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CHARACTERIZATION OF THE ORDERS IN VARMA MODELS

Abstract. In this paper we present a method which is able to identify the degrees
of the matrix polynomials that are involved in the VARMA models. This method is
based on the difference between the ranks of certain matrices defined from the sample
covariance matrices of the process. The values of the mentioned difference are arranged
in tabular from. The specific structure of this table lets us characterize a VARMA
(p, q) model.

We study the relative significance of certain elements to confirm the used pattern.
The proposed procedure is illustrated by data simulations.

Key words: VARMA models, matrix of plynomials, ranks method, rational representation,
matrix Padé approximation.

1. INTRODUCTION

In (Pestano and Gonzalez 1994b) we proposed a method to
characterize a matrix rational function and to estimate the minimum?
degrees of the polynomials that intervene in such function. This method is
the result of the research that we are carrying out in the Numerical
Analysis field and, specifically, in matrix Padé approximation. In order to
illustrate an application, we have characterized a VARMA model, reduced
in certain sense. Such method is based on the ranks of matrices built from
the sample covariance matrices of VARMA process.

(Pestano and Gonzalez 1994b) calculates the rank of a matrix by
Gaussian elimination with partial pivoting (Atkinson 1989). In this
procedure the rank of a matrix depends on the number of nonzero elements
in the diagonal of a triangular matrix.

* University of La Laguna, Department of Applied Economics.
1 Section 2 will introduce this concept.
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Due to the rounding and estimation errors, the elements of such
diagonal are not absolute zeros. For this reason, in the mentioned article
we choose a number such that every value below it was considered null.

The results that we obtained with exact rational functions were satisfactory.
In exchange, the ones obtained with simulated data were very sensitive to
the number we used to decide if an element is zero or not, during the
Gaussian elimination process. Therefore, the aim of this paper is to study
the statistical significance of the elements that are candidates to constitute
the diagonal of the mentioned triangular matrix.

In the literature, several researches have studied techniques to obtain
the orders of a VARMA model. For instance (Francq 1989) proposes
the matrix g-algorithm as well as in (Tiao and Tsay 1989) is extensively
studied the model specification stage by investigating linear combinations
of the observed series — they belong to VARMA models.

In the following section we introduce the VARMA models, exposing
only the properties that are going to be used. In the third section we
present the method mentioning the steps that we have implemented in
a FORTRAN program. Section 4 gives a criterion to calculate statistically
the value of matrix’s rank. Finally, section 5 illustrates the procedure
through a simulation and shows the obtained results.

2. INTRODUCTION TO THE VARMA MODELS (Reinsel 1993)

One of the objectives of statistical analysis for multivariate time series
is to understand the linear dynamic relationships among the variables.
VARMA models have the ability to accommodate a variety of dynamic
structures.

Let X, be a k-dimensional, nondeterministic, stationary, with mean zero
process. A multivariate generalization of Wold’s Theorem states that X,
can be represented as an infinite vector moving average (MA) process,

X, =Wl Wy=1I

where
W(L) = Z W,L’
j=0

is a kxk matrix in the backshift operator L, such that Lle, =¢,-;. The

coefficients W, are not necessarily absolutely summable but do satisfy the
0

weaker condition ||W)||2 < 0. & is a vector white noise process such that

j=0
E(e) =0, E(eer) =X and E(egts) =0 for f#0.
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Suppose the matrix W(L) can be represented (at least approximately)
as the product of two matrices in the from A, 1(L)Bq(L) where 4,(L) = I+
+Ap-1L+...+ A,LF and By(L) = I+ B, L+ ...+ ByL? and the coefficients
A; and Bfi=0,..p~1 and j=0,..,g—1) are constant k x k matrices,
then the linear model VARMA (p, q) is defined by the following relation:

X‘+ Ap_. 1X‘_1 + Py + AOXt—p = £'+Bq_ 18,—1 + o +Bo&‘,_q

A VARMA process is stationary if the roots of det{(4,(z)} = 0 are all
greater than one in absolute value. The process is invertible if the roots
of det{(B,(z)} =0 are all greater than one in absolute value.

Theorem 1. admits the VARMA (p, ¢) representation: A (D)X, = B/(L)s,,
where the degrees of A,(L) and By(L) and are minimum?, if and only if,
the sequence of covariance matrices, (R(5),z), of the process X . statisfies
the equation in difference with constant matrix coefficients:

fi:AiR(fw = —R(f+p) V>q-p+1 1)
and also

=3

EoA'R(q —p+i) # —R(q) )

p being as small as possible.

3. A METHOD TO ESTIMATE THE POSSIBLE MINIMUM ORDERS
OF A VARMA MODEL

(Pestano and Gonzalez 1994a) gives the associated proofs to the
results of this section. They are based on the matrix Padé approximation
theory (Draux 1987, Guo-liang and Bultheel 1988, Guo-liand
1990).

o0
Proposition 1. Let F (z) be the power series Y. R(—f+i)z. The following
sentences are equivalents: Ing
a) Some constant matrix coefficients Ay, Ay, ..., Ay exist such that the
covariance matrices (R(S)ez), verify (1) and (2), being p as small as possible.

* We consider that the degrees of two matrix polynomials A,(L) and B, (L) are minimum
when: If two matrix polynomials Dy(L) and Ny(L), exist with degrees g and h respectivity,
and they verify that D,0) =TI and Ay ‘(L)B,(L) =D; Y(L)N(L) when h<g implies g > p and
g <p implies h> q.
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b) Flz) = P, (2)Qg+ (2), f2p—1; where P(z) =I+A,_;+...+ Ay2?
and Q.+ f(2) = Quip+ Qi p-1z+... + Qoz?*/, being p and ¢ minimum
degrees. '

¢) W(L) = A, '(L)B(L), that is, X, is a VARMA (p, q) process with
p and g minimum.

Ranks method (Pestano and Gonzialez 1994b)

Step 1. Choose the degrees of a possible rational representation for F(z).

Choose r and s such that the ranks of the matrices (R(s—r+i+

+i=D)igicr RE—T+i+j—1))¢cicr+1 and Rs—r+i+i=Dhcicr
l<j<r lgj<r I<j<r+1
are equal. Then F(z) can be represented, at least, in the rational from

D; '(z)N,, (z). Observe that r and s are not necessarily minimum.
Step 2. Look for rational representation of minimum degrees for F(z).
Check if the ranks of:

RE—j+k+m—1)), g (%)
l<mE€r4s—i
and
(Ri=j+k+m— 1))1<k<1+l (**)
lsmsr+s—i

are equal for 0<j<r and 0<i<s.
Step 3. Build a table

Build a table with s+ 1 columns (from the 0-th to the s-th) and r+ 1
rows (from the 0-th to the r-th). Place a “0” in the intersection of the
column i with the row j if the ranks of () and (x*) are equal, and place
a “1” if the mentioned ranks are different.

It is necessary to comment that if an intersection (g, 4) of the table
has a “0” then all the intersections (a, b) with g<a<s and b<h<r, have
a zero too. Therefore, theoretically, it is not necessary to build the whole
table. However, we have built it in order to make firm the results.

Step 4. Interpretation of the table elements.
To interpret the table we give the following theorem:

Theorem 2. follows a VARMA (p, ) model where the orders p and
q are minimum, if and only if, the table of the Step 3 has special pattern.
This pattern contains a right lower rectangle, with null elements, which left
upper corner is (p, g). This corner is well delimited.
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Note that Theorem 2 ensures that if X, admits a VARMA (p, ¢) model
and a VARMA (e, d) model, where p and ¢ and e and d are minimum
orders, then the corresponding table presents this pattern:
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4. A STATISTICAL PROCEDURE TO DETERMINE THE RANK OF A MATRIX

We have made an algorithm that takes the necessary decisions and
carries out all the operations involved in the table building.

As we have seen, during the procedure it is essential to calculate the
rank, or more specifically, the difference between the ranks of certain
matrices defined from the sample covariance matrices of the process. To
do it we have used the well known method of Gaussian elimination with
partial pivoting®. Remember that in this method the rank of a matrix is
exactly the number of nonzero elements in the diagonal of a transformed
triangular matrix.

In each stage of the trangularization we must decide which will be the
nonzero pivot element. Due to the estimation* and rounding errors’, certain
elements should be, theoretically, null but they are not.

3 Often an element would be zero except for rounding errors that have ocurred in
calculating. Using such an element as pivot element will result in gross errors in the further
calculations in the matrix. To guard against this, and for other reasons involving the
propagation of rounding errors, we introduce partial pivoting (Atkinson 1989).

* The covariance matrix at logn, neZ, R(n) = E(X,X!,,) is estimated by the sample

covariance matrix C(n)nN"NZ (X,— X)(X,,,—X) where X=N"iX, is the vector
t=1 t=1
sample mean and N is the sample size.

* If the coefficients of the matrices C(n) vary greatly in size, then it is likey that large
loss of significance errors will be introduced and the propagation of rounding errors will be
introduced worse. To avoid this problem, it is usually scaling the C(n) so that the elements
vary less (Atkinson 1989).
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Immediately afterwards we expose the ideas of the statistic procedure that
we have made in order to know if an element (possible pivot) is zero or not.

We denote by M° = (mf), 1<i<u and 1<j<yv, to the original matrix.
We would like to know the value of its rank. Let M* = (mf;) be the matrix
that stems from the k-th stage of the triangularization. Supposing that the
pivot element, in the k + 1 stage, belongs to the n-th row of M¥, the matrix
M** = (m#¥) is built from the rows of M* in the following way:

i) mi+u= mf,j and m,f," = m’k‘+” for j= l, 2, very VO,
ii) m3f = mb; otherwise.

By and large and supposing that the pivot element in the stage k+ 1
is mgk 1y, where he{k+1, k+2,..., v}, the Gaussian elimination calculates

mijt! as follows:
k
k *k 1 i
mli' ———mff  k<i<u, h<j<v
mt“ = MEL 1h

mi otherwise

To decide which one is the pivot element in the k + 2 stage we must
study statistically if certain elements of M**! are zero or not. Given the
structure of mf;*! the problem is that of testing the hypothesis: H,: f(B) = 0
that involves a nonlinear function of the sample covariance matrices’
coefficients”. The statistic to this test would be (Greene 1991):

L f(B)

" stimated standard error

which is distributed as the standard normal distribution.

The discrepancy in the numerator presents no difficulty. However,
obtaining an estimate of the sampling variance of f(B) involves the variance
of a nonlinear function of B. An approach that uses the large-sample
properties of the estimates and provides an approximation to the variances
we need is based on a linear Taylor series approximation. A linear Taylor
series approximation to f(B) around the true parameter vector B, is:

10+ (%2 ) 8-

% Note that the pivot element in the k+ 1 stage can be an element of the column h of

M*, with he(k+1,..,v); it is due to the fact that can happen M&:‘c‘"m:‘*“l =0 in the

partial pivoting, then we choose the pivot element in the following column.

" To generalize we denoting by mj'! =/ (B) where B is the vector
(R3...RyR}...R R}...R,...RL...R,) being R} the j-th row of R(i) and E =r+s+ 1.

8 T denotes transpose.



Characterization of the orders in VARMA models 107

In general, the expected value of a nonlinear function is not equal to
the function of the expected value, so, we must rely on consistency
rather than unbiasedness here. Thus, in view of the approximation, and
assuming that plim(B) = B, we are justified in using f(B) as an estimate
of f(B) (the relevant result is the Slutsky theorem). Assuming that our
use this approximation is appropriate, the variance of the nonlinear
function is approximately equal to the variance of the right-hand side,
which is, then,

Var[f(B)] = g"Var[B — B]g
_ 4(B)
Lo T

The derivatives® in the expression for the variance are functions of the
unknown parameters. Since these are being estimated, we use our sample
estimates in computing the derivatives. To estimate the variance of the
estimator, we use an approximation given by (Hannan 1976):

Denoting t,4(n) = Cu(n) — Rap(n), then Cov(tz(m)tq(n))=
N—1

% 0 — IR Roai + 1 — m) + Ry + m) Ry — m)] 10

j=-N+

assuming that the process X, has zero fourth-order cumulates as in the
case of a Gaussian process.

5. ILLUSTRATIVE EXAMPLE

To illustrate the behavior of the proposed procedure, we conducted
a simulation study. The VARMA (1, 0) model:

T+ A4,L)X, = ¢,
with
-02 -03 4 1
A°‘[ 0.6 1.1] Z=[1 1]
was employed in the simulation.

The results are based on 100 replications each with 350 observations,
and the 5% level was used.

® The recursive structure of the my"! is very useful to calculate the derivatives g.
1% To estimate them we replace R(n) by C(N) (Francq 1989).
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The expected table is:

o
—
N

“m AW —-=O
COOCO O -
C OO O O -~
OCOOO O -
SOOOC O = w
SCoOoOCcCoOoO =~
SCoOoOCcCocOoO=|u

We obtained the results below:
* 94 tables show that the degree of the numerator is zero.
* 90 tables show that the degree of the denominator is one.
And more specifically:
* 74 tables show a clear pattern that identifies the VARMAC(1,0) model.
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CHARAKTERYSTYKA UPORZADKOWANIA W MODELACH VARMA

W artykule prezentujemy metode stosowang do okrelenia stopnia macierzy wielomianéw
wystepujaca w procesach stochastycznych typu VARMA.

Proponowana metoda oparta jest na réznicy pomigdzy rzgdami pewnych macierzy uzyskanych
z probkowych macierzy kowariancji tego procesu. Wartosci rozwazanych roznic s3 podane
w formie tablicowej. Specyficzna struktura tej tablicy pozwala nam scharakteryzowaé model
VARNA (p, q).

Przedstawiona procedura jest zilustrowana w punkcie 5 symulacyjnym przykladem.



