f(R).

(ii) Let κ ∈ f−1(CG(f(R)). Then f(κ) ∈ CG(f(R)), and so CG[f(κ)] ∩
f(R) ̸= ∅. Thus ν ∈ CG[f(κ)] ∩ f(R). So CG[f(κ)] = CG[ν] and ν ∈
f(R). Thus, there exists δ ∈ R such that f(δ) = ν, and so f(δ) ∈ CG[ν].
Then CG[f(δ)] = CG[f(κ)]. Thus, f(κ → δ) ∈ G and f(δ → κ) ∈ G
and so κ → δ, δ → κ ∈ f−1(G). Hence, Cf−1(G)[κ] = Cf−1(G)[δ], and so

δ ∈ Cf−1(G)[κ] ∩ R. Therefore, κ ∈ Cf−1(G)(R). The proof of converse is
similar.

(iii) Suppose f is onto and 𭟋 is a filter of ℏ which contains ker(f). Then
by Lemma 3.18, f(𭟋) is a filter of k. Let ν ∈ f(C𭟋(R)). Then there exists
κ ∈ C𭟋(R) such that ν = f(κ). Since κ ∈ C𭟋(R), we have C𭟋[κ] ∩ R ̸= ∅.
Then there exists a ∈ C𭟋[κ]∩R such that f(a) ∈ f(R), and C𭟋[κ] = C𭟋[a],
and so κ → a, a → κ ∈ 𭟋. Thus, f(κ) → f(a), f(a) → f(κ) ∈ f(𭟋).
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Hence, from ν = f(κ) we get Cf(𭟋)[ν] = Cf(𭟋)[f(κ)] = Cf(𭟋)[f(a)]. So

f(a) ∈ Cf(𭟋)[ν]∩ f(R) ̸= ∅. Then ν ∈ Cf(𭟋)[f(R)]. Therefore, f(C𭟋(R)) ⊆
Cf(𭟋)(f(R)).

Conversely, let κ ∈ Cf(𭟋)(f(R)). Then Cf(𭟋)[κ] ∩ f(R) ̸= ∅. Since f is
onto, there exists a ∈ ℏ such that f(a) = κ. Suppose ν ∈ Cf(𭟋)[κ] ∩ f(R).
Then there exist b ∈ R such that f(b) = ν. Since ν ∈ Cf(𭟋)[κ], we have
ν → κ, κ → ν ∈ f(𭟋). Thus there are m, n ∈ 𭟋 such that ν → κ = f(m)
and κ → ν = f(n). So f(b) → f(a) = f(m) and f(a) → f(b) = f(n).
Since kerf ⊆ 𭟋 and m ∈ 𭟋, we get (b → a) → m ∈ 𭟋 and m → (b →
a) ∈ 𭟋, and so b → a ∈ 𭟋. By the similar way, a → b ∈ 𭟋. Thus
C𭟋[a] = C𭟋[b]. Morever, from b ∈ C𭟋[b] ∩ R, we get b ∈ C𭟋(R), and
so ν ∈ f(b) ∈ f(C𭟋(R)). Hence, Cf(𭟋)(f(R)) ⊆ f(C𭟋(R)). Therefore,

f(C𭟋(R)) = Cf(𭟋)(f(R)).

We define a hyper operation “⊛” on ℏ as follows:

⊛ : ℏ× ℏ → P(ℏ), (κ, ν) 7→ {δ ∈ ℏ | κ⊙ ν ≤ δ}.

For any κ, ν ∈ ℏ, ⊛(κ, ν) will be denoted by κ ⊛ ν, that is, κ ⊛ ν := {δ ∈
ℏ | κ ⊙ ν ≤ δ}. It is clear that the operation “⊛” is commutative and
associative. For any nonempty subsets 𭟋 and G of a hoop ℏ, we define

𭟋⊛G :=
⋃

κ∈𭟋, ν∈G

κ⊛ ν. (3.1)

Example 3.20. Let H be the hoop as in Example 3.11. Suppose F = {ζ, 1}.
Then by routine calculation, it is clear that κ ⊛ 0 = β ⊛ η = ℏ for any
κ ∈ ℏ, η ⊛ η = η ⊛ 1 = η ⊛ ζ = {η, ζ, 1}, β ⊛ β = ζ ⊛ β = β ⊛ 1 =
{β, ζ, 1}, ζ ⊛ ζ = ζ ⊛ 1 = {ζ, 1}.
Now, if we consider K = {η, 1} and G = {ζ}, which are two nonempty
subsets of ℏ, then K ⊛G :=

⋃
κ∈K, ν∈G

κ⊛ ν = {η, ζ, 1}.

Theorem 3.21. If 𭟋 and G are two filters of ℏ, then 𭟋⊛G is the smallest
filter of ℏ which contains 𭟋 and G.

Proof: Let 𭟋 and G be two filters of a hoop ℏ. Then 1 ∈ 𭟋 and 1 ∈ G,
and so 1 ⊛ 1 = {κ ∈ ℏ | 1 = 1 ⊙ 1 ≤ κ} = {1}. Thus 1 ∈ 𭟋 ⊛ G. Now,
suppose κ, ν ∈ ℏ such that κ, κ → ν ∈ 𭟋⊛G. Since 𭟋⊛G :=

⋃
a∈𭟋, b∈G

a⊛b,

there exist a, c ∈ 𭟋 and b, d ∈ G such that κ ∈ a⊛b and κ → ν ∈ c⊛d. Thus
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κ ∈ a⊛ b = {δ ∈ ℏ | a⊙ b ≤ δ} and κ → ν ∈ c⊛ d = {w ∈ ℏ | c⊙ d ≤ w}.
So, a⊙ b ≤ κ and c⊙d ≤ κ → ν. By Proposition 2.1(vii) and (xi), we have

(a⊙ c)⊙ (b⊙ d) ≤ a⊙ b⊙ c⊙ d ≤ κ⊙ c⊙ d ≤ κ⊙ (κ → ν) ≤ ν.

Then (a⊙ c)⊙ (b⊙ d) ≤ ν. Since 𭟋 and G are two filters of ℏ, a, c ∈ 𭟋 and
b, d ∈ G, we have a⊙c ∈ 𭟋 and b⊙d ∈ G. Hence ν ∈ (a⊙c)⊛(b⊙d) ⊆ 𭟋⊛G,
and so 𭟋 ⊛ G is a filter of ℏ. Suppose J is a filter of ℏ which contains
𭟋 and G. If κ ∈ 𭟋 ⊛ G, then there are a ∈ 𭟋 and b ∈ G such that
κ ∈ a ⊛ b = {δ ∈ ℏ | a ⊙ b ≤ δ}. Since J is a filter of ℏ and 𭟋, G ⊆ J , we
get a, b ∈ J and so a⊙ b ∈ J . Thus, κ ∈ J . Hence, 𭟋⊛G ⊆ J . Therefore,
𭟋⊛G is the smallest filter of ℏ which contains 𭟋 and G.

Proposition 3.22. Let 𭟋 be a filter of a hoop ℏ. Then for all R,P ∈
P(ℏ) \ {∅}, we have:

C𭟋(R)⊛ C𭟋(P ) ⊆ C𭟋(R⊛ P ) ⊆ C𭟋(R)⊛ C𭟋(P ).

Proof: Let κ ∈ C𭟋(R)⊛C𭟋(P ) =
⋃

a∈C𭟋(R), b∈C𭟋(P )

a⊛ b. Then there exist

a ∈ C𭟋(R) and b ∈ C𭟋(P ) such that κ ∈ a ⊛ b. It means a ⊙ b ≤ x. On
the other hand, C𭟋[a] ⊆ L, and C𭟋[b] ⊆ M , so a ∈ L, and b ∈ M . Then
a⊛b ⊆ L⊛M =

⋃
κ∈R, ν∈P

κ⊛ν. Now, since a⊙b ≤ x and a⊛b ∈ R⊛P , we

get κ ∈ R⊛ P . We have C𭟋[x] ∩ (R⊛ P ) ̸= ∅. Therefore κ ∈ C𭟋(R⊛ P ).
For the second part, let κ ∈ C𭟋(R⊛ P ). Then C𭟋[κ] ∩ (R⊛ P ) ̸= ∅. Thus
there exists ν ∈ C𭟋[κ]∩(R⊛P ). Since ν ∈ C𭟋[κ], we have C𭟋[κ] = C𭟋[ν] and
from ν ∈ R⊛P , we get that there are a ∈ R and b ∈ P such that ν ∈ a⊛b.
Moreover, since a ∈ C𭟋[a] and a ∈ R, we obtain that a ∈ C𭟋[a] ∩R, and so
a ∈ C𭟋(R). By the similar way, b ∈ C𭟋[b] ∩ P , and so b ∈ C𭟋(P ). Hence
a⊛b ⊆ C𭟋(R)⊛C𭟋(P ), and so ν ∈ C𭟋(R)⊛C𭟋(P ). Thus C𭟋[κ]∩(R⊛P ) ⊆
C𭟋(R)⊛ C𭟋(P ). Therefore, C𭟋(R⊛ P ) ⊆ C𭟋(R)⊛ C𭟋(P ).

We provide conditions for the equality in Proposition 3.22 to be true.

Theorem 3.23. Let 𭟋 be a filter of a hoop ℏ and R,P are two nonempty
subsets of ℏ.

(i) If R,P ⊆ 𭟋, then C𭟋(R⊛ P ) = C𭟋(R)⊛ C𭟋(P ).

(ii) If R and P are definable with respect to 𭟋, then C𭟋(R) ⊛ C𭟋(P ) =
C𭟋(R⊛ P )
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Proof: (i) According to the Theorem 3.8(ii), if R,P ⊆ 𭟋, then C𭟋(R) =
C𭟋(P ) = 𭟋. Since R⊛P =

⋃
κ∈R,ν∈P

{δ ∈ ℏ | κ⊙ ν ≤ δ}, R,P ⊆ 𭟋 and 𭟋 is

a filter of ℏ, we obtain κ⊙ ν ∈ 𭟋, and so δ ∈ 𭟋. Hence R ⊛ P ⊆ 𭟋 which
means C𭟋(R⊛ P ) = 𭟋. Therefore C𭟋(R⊛ P ) = C𭟋(R)⊛ C𭟋(P ).

(ii) According to Proposition 3.22, we have C𭟋(R)⊛ C𭟋(P ) ⊆ C𭟋(R⊛
P ) ⊆ C𭟋(R)⊛ C𭟋(P ). Since R and P are definable with respect to 𭟋, we
get R ⊛ P ⊆ C𭟋(R ⊛ P ) ⊆ R ⊛ P . It implies that C𭟋(R ⊛ P ) = R ⊛ P .
Since C𭟋(R ⊛ P ) = R ⊛ P , by Theorem 3.16 we get C𭟋(R ⊛ P ) = R ⊛ P .
Therefore, C𭟋(R⊛ P ) = R⊛ P = C𭟋(R⊛ P ).

Lemma 3.24. Let ℏ be a linearly ordered hoop and 𭟋 be a filter of ℏ. If
a ≤ b and C𭟋[a] ̸= C𭟋[b], then for any u ∈ C𭟋[a] and for any v ∈ C𭟋[b]
we have u ≤ v.

Proof: Let a ≤ b and C𭟋[a] ̸= C𭟋[b]. Suppose that u ≰ v. Since ℏ is a
linearly ordered hoop, we get v ≤ u. So v → u = 1. On the other hand, we
have u ∈ C𭟋[a] and so u → a, a → u ∈ 𭟋. By Proposition 2.1(ix), we have
v → u ≤ (u → a) → (v → a). It implies that v → a ∈ 𭟋. Since v ∈ C𭟋[b]
we have v → b, b → v ∈ 𭟋. Also, since a ≤ b, by Proposition 2.1(xi) we
have b → v ≤ a → v. So a → v ∈ 𭟋. Then v ∈ C𭟋[a] and v ∈ C𭟋[b],
thus v ∈ C𭟋[a] ∩ C𭟋[b]. Hence, C𭟋[a] = C𭟋[b], which is a contradiction.
Therefore, v ≤ u.

Theorem 3.25. Let ℏ be a linearly ordered hoop, (ℏ,𭟋) be an approxima-
tion space and R be a filter of ℏ. Then R is an upper rough filter of ℏ.

Proof: If a ≤ b and a ∈ C𭟋(R), then C𭟋[a] ∩ R ̸= ∅. So there is an
element u ∈ R such that C𭟋[a] = C𭟋[u]. If C𭟋[a] = C𭟋[b], then clearly
b ∈ C𭟋(R). If C𭟋[a] ̸= C𭟋[b], then by Lemma 3.24, we obtain u ≤ b. Since
u ∈ R and R is a filter of ℏ, we get b ∈ R. Thus, C𭟋[b] ∩ R ̸= ∅, and so
b ∈ C𭟋(R).
Let a, b ∈ C𭟋(R). Then C𭟋[a] ∩ R ̸= ∅ and C𭟋[b] ∩ R ̸= ∅. Hence there
exist u ∈ C𭟋[a] ∩R and v ∈ C𭟋[b] ∩R. Since C𭟋[u] = C𭟋[a] and C𭟋[v] =
C𭟋[b], u, v ∈ R, and R is a filter of ℏ, we have u⊙ v ∈ R and C𭟋[u⊙ v] =
C𭟋[a⊙ b]. So u⊙ v ∈ C𭟋[a⊙ b]∩R ̸= ∅. Hence a⊙ b ∈ C𭟋(R). Therefore,
C𭟋(R) is a filter of ℏ.

Theorem 3.26. Let 𭟋 and G be two nonempty subsets of a linearly ordered
hoop ℏ and G be a filter of ℏ. Then C𭟋(R⊛ P ) = C𭟋(R)⊛ C𭟋(P ).
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Proof: Let n ∈ C𭟋(R)⊛C𭟋(P ). Then there are u ∈ C𭟋(R) and v ∈ C𭟋(P )
such that n ∈ u⊛v and so u⊙v ≤ n. Since C𭟋[u]∩L ̸= ∅ and C𭟋[v]∩M ̸= ∅,
we get that there are a ∈ L and b ∈ M such that C𭟋[a] = C𭟋[u] and
C𭟋[b] = C𭟋[v]. Hence C𭟋[a⊙ b] = C𭟋[u]⊙ C𭟋[v], and so, a⊙ b ∈ L⊙M .
If C𭟋[n] ̸= C𭟋[u⊙ v], then by Lemma 3.24, since a⊙ b ∈ C𭟋[u⊙ v], we get
a⊙b ≤ n. Then n ∈ L⊛M . Hence C𭟋[n]∩(L⊛M) ̸= ∅. On the other hand,
if C𭟋[n] = C𭟋[u⊙v], then by hypothesis we get C𭟋[n]∩(L⊛M) ̸= ∅. Thus
n ∈ C𭟋(R⊛ P ). Therefore, C𭟋(R)⊛ C𭟋(P ) ⊆ C𭟋(R⊛ P ). By Proposition
3.22, the proof of converse is clear.

Theorem 3.27. The algebraic structure (F(ℏ),⊛) is a semilattice, where
F(ℏ) is the set of all filters of a hoop ℏ.

Proof: By Theorem 3.21, it is clear that (F(ℏ),⊛) is well-defined. Also,
according to definition of operation ⊛, we get (F(ℏ),⊛) is associative and
commutative. It is enough to prove that the operation ⊛ is idempotent.
For this, let 𭟋 ∈ F(ℏ) and δ ∈ 𭟋⊛𭟋. Then there exist κ, ν ∈ 𭟋 such that
κ ⊙ ν ≤ δ. Since 𭟋 is a filter of ℏ, and κ, ν ∈ 𭟋, we have κ ⊙ ν ∈ 𭟋 and
so δ ∈ 𭟋. Hence 𭟋⊛𭟋 ⊆ 𭟋. Conversely, since 𭟋 ∈ F(ℏ), we have 1 ∈ 𭟋.
Then for any κ ∈ 𭟋, 1⊙κ ≤ κ and so κ ∈ 𭟋⊛𭟋. Thus 𭟋 ⊆ 𭟋⊛𭟋. Hence
𭟋 = 𭟋⊛𭟋. Therefore, (F(ℏ),⊛) is a semilattice.

Corollary 3.28. The algebraic structure (F(ℏ),⊛, {1}) is a commutative
monoid.

Let 𭟋 be a filter of a hoop ℏ. Then each filter of ℏ which contains 𭟋 is
rough filter according to Theorem 3.8(iii). The set of all rought filters of
hoop ℏ which contain 𭟋 is denoted by RF(ℏ).
Let K and G be two filters of ℏ. We define the implication relation on F(ℏ)
as follows:

K → G = {κ ∈ ℏ | K ∩ ⟨κ⟩ ⊆ G}. (3.2)

Theorem 3.29. The set RF(ℏ) is closed under the operation ” → ”.

Proof: Let K and G be two filters of RF(ℏ). Then, 𭟋 ⊆ G,K. Let
κ ∈ 𭟋. Since 𭟋 ⊆ K, we get ⟨κ⟩ ⊆ 𭟋 ⊆ K and so K ∩ ⟨κ⟩ ⊆ K ∩ 𭟋 ⊆
𭟋 ⊆ G. Thus, K ∩ ⟨κ⟩ ⊆ G, for any κ ∈ 𭟋. Hence 𭟋 ⊆ K → G. Hence,
K → G ∈ RF(ℏ).
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Theorem 3.30. The algebraic structure (RF(ℏ),∩,→, ℏ) is a hoop.

Proof: According to definition of ∩, we get (RF(ℏ),∩, ℏ) is associative
and commutative. So (RF(ℏ),∩, ℏ) is a commutative monoid. It is enough
to prove that the other properties hold. Since G → G = {κ ∈ ℏ | G∩⟨κ⟩ ⊆
G}, it is clear that G → G = ℏ. Let κ ∈ (G ∩ K) → J . It means
⟨κ⟩ ∩ (G ∩K) ⊆ J = (⟨κ⟩ ∩G) ∩K ⊆ J . Then ⟨κ⟩ ∩G ⊆ K → J . Hence,
κ ∈ G → (K → J). The proof of other side is similar. Moreover, since
G ∩ (G → K) = G ∩ {κ ∈ ℏ | G ∩ ⟨κ⟩ ⊆ K} = {κ ∈ G | ⟨κ⟩ ⊆ K}, we have
G∩(G → K) = G∩K. By the similar way, we have K∩(K → G) = K∩G.
Hence G ∩ (G → K) = K ∩ (K → G). Therefore, (RF(ℏ),∩,→, ℏ) is a
hoop.

4. Conclusions and future works

In this paper, by considering the notion of a hoop, the notion of the lower
and the upper approximations are introduced and some properties of them
are given. Moreover, it is proved that the lower and the upper approxima-
tions are an interior operator and a closure operator, respectively. Also,
a hyper operation on hoop is defined and then it is shown that the set
of all rough filters is a monoid by using this operation. For more study,
the implicative operation on the set of all rough filters is introduced and
proved that this set with implication and intersection is made a hoop. For
the future work, we want to use the notion of soft and rough hoop and
introduce soft rough and rough soft on hoops.
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