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CHARACTERIZATION OF TH E ORDERS IN VARM A M ODELS

Abstract. In tins paper we present a method which is able to  identify the degrees 

of the matrix polynomials that are involved in the VARMA models. This method is 

based on the difference between the ranks o f certain matrices defined from the sample 

covariance matrices of the process. The values of the mentioned difference are arranged 

in tabular from. The specific structure of this table lets us characterize a VARMA 

(p, q) model.

We study the relative significance of certain elements to confirm the used pattern. 

The proposed procedure is illustrated by data simulations.
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1. IN TRODUCTION

In ( P e s t a n o  and G o n z á l e z  1994b) we proposed a method to 

characterize a matrix rational function and to estimate the minimum1 
degrees of the polynomials that intervene in such function. This method is 

the result of the research that we are carrying out in the Numerical 

Analysis field and, specifically, in matrix Padé approximation. In order to 

illustrate an application, we have characterized a VARM A model, reduced 

in certain sense. Such method is based on the ranks of matrices built from 

the sample covariance matrices of VARMA process.

( P e s t a n o  and G o n z á l e z  1994b) calculates the rank of a m atrix by 

Gaussian elimination with partial pivoting ( A t k i n s o n  1989). In this 

procedure the rank of a matrix depends on the number of nonzero elements 

in the diagonal o f a triangular matrix.

* University of La Laguna, D epartm ent of Applied Economics.

1 Section 2 will introduce this concept.



D ue to the rounding and estimation errors, the elements of such 

diagonal are not absolute zeros. For this reason, in the mentioned article 

we choose a number such that every value below it was considered null.

The results that we obtained with exact rational functions were satisfactory. 

In exchange, the ones obtained with simulated data were very sensitive to 

the number we used to decide if an element is zero or not, during the 

Gaussian elimination process. Therefore, the aim of this paper is to study 

the statistical significance of the elements that are candidates to constitute 

the diagonal of the mentioned triangular matrix.

In the literature, several researches have studied techniques to obtain 

the orders of a VARM A model. For instance ( F r a n c q  1989) proposes 

the matrix e-algorithm as well as in ( T i a o  and T s a y  1989) is extensively 

studied the model specification stage by investigating linear combinations 

o f the observed series -  they belong to VARM A models.

In the following section we introduce the VARMA models, exposing 

only the properties that are going to be used. In the third section we 

present the method mentioning the steps that we have implemented in 

a FO RTRA N  program. Section 4 gives a criterion to calculate statistically 

the value of m atrix’s rank. Finally, section 5 illustrates the procedure 

through a simulation and shows the obtained results.

2. IN TRO DU CTION  TO THE VARMA MODELS ( R e i n s e l  1993)

One of the objectives of statistical analysis for multivariate time series 

is to understand the linear dynamic relationships among the variables. 

VARM A models have the ability to accommodate a variety of dynamic 

structures.

Let X t be a fc-dimensional, nondeterministic, stationary, with mean zero 

process. A multivariate generalization of W old’s Theorem states that X , 
can be represented as an infinite vector moving average (MÄ)  process,

X t = W(L)et Ж0  =  I

where

W(L)  =  t  WjV
)=о

is a k x  к matrix in the backshift operator L, such that V ex =  e,-.j . The

coefficients Wj are not necessarily absolutely summable but do satisfy the
00

weaker condition £  \\Wj\\z < oo. e ( is a vector white noise process such that
J= о

E(e ,) =  0, E(F.tčt) =  £  and Е(е(е\+f ) — 0 for f  Ф 0.



Suppose the matrix W(L) can be represented (at least approximately) 

as the product of two matrices in the from A p l(L)Bq(L) where A p(L) -  1 + 

+ A p- i L +  ... +  A 0U  and Bq(L) = I  + В ^ ХЬ + ... +  B 0L9 and the coefficients 

A t and Bj(i = 0 ,... p — 1 and j  = 0 ,..., q — 1) are constant k x к matrices, 

then the linear model VARMA (p, q) is defined by the following relation:

"b A p -  i X t - i  +  . . .  +  A 0X t - p  =  Et - f  B q -  j £ t _  у +  . . .  +  B 0E f ~ q

A VARM A process is stationary if the roots o f det{(/lp(z)} =  0 are all 

greater than one in absolute value. The process is invertible if the roots 

of det{(£?(z)} =  0  are all greater than one in absolute value.

Theorem 1. admits the VARMA (p, q) representation: A p(L)X,  =  Bą{L)st, 

where the degrees of A p(L) and Bq(L) and are minimum2, if and only if, 

the sequence of со variance matrices, (R(s)kZ), o f the process X t statisfies 

the equation in difference with constant matrix coefficients: 

p - 1

£  A tR ( f  +  i) =  -  R ( f  + p )  Y / > q - p + l  ( 1 )
i = о

and also

p - 1

X  AiR(q — р + г)Ф — R(q) (2 )
i=о

p being as small as possible.

3. A M ETHOD TO ESTIMATE THE POSSIBLE M INIM UM  ORDERS 

O F A VARMA M ODEL

( P e s t a n o  and G o n z á l e z  1994a) gives the associated proofs to the 

results of this section. They are based on the matrix Padé approximation 

theory ( D r a u x  1987, G u o - l i a n g  and B u l t h e e l  1988, G u o - l i a n d  
1990).

00

Proposition 1. Let Fj(z) be the power series £ / ? ( - / +  »>'• The following 

sentences are equivalents: i = 0

a) Some constant matrix coefficients A 0, A l t ..., A p- X exist such that the 

covariance matrices (R ( s ) k Z ), verify (1 ) and (2 ), being p  as small as possible.

2 We consider that the degrees of two matrix polynomials A p(L) and Bt(L) are minimum

when. If two matrix polynomials Dt(L) and N k(L), exist with degrees g and h respectivity

and they verify that 0 ,(0 ) =  I  and A ; \L ) B ,( L )  =  D ; l (L)N k(L) when h < q  implies g > p  and

g < p implies h>  q.



b) Fj(z) — Pp l (z)Qq+J(z), f ^ p - l ;  where Pp(z) = I  + A p- 1 +.. .  + A 0zp 
and Qq+f(z) =  Qi+f +  Qq + f - i Z  +.. .  +  Q0z i + f , being p  and q minimum 

degrees.

c) W(L) =  A p l (L)Bą(L), that is, X t is a VARMA (p, q) process with 

p  and q minimum.

Ranks method ( P e s t a n o  and G o n z a l e z  1994b)

Step 1. Choose the degrees of a possible rational representation for Fj(z).

Choose r and s such that the ranks of the matrices (R(s — r + i + 

+ ; -  ( R ( s - r  + i + j -  l ) ) 1 < K r + 1  and (R(s - r + i + j -  l ) ) 1<Kr
• i < ; < » • + 1 

are equal. Then Fj(z) can be represented, at least, in the rational from

D ~ l (z)N ,+J(z). Observe that r and s are not necessarily minimum.

Step 2. Look for rational representation of minimum degrees for Ff (z). 

Check if the ranks of:

( R ( i - j  + k + m - l ) ) ^ k<j (*)
1 — í

and

( R ( i - j  + k + m - l ) ) l<k<]+l (**)

are equal for 0 < ; '< r  and 0 ^ / ^ s .

Step 3. Build a table

Build a table with .y + 1  columns (from the 0-th to the .v-th) and r + 1  

rows (from the 0-th to the r-th). Place a “0” in the intersection of the 

column i with the row j  if the ranks of (*) and (**) are equal, and place 

a “ 1 ” if the mentioned ranks are different.

It is necessary to comment that if an intersection (g, h) of the table 

has a “ 0 ” then all the intersections (a, b) with g ^ a ^ s  and b ^ h ^ r ,  have 

a zero too. Therefore, theoretically, it is not necessary to build the whole 

table. However, we have built it in order to make firm the results.

Step 4. Interpretation of the table elements.

To interpret the table we give the following theorem:

Theorem 2. follows a VARMA (p, q) model where the orders p  and 

q are minimum, if and only if, the table of the Step 3 has special pattern. 

This pattern contains a right lower rectangle, with null elements, which left 

upper corner is (p, q). This corner is well delimited.



Note that Theorem 2 ensures that if X t admits a VARM A (p, q) model 

and a VARM A (e, d) model, where p  and q and e and d  are minimum 

orders, then the corresponding table presents this pattern:

0  1 • • q d s

0 1 1 . . . i 1 1

1 1 1 . . i 1 1

1 1 . . i i 1 1
e 1 1 . i i о 0 0  . 0

1 1 . i i о о 0  . о
1 1 . i i i о 0 0  . о

p 1 1 . 1 о о о о о 0 0  . 0

1 1 1 о 0 о о 0 о о о
1 1 . . 1 о о о о о о 0  . о

r 1 1 . 1 о 0 о 0 о 0 0  . о

4 . A STATISTICAL PROCEDURE TO D ETERM IN E TH E R A N K  O F A M A TRIX

We have made an algorithm that takes the necessary decisions and 

carries out all the operations involved in the table building.

As we have seen, during the procedure it is essential to calculate the 

rank, or more specifically, the difference between the ranks of certain 

matrices defined from the sample covariance matrices of the process. To 

do it we have used the well known method of Gaussian elimination with 

partial pivoting3. Remember that in this method the rank of a m atrix is 

exactly the number o f nonzero elements in the diagonal of a transformed 

triangular matrix.

In each stage of the trangularization we must decide which will be the 

nonzero pivot element. Due to the estimation4  and rounding errors5, certain 

elements should be, theoretically, null but they are not.

3 Often an element would be zero except for rounding errors that have ocurred in 

calculating. Using such an element as pivot element will result in gross errors in the further 

calculations in the matrix. To guard against this, and for other reasons involving the 

propagation of rounding errors, we introduce partial pivoting ( A t k i n s o n  1989).

4 The covariance matrix at iogn, n e Z , R(n) =  E(X,X'l+ii) is estimated by the sample

covariance m atrix C(n) =  N ~ l J ^ i X , - Х ) (Х 1+Я- X )  where X  = N ~ ' j? X ,  is the vector
r - l  t - 1

sample mean and N  is the sample size.

5 If  the coefficients o f the matrices C(n) vary greatly in size, then it is likey that large 

loss o f significance errors will be introduced and the propagation of rounding errors will be 

introduced worse. To avoid this problem, it is usually scaling the C(n) so that the elements 

vary less ( A t k i n s o n  1989).



Immediately afterwards we expose the ideas of the statistic procedure that 

we have made in order to know if an element (possible pivot) is zero or not.

We denote by M ° =  (mfj), 1 ^  i ^  u and 1 ^ j  <  v, to the original matrix. 

We would like to know the value of its rank. Let M k =  (mkj) be the matrix 

that stems from the к-th stage of the triangularization. Supposing that the 

pivot element, in the к  +  1 stage, belongs to the и-th row of M k, the matrix 
M *k =  (mfk) is built from the rows of M k in the following way:

0  ml+ij = mknj and m*f =  mkk+1J for j  = 1 , 2 , v6.

ii) m*k =  tripj otherwise.

By and large and supposing that the pivot element in the stage к + 1 
is m%k lh, where h e { k  + 1, k + 2 , v}, the Gaussian elimination calculates 
mfj+l as follows:

mk+i [m*k - Z * k  < k h ^ j ^ v
Щ] =  < mk+ih

[mfk otherwise

To decide which one is the pivot element in the k + 2 stage we must 
study statistically if certain elements of M k + 1 are zero or not. Given the 
structure of mkj+1 the problem is that of testing the hypothesis: H 0: f (B )  = 0 

that involves a nonlinear function of the sample covariance m atrices’ 
coefficients7. The statistic to this test would be ( G r e e n e  1991):

z = _____ __ M _________
stimated standard error

which is distributed as the standard normal distribution .
The discrepancy in the num erator presents no difficulty. However, 

obtaining an estimate of the sampling variance of f (B )  involves the variance 
of a nonlinear function of B. An approach that uses the large-sample 
properties o f the estimates and provides an approximation to the variances 
we need is based on a linear Taylor series approximation. A linear Taylor 
series approximation to / ( B) around the true parameter vector B, is:

f (É ) s * f ( B )  + ( ^ J ( B - B y .

6 Note that the pivot element in the k +  1 stage can be an element of the column h of 

M ‘, with h e (k  + \ ......v); it is due to the fact that can happen M a x  Im* I =  0 in the
*+KI<u

partial pivoting, then we choose the pivot element in the following column.

7 T o generalize we denoting by 1 =  / ( É) where В  is the vector 

(ÄJ...ÄJÄ}...,R \R l2...Rr2...Л ‘. . .й у  being R j the > th  row of R(i) and £  =  r +  s +  l.
8 T  denotes transpose.



In general, the expected value of a nonlinear function is not equal to 

the function of the expected value, so, we m ust rely on consistency 

rather than unbiasedness here. Thus, in view of the approximation, and 

assuming that p lim(B) =  B, we are justified in using f (B )  as an estimate 

o f f (B )  (the relevant result is the Slutsky theorem). Assuming that our 

use this approxim ation is appropriate, the variance o f the nonlinear 

function is approximately equal to the variance of the right-hand side, 

which is, then,

Var[ f(B) \^gTVar[B-B \g

The derivatives9  in the expression for the variance are functions of the 

unknown parameters. Since these are being estimated, we use our sample 

estimates in computing the derivatives. To estimate the variance of the 

estimator, we use an approximation given by ( H a n n a n  1976):

Denoting t ab(n) = Cab(n) -  R ab(n), then Cov(zab(m)zcä(n)) s

assuming that the process X , has zero fourth-order cumulates as in the 

case o f a Gaussian process.

To illustrate the behavior of the proposed procedure, we conducted 

a simulation study. The VARMA (1, 0) model:

(I  + A 0L ) X t = et

was employed in the simulation.

The results are based on 100 replications each with 350 observations, 

and the 5% level was used.

J=  -JV + l

5. ILLUSTRATIVE EXAMPLE

with

9 The recursive structure of the m‘ +1 is very useful to  calculate the; derivatives g.

10 To estimate them we replace R(n) by C(N) ( F r a n c q  1989).



The expected table is:

0 1 2 3 4 5

o 1 1 1 1 1 1
1 o 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 о 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0

We obtained the results below:

• 94 tables show that the degree of the num erator is zero.

• 90 tables show that the degree of the denominator is one.

And more specifically:

• 74 tables show a clear pattern that identifies the VARMA(1,0) m odel.
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CHARAKTERYSTYKA UPORZĄDKOW ANIA W M ODELACH VARMA

W artykule prezentujemy metodę stosowaną do określenia stopnia macierzy wielomianów 

występującą w procesach stochastycznych typu VARMA.

Proponowana metoda oparta jest na różnicy pomiędzy rzędami pewnych macierzy uzyskanych 

z próbkowych macierzy kowariancji tego procesu. Wartości rozważanych różnic są podane 

w formie tablicowej. Specyficzna struktura tej tablicy pozwala nam scharakteryzować model 

VARNA (p, q).

Przedstawiona procedura jest zilustrowana w punkcie 5 symulacyjnym przykładem.


