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ASYMPTOTIC RESULTS FOR SLICED INVERSE REGRESSION

Abstract. 1t is well known that nonparametric regression techniques do not have
good performance in high dimensional regression. However nonparametric regression is
successful in one- or low-dimensional regression problems and is much more flexible
than the parametric alternative. Hence, for high dimensional regression tasks one would
like to reduce the regressor space to a lower dimension and then use nonparametric
methods for curve estimation.

A possible dimension reduction approach is Sliced Inverse Regression (L i 1991).
It allows to find a base of a subspace in the regressor space which still carries
important information for the regression. The vectors spanning this subspace are found
with a technique similar to Principal Component Analysis and can be judged with the
eigenvalues that belong to these vectors. Asymptotic and simulation results for the
eigenvalues and vectors are presented.
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1. INTRODUCTION

In this paper we will discuss some properties of a certain dimension
reduction method. First the question arises: Why should the dimensionality
be reduced? The reason is that we can do nonparametric regression in low
dimensional spaces but not in high dimensions. And, of course, we want
to do nonparametric regression. :

Parametric regression has the crucial drawback that it can only fit
a predefined model which has to be selected before. However, if this model
is the true one, the properties of the estimates are good and well known.

Nonparametric regression allows the data to speak for themselves. There
are not pressed into a coreselett like a predefined model. Hence, it is much
more flexible than parametric regression.
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Example:

The left plot shows the data with the true model. They are generated
by y,=S5+g¢, if y,€[4, 6], and y, = x®+¢; else, ¢ are standard normal.
The data have a small plateau around x = 5 which cannot be found by
the parametric fit of the model y=a-+b+cx? as shown in the second
plot. The Goodness-of-Fit criterion s}/s; is close to one (0.966) although
the plateau feature was not detected. The third plot consists of the data
and a nonparamtric smoother (lowess, Cleveland 1979).

But also nonparametric regression has a crucial drawback. Due to local
averaging, that is the main aspect of nonparametric methods, the performance
in high dimensional spaces cannot be very good.

Example: (P. J. Huber) Assume we have a uniform distribution on
a 10-dimensional unit ball with radius 1. Then 5% of the data lie in a ball
with a radius of 0.05'1% = 0.7411. It is not possible to gather local features
in this space except we have a huge dataset. ;

Now, the question is what we can do if we have the following situation.

Y=m(f1X, ..., BEX, ¢) 1)

with: 1 £ K <d, K -~ unknown, m: IRX** — IR unknown, Y is a random
variable, X is a IR random vector, ¢ is a random variable with E[slx] =),
As we do not know the dependence of ¥ on X it is not reasonable to
choose a parametric approach. On the other hand d might be too large
to use a nonparametric method directly (e.g. smoothing).
Hence, we want to reduce the dimensionality and then use a flexible
nonparametric regression algorithm. Here we will focus on the first task.

Remarks to model (1):

1. We do not allow redundancy in the representation of m so without loss
of generality we can assume that the f,, i = 1, ..., K, are linear independent.
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2. Neither the length nor the direction of the f,i=1,..., K, are
identifiable. Only the space which is spanned by these vectors can be identified.

3. Model (1) includes models of the shape y = Zmi(ﬁ, x) +¢& where

m;:IR— IR, but it is more general. Of course, here the directions of the
fisi=1,.., K, can be identified.

4, The Bi, s are called effective dimension reduction directions (edr-
-directions).

5. Conditioned on BX, ..., fxX, X and Y are independent.

6. Y depends on X only through BIX, ..., BxX, ie. Fygy . pix = Fypx.

Sliced Inverse Regression (SIR) is able to work with model (1). It delivers
d directions f; and due to the algorithm d (eigen-) values A; with which
the importance of the single f;, can be judged.

Furthermore, it is possible to establish asymptotic normality of

K
A
R o

4

i=1

which can be interpreted as the ratio of the variance which is declared by
the first K edr-directions.

So this statistic % helps us to find the number of §, which has to be
taken into account i.e. how big K is.

2. SLICED INVERSE REGRESSIONS

Theorem. Given the model (1) and the assumption

VbelR® gilt: E[b" X|1X = Blx, ..., BTX = BIx] = co + ﬁlciﬁ,’X )
the centered inverse regression curve E[X|Y = y]— E[X] lies in the linear
subspace spanned by vectors zxx/f,, bisaniilSs

Sketch of the proof:

Without loss of generality E[X]=
It is sufficient to show that VYbeIR%:

BTy, B =0=bTE[X|Y =)=



76 Thomas Kétter

With the abbreviation E[X|y]: =E[X|Y=y] and using E[X]=
= E[E[X|Y = y]].
E[X|y] = E[E[X|y|BTx, ..., Bxx, y]I¥]
= E[E[X|BTx, ..., Bxx]ly]
Further it is
E[b"X|Bix, ..., Bxx] =0
<>E[E*b"X|BTx, ..., Bxx]] = O
Finally

E[E[..]] = E[E[..JE[..]]
= E[E[E[bTXIﬁ{x ooy BEXXTD|BTx, ..., BEX]]

= E[(co+ Zc,ﬂ TX)X"b]

= E[coX7b] + z el T, b
i=1
=040

because of the assumption. QED

Remark. The assumption (2) made above is equivalent to the fact that
the distribution of X is elliptical symmetric (Cook, Weisberg 1991).
It can be weakened as Hall and Li (1993) showed. Another approach to
find interesting subspaces is SIR II, which investigates the inverse covariance
structure (Cook, Weisberg 1991; Li 1991). The implementation and
application of the SIR algorithms can be found in Kotter (1995).

Corollar. Let Z be the standardized random vector with
Z = Z”"Z(X — E[X]). Then E[Z]y] lies in the space which is spanned by
n= X1,

Mowvitsis easy to see that from b7y, =0 it follows that E[b"Z|y] =0
and that the conditional covariance Cov[E[Z| y]] is degenerated to each
direction orthogonal to the 7.

So an algorithm to find edr-directions is to standardize X then to
estimate E[Z|y] and Cov[E[Z|y]]. Conduct a eigenvalue/eigenvector decom-
position, choose the eigenvectors to the largest eigenvalues and scale back
to the original scale. This retransformed eigenvectors are estimators for the
edr-directions.
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3. ALGORITHM

First some notations: X, Y and Z are data matrices, not random
vectors. The observations are in the rows. Single observations are signed
by small letters. The sample of size n is {x;, y}i-1.

X; = (Xu, vous x,d)T,
X = (xl, ey xd)T,

Y= (ylv seey y:n)T’

2 Sdyhnpsigblim g,
" n

zxx: = ;‘é’I(XTX —nXXT)

Estimate the edr-directions with
1. Standardize the x values:

2= S5d(x, = %) or Z: = (X — X)Ex4

2. Divide the range of y; in S non overlapping slices H,, n, denotes
the number of observations within slice Sg.

Ny = i Iy (v)

i=1

3. Compute the mean of z, over all slices.
1 n
Zy = o Zzllﬂ,(yi)
s i=1
4. Calculate the weighted covariance matrix.
) n
Ve=n"t Yngzy
i i=1
5. Identify the eigenvalues 1, and eigenvectors 4; of V.

6. Transform the standardized edr-directions #; back to the original
scale. Now the estimates for the edr-directions are given by:

fi: = Ex1%4,
3.1, Costs of Computation

The following table shows the costs of different steps of the algorithm.
In the costs column the terms are the order of the O function.
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Costs Cause
nd Mean x
nd* Covariave Zyy
3 -1/2
4 Xes
nd + nd? Standardize the matrix X to Z
Sn Computation of n, and Z,
Sd*
d? Eigendecomposition of 1
a? Rescaling to the edr-directions f,

The sum of the costs is of order O(nd*+ Sn+ d*). As we discuss later
it is convenient to choose § = O(n), so the sum is dominated by n? if 4 is
constant. It can be reduced to O(nlog(n)) if the data are sorted before
slicing. Sorting needs O(nlog(n)), then slicing the only O(n).

This is a very good behaviour regarding the sample size n. Other
nonparametric methods often have to be treated very tricky to achieve rates
below O(n?) (e.g. WARPing by kernel density estimation).

4. STATISTICAL PROPERTIES

It is possible to find a‘.{ J/S-consistent estimate for Cov[E[X]y]]. With
V calculated from the algorithm, define

o e

n,—1 n-—-17"

This estimator is /S-consistent for Cov[E[X]| yeH,]] and as S goes to
infinity for Cov[E[X|y]]!

It is easy to see that it is necessary that S = O(n) to achieve /n-consistency
for the estimates. In other words the number of elements within each slice
should be constant. In the following we assume that n, = n/S.

4.1. Asymptotic normality

Some asymptotic results can be derived:
— asymptotic normality of uvec(V)

uvec(A): i (alls ey A1ds 225 vney Aoy B33, 000y add)T

— asymptotic normality of the vector /S(4,,..., L)%
— asymptotic normality of ¥.
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An important condition to show this asymptotics is that $yx and
Z have to be independent. In applications the data set has to be split.
With one part £yx is estimated, the other part is standardized by using
thlS Exx.

Terms of the shape Cov[G,;Gu, Gufam] (With Gy is an element of £x¢/%)
appear within the computations of the asymptotic covariance matrix.
Unfortunately, these terms are of the same order (0,(1/«/S)) as the
asymptotic covariance itself. In order to overcome this problem, the
computation of two independent estimates for £x#/> has to be done.

4.2. Main Idea of the Proofs

~ since the slices are disjoint the elements of ¥ v;; can be written as
a sum of § independent terms. This yields to asymptotic normality.

— with the Cramer-Wold-device the asymptotic distribution of uvec(¥)
can then be shown,

— since the eigenvalues are continuous in the elements of the matrix
(Theorem by Wielandt-Hoffmann, Wilkinson 1965) thus the eigenvalues
are also \/—.S_‘-consistent.

— the asymptotic distribution of (4,){~=; can be derived by taking
a connection between the asymptotic distribution of the characteristic
polynom of V(|V'—AI|) and the eigenvalues 2;.

— the asymptotic normality of ¥, can then be shown by using the same
technique as for principal component analysis (M ardia et al. 1979).

4.3. Asymptotic Expectation and Covariance

In this section only the formulae for the asymptotic expectation and
covariance for the random vector uvec(V) are given. For the latter the
computation is long and tedious (Kotter 1990).

Expectation. As the above mentioned estimate for uvec(Cov[E[Z]y]]) is

\/S;—consistent, the asymptotic expectation is Cov[E[Z]y]].
Covariance. The asymptotic covariance structure of uvec(Cov[E[Z]y]]) is:

R {4 & e CNET
sll_fr.}OCOV[Vabs Vca]='§z Z Z ZE[Gaﬂu: 616 g

J=1k=11l=1m=1

(Blxjbxeg + EDED BB~ BLEL<"
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(Cov[x, x¥]— Cov[E[x/ |.V]E[xk |y]] + nE[E[x| y]E[x¥| y]]) — “E [x/]E[x¥]
(Cov[x', x™— COV[E[XII}’]E[X"'D’]] + nE[E[x'| y]E[x™]y]])
+ ((1 - ;)Cov[E[x’[y], E[x*|y]] + ;ll—Cov[x", x"])

< (0 ettt B+ L o, <)}

where &;; is the (z J) elements of Zyi/2.
Define X* = n2/(n,_,)* x llm,..wCov[uvec(V)] then the following :asymptotic
result holds: ;

JS((4— )i 1) ~ AN(0, DE*DT)

with D: = (uvec([P* = LI~ | P* = 41,1/ Dy(A))f- € IR x4d+ b2
Furthermore, with X = DEX*DT the asymptotic distribution of W is
given by:
4 Z, 1/1.‘
Wy: = (P, ~ AN(¥x, BEB )

with B: = (0% /0l,, ..., 0¥ /01,)).

5. NUMERICAL EXAMPLE

The data are generated by the model
Y, = X1t xatxs)/2 (x1 —X, —xS) +g

¢ is standard normal distributed. Sample size n = 200,
SIR gives with 10 elements in each slice for the der-directions:

—0.3496 0.9327 —0.0419
0.6759 0.2750 —0.7049
0.6488 0.2333 0.7081

The eigenvalues were (0.6032, 0.3317, 0.1012) and the corresponding
¥ = (0.5822, 0.9023,1), ie. over 90% of the variance is declared by the
first two edr-directions.

The third edr-direction B, is nearly parallel to the vector which is
orthogonal to the design plane span((1, 1, )T, (1, — 1, — 1)7). The normal

inner product of ey =(0, —1,1)7/J/(2) is ples/| Bsllllesl =0.99912.
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Additionally, the third eigenvalue 1, = 0.1012 is much smaller than the first
two ones; SIR performs very well in this example.

The simple setting in of estimates into the asymptotic formulae yields
to estimates for the variance of ¥ which seem to be very sensitive to the
generation of the subsamples and the subsample sizes. Here some work
remains which has to be done in the future, how to estimate the asymptotic
Covariance of E[Z]y].

6. SIMULATION

With the same model as above, data were 500 times generated and SIR
was conducted. In the following plots you see the smoothed density of
each eigenvalue. They are very similar to the normal density which is also
plotted (with the same mean and variance). It is remarkable that the
variances of the eigenvalues are quite small.

Mean and variance of the simulation:

A =(0.6541, 0.3539, 0.0886)" Var[4] = (0.0010, 0.0019, 0.0006)"

density and normal density
{=>1

density and normal density
density and normal density

B R e

e T

T T T

T T T T

055 060 065 070 075 0.20 0.25 0.30 0.350.40 0.45 0.50 005 010 015 020

first eigenvalue second elgenvalue third eigenvalue
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Thomas Kotter
ASYMPTOTYCZNE REZULTATY DLA ,SLICED INVERSE REGRESSION”

Jest rzeczag wiadomg, ze techniki regresji nieparametrycznej nie funkcjonuja wiasciwie
w przypadku regresji wielowymiarowej. Jednakze sg to techniki dzialajace skutecznie w przypadku
regresji jednowymiarowej badz o matej liczbie wymiaréw, a ponadto sg bardzej elastyczne niz
ich parametryczne odpowiedniki.

Oznacza to, ze w przypadku regresji wielorakiej o duzych wymiarach wskazana jest
redukcja wymiaru do nizszego stopnia tak, aby mozliwe bylo zastosowanie nieparametrycznych
metod estymacji parametrow krzywych regresji.

Jednym z podej§¢ zmierzajacych do redukcji wymiaru w regresji wielorakiej jest tzw.
regresia odwrocona (Li (1991), ktéra pozwala znalezé takg podprzestrzei w przestrzeni
zmiennych objaéniajacych, by zawierala ona niezbgdne informacje istotne dla zagadnienia
regresji. Wektory, na ktorych rozciagnigta jest ta podprzestrzen, znajduje si¢ w podobny
sposob jak w analizie glownych czynnikéw — poprzez znajdowanie wektoréw i podporzad-
kowanych danych wartofci wiasnych.



