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Hidden Lorentz symmetry of the Hořava–Lifshitz gravity
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In this Letter it is shown that the Hořava–Lifshitz gravity theory admits Lorentz symmetry preserving
preferred global time foliation of the spacetime.
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The possibility that gravity may exhibit a preferred foliation at
its most fundamental level has attracted a lot of attention recently,
mainly due to the Hořava’s papers [1–3] devoted to gravity mod-
els characterized by certain specific anisotropic scaling between
space and time. The leading idea of the Hořava approach to the
quantization of gravity is to achieve power-counting renormaliz-
ability by modifying the graviton propagator. This is obtained by
adding to the action terms containing higher order spatial deriva-
tives of the metric which, in turn, naturally leads to the preferred
co-dimension one foliation F of spacetime manifold M topolog-
ically equivalent [1–3] to R1 × Σ . The resulting theory, known as
the Hořava–Lifshitz (HL) gravity, is then invariant under a group of
diffeomorphisms Diff (F ,M) preserving this foliation

t̃ = t̃(t), x̃i = x̃i(t, x) (1)

where i = 1,2, . . . , D . The above mentioned anisotropic scaling
characterizing HL gravity is of the form

t −→ bzt, x −→ bx. (2)

Thus the (momentum) dimension [t] = −z, [xi] = −1, so the light
velocity c has the dimension [c] = z − 1. When z equals the num-
ber of spatial dimensions D the theory becomes power-counting
renormalizable provided all terms allowed are compatible with the
gauge symmetries in the action.

The HL theory is naturally described by the ADM decomposi-
tion [4] of the relativistic metric, namely by the lapse function N
([N] = 0), the shift vector Ni ([Ni] = [Ni] = z − 1) and the metrics
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γi j ([γi j] = 0) on the spacial slices Σ . In the HL gravity the lapse
N = N(t) is only a function of time t which is constant along Σ

whereas the shift vector Ni depends on the spacetime point (t, x).
In terms of the ADM variables the metrics can be written as

ds2 = gμν dxμ dxν

= −c2N2 dt2 + γi j
(
dxi + Ni dt

)(
dx j + N j dt

)
. (3)

The HL action, respecting the symmetries Diff (F ,M) is [1–3]

S = 2

κ2

∫
dt dD x

√
γ N

[(
Kij K i j − λK 2) − V

]
, (4)

where K = K i
i , λ is a dimensionless coupling constant and

Kij = 1

2N
(∂tγi j − ∇i N j − ∇ j Ni) (5)

is the extrinsic curvature of the leaves hypersurface Σ . A scalar
potential function V is built out of the spatial metrics, the spatial
Riemann tensor and its covariant spatial derivatives but is indepen-
dent of the time derivatives of fields. For a review and extensions
of the Hořava’s approach see [5–9]. In the following we restrict
ourselves to the physically important z = D = 3 case.

One of the problems of the Hořava–Lifshitz gravity is that this
theory does not exhibit Lorentz symmetry. A proposed way out of
this situation is an appropriate preparation of the potential to re-
store dynamically local Lorentz invariance in the low-energy limit
[1–3]. However, for each finite energy scale the Lorentz symmetry
is in fact broken. In this Letter we suggest a way how to overcome
the difficulty with the Lorentz symmetry in the Hořava–Lifshitz
gravity in a physically acceptable way. To do this let us consider
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a coordinate independent solution to the model defined by the ac-
tion (4) where the potential V is chosen as in Ref. [1] with the
cosmological constant equal to zero. Namely, let us choose the shift
vector N as

N = −c ε

1 − ε2
(6)

with 0 � ε2 < 1, while the lapse N is given by

N = 1√
1 − ε2

. (7)

Furthermore, the space metrics is chosen as

γ = (
I − ε ⊗ εT), (8)

where T denotes transposition of the coordinate independent di-
mensionless column vector ε = (εa), a = 1,2,3. With help of
the classical equations of motion [10] it can be verified that
Eqs. (6)–(8) define the flat solution to the HL theory determined
by (4). The spacetime metrics (3) takes the form

ds2 = ζαβ dxα dxβ

= −c2 dt2 − 2cε · dx dt + dxT(I − ε ⊗ εT)dx (9)

with the metric tensor

ζαβ =
(

−1 −εT

−ε I − ε ⊗ εT

)
. (10)

Here α,β = 0,1,2,3. It is easy to see that the metrics form (9) is
related to the Minkowski spacetime as well as the space geometry
is Euclidean. Now, let us consider the rotations

t′ = t, x′ = Rx, ε′ = Rε, (11)

where R belongs to the group of orthogonal matrices, and the
transformations defined by

t′ = t

a + a · ε , (12)

x′ =
(

I + a ⊗ εT + a ⊗ aT

1 + a

)
x + act, (13)

ε′ = 1

a + a · ε
[
ε + a

(
1 + a · ε

1 + a

)]
, (14)

where a parametrizes the standard Lorentz boost L(a)

L(a) =
(

a aT

a I + a⊗aT

1+a

)
, (15)

with a = √
1 + a2. It can be shown that the transformations

(11)–(14) taken together form the realization of the Lorentz group
and it is obvious that they do not destroy the foliation F .
Moreover, the metrics (9) is invariant under the transformations
(11)–(14). We point out that in view of (11)–(14) the above
transformations form a nonlinear realization of the Lorentz group
[11,12]. Nonlinearity affects the coordinate independent vector ε
only, whereas x and t transform linearly. The nonlinear realization
(11)–(14) was firstly introduced in a different context and form in
[13] and was applied to localization problem in Lorentz-covariant
quantum mechanics [14,15] and in statistical physics [16]. There
is a simple relationship between the standard Lorentz transforma-
tions and those given by (11)–(14). Indeed, introducing the new
time coordinate by the affine transformation (not belonging to the
Diff (F ,M))
tE = t + ε · x

c
(16)

we arrive at the standard Minkowski form of the metrics (9). More-
over, we can easily recover for x and tE the standard Lorentz
transformations in the pseudoorthogonal frame. Thus the time re-
definition (16) should be interpreted as the change of distant clock
synchronization [17–21]. Consequently, the vector ε plays the role
of the Reichenbach synchronization coefficient [17,22]. Notice, that
in the Einstein general relativity the corresponding group of dif-
feomorphisms contains both realizations of the Lorentz group: the
standard one and the realization defined by (11)–(14). It is not
surprising because of the physical equivalence of different syn-
chronization schemes on the classical level (see, e.g., Refs. [20]
and [21]). However, only the latter survives as the result of the
reduction of the diffeomorphisms group arising in the HL theory.

Now, it is not difficult to apply the above Lorentz covariant flat
solution as the local reference frame in a general case. This can be
done by introducing the tetrad fields ωα = λα

μ dxμ satisfying

ζαβωαωβ = gμν dxμ dxν, (17)

with ζαβ and gμν given by (9) and (3) respectively. The solution
has the form

ω0 = (
cN − εaea

i Ni)dt − εaea
i dxi, (18)

ωa = ea
i

(
dxi + Ni dt

)
, (19)

where the triads ea
i determine the space metrics ea

i ea
j = γi j . The

tetrads ωα transform with respect to the index α according to the
law (11)–(14) treated as the frame transformations. Notice, that in
general the synchronization vector ε is frame dependent because
it transforms from frame to frame according to the formula (14).
In particular, we can specify the boost parameter a to obtain the
synchronization vector ε equal to zero in a distinguished frame.
In this peculiar frame the Einstein synchronization convention ap-
plies. Finally, let us stress that the synchronization change (16)
does not affect the physical content of theory on the classical
level because of the conventionality of the synchronization proce-
dure [17–22]. However, it breaks the quantization procedure es-
sential to the Hořava approach. This can indicate that result of
quantization depends on the adapted synchronization scheme. In-
deed, an analysis of the quantum-mechanical models discussed in
Refs. [14–16], shows that there is not unitary equivalence between
quantum theories incorporating different schemes of synchroniza-
tions. This means that on the field theory ground one can expect
noninvariance of the vacuum state with respect to the transforma-
tions implementing a change of the synchronization scheme.

Concluding, the Hořava–Lifshitz gravity admits Lorentz symme-
try preserving preferred global time foliation of the spacetime. This
symmetry can be related to the standard Lorentz transformations
by the frame dependent change of synchronization (16) to the
Einstein one. However, (16) breaks the preferred foliation of the
HL gravity. Thus the HL theory forces Lorentz symmetry realized
in the synchronization scheme related to the transformation laws
(11)–(14). Our observation can be also applied to the causal dy-
namical triangulation theory [23], where the global time foliation
is assumed too (however see [24]).

The author is grateful to Bogusław Broda and Krzysztof Kowal-
ski for discussion and to Jerzy Jurkiewicz for helpful remarks con-
cerning the causal dynamical triangulation theory as well as to the
anonymous referee for interesting comment.
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