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LIMIT LAWS FOR MULTIVALUED RANDOM VARIABLES

Abstract. In the probability theory, the strong law of large numbers and the central
limit theorem are the most important convergence theorems.

Given a probability measure space (Q, 4, P), random variable in classical definition
is a mapping from Q to R. Multivalued random variable is a mapping from Q to all
subset of X. For a real separable Banach space X with dual space X*, let LQ, A),
for 1< p< oo, denote the X-valued LP-space. In this paper we introduce the multivalued
L” space, next the integral for multifunction and some property of the sequences in
X with respect to the Hausdorfl distance convergence.

Probabilistic law for multifunctions are available, when multifunctions are viewed
as point-valued mapping into appriopriate space in which the sets are embedded. In
this paper, we will discuss limit laws for multivalued random variables whose values
are compact or weakly compact in Banach space.

Key words: multivalued random variable, multivalued function, multivalued L? space,
Banach space.

1. INTRODUCTION

In the probability theory, the strong law of large numbers and the
central limit theorem are the most important convergence theorems.

Probabilistic law for multifunctions are available, when multifunctions
are viewed as point-valued mapping into appriopriate space in which the
sets are embedded. In this paper, we will discuss a limit law for random
variables whose values are weakly compact in Banach space.

The paper is organized as follows. In section 2 we display the multivalued
random variable; some properties of which are discuss in section 3. The
limits law in Banach space is presented in section 4.
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2. MULTIVALUED RANDOM VARIABLE

Given a probability measure space (Q, A4, P), a random variable in
classical definition is a mapping from Q to R. Multivalued random variable
is a mapping from Q to all closed subset of X.

We have a real separable Banach space X with dual space X*. For
any nonempty and closed sets A, Bc X we define the excess e(4, B) of
A over B, the Hausdorff distance h(4, B) of A and B, the norm |4 of
A, and the support function s(4, :) of A.

Definition 1. The excess for two nonempty and closed sets is defined by
e(4, B) = supd(x, B), where d(x, B) = inf||x — y/||
xed yeB

the Hausdorff distance of 4 and B is given by
h(A4, B) = max{(ed, B), e(B, A)},

the norm ||A|l of set A we get as
IAll = h(4, {0}) = sup||x|
xed
and the support function:
s(4, x*) =sup<x, x*>, x*eX*.
xed

The set of all nonempty and closed subsets of X is a metric space with
the Hausdorff distance. The set of all nonempty and compact subsets of
X is a complete, separable metric space with the metric A.

For sequence of nonempty and closed subsets of X besides the Hausdorff
distance, we use some notion for convergence sequence of sets (Hausdorf
1957; Salinetti, Wets 1979).

Given a sequence {4,} of nonempty subsets of X let:

— s-lim inf A4, be a set of all xeX such that | x,— x| — 0 for some
X,€A,, n>1

— w-lim sup 4, be a set of all xeX such that x,—»x (weakly) for
some x,€4, (k>1) and some subsequence {4,} of {4,}.

Clearly

s-lim inf 4, c w-lim sup 4,.

For a sequence of nonempty and closed sets {4,}, s-lim inf 4, is also
nonempty and closed.
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Definition 2. The sequence {4,} converges to 4, denoted by lim 4, = 4, if

n—w

s-lim inf A4, = A = w-lim sup A4,.

Definition 3. A multivalued function ¢: Q— 2% with nonempty and
closed values, is said to be (weakly) measurable if ¢ satisfies the following
equivalent conditions:

a) o HC) = {weQ: p(w)nC+# F}eA for every open subset C of X,

b) d(x, ¢(w)) is measurable in w for every xeX,

c) there exists a sequence {f,} of measurable functions f,: Q— X such
that' p(w) = cl{f,(w)} for all weQ.

Definition 4. A measurable multivalued function ¢: Q —» 2% with nonempty
and closed values is called a multivalued random variable.

A multivalued function is called strongly measurable if there exists
a sequence {¢,} of simple functions (measurable functions having a finite
number of values in 2%), such that h(¢,(w), ¢(w))—>0 a.s.

Since the set of all nonempty and compact (or convex and compact)
subsets of X is a complete separable metric space with the metric h, so
multifunction ¢: Q—2* is measurable if and only if it is strongly measurable.
This is equivalent to the Borel measurability of .

Let K(X) denote all nonempty and closed subsets of X. As the o-field
on K(X), we get the o-field G generated by ¢~ !(C) = {weQ: p(w)nC # &},
for every open subset C of X.

Definition 5. We say that a sequence of multivalued random variables
P, Q—> 25X is independent if so is {¢,} considered as measurable functions
from (Q, 4, P) to (K(X), G).

Definition 6. Two multivalued random variables ¢, : Q—>25® are
identically distributed if ¢(w) = y(w) a.s.

Particularly for ¢, with compact values independence (identical distribu-
tedness) of {¢,} coincides with that considered as Borel measurable functions

to all nonempty, compact subsets of X.
In this case, {¢,} is independent if and only if

P(lé {o: ofo) Gi}) = 11511 P({w: p(w) = G}})

for each n>1 and each open subsets G,..., G, X.
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3. MEAN OF MULTIVALUED RANDOM VARIABLE

Let LP(Q, A), for 1 <p< o, denote the X — valued L? — space. We
introduce the multivalued L? space.

Definition 7. The multivalued space L?[Q, K(X)], for 1 <p< co denotes
the space of all measurable multivalued functions ¢: Q—>2X®_ guch that

loll = lle()] is in L7

Then L?[Q, K(X)] becomes a complete metric space with the metric H
given by \

Ho (0, ¥) = { [oh(o(w), YW(w)?dP}*", for 1<p< o
H,(p, V) =68 Sup h(p(w), Y(w),

4

where ¢ and |// are considered to be identical if ¢(w) = Y(w) a.s.

We can define similarly other L? space for the set of different subsets
of X (convex and closed, weakly compact or compact). We denote by
L7[Q, K(X)] the space of all strongly measurable functions in L?[Q, K(X)).
Then all this space is complete metric space with the metric H,

Definition 8. The mean E(p), for a multivalued random variables
@: Q—> 25X is given as the integral [,@dP of ¢ defined by

fa@dP = { [ofdP: fe S(p)}

where ~

S(p) = {feL[Q, X]: f(w) € p(w) a.s.}

The mean E(p) exists if S(¢) is nonempty. If ¢ have an integral the
E(p) is compact.

This multivalued integral was introduced by Aumann (1965). For
detailed arguments concerning the measurability and integratin of multifun-
ction we refer to (Castaing, Valadier 1977, Debren 1967, Hiali,
Umegaki 1978). Now we present some properties of mean of multivalued
random variables.

Let o, y: Q—2X® be two multivalued random variables with nonempty
S(p) and S(y), then:

1. ¢l E(puy) = cl(E(p) + E(Y)), where (puy)(w) = cl(p(w) + Y(w)).

2. cl E(Cop) = CoE(p), where (cop)(w) = cop(w), the closed convex hull.

3. s(cl E(p), x*) = E(s(p(*), x*)) for every x*eX*.

4. Let We(X) denote all nonempty and weakly compact subsets of X.
If ¢ = LYQ, We(X)], then E(p)€e We(X).
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4, MULTIVALUED STRONG LAW OF LARGE NUMBERS

A multivalued strong law of large numbers was proved by Arstein
and Vitale (1975) for a sequence of independent identically distributed
random variables having values in compact subset of R".

Given a probability measure space (Q, 4, P) and a Banach space X,
we have a theorem (Serfling 1991, p. 134):

If {f,} is a sequence of independent identically distributed random
variables in L'[Q, X], then

lim ||n“'1li fi(@)—m| =0 as. (*)
n— et

where m = E(f,).

We now establish a strong law for multivalued random variables, which
are generalization of this theorem, for the case of independent identically
distributed random variables with values are weakly compact subset of
Banach space. We start by presenting two lemmas.

Lemma 1. If peL![Q, K(X)] and E(p) = {x}, then there exists an
feLYQ, X] such that ¢(w) = {f(w)} a.s.

Proof. We can choose the sequence {x}} in X* which separates points
of X
By point 3) in section 3 we get

E(s(o(+), x})) = <x, xj > = E( in{)<x, xf>),
xeo(:

and hence s(¢(w), xJ) = inf <x, x; > as. for j>i. This implies p(w) is
a single point for a.s. co:;;(..)Thus the lemma is proved.
For each Ae We(X) and x*e X*, we define ®(X, x*).e We(X) by
D4, x*) = {xeX: <x, x*> =s(4, x*)}

Lemma 2. For each x*eX*, the mapping ®(:, x*): We(X)— We(X)
is measurable with respect to (G|We(X), G|We(X)).

Proof. Let G = G|We(X). Since each open subset of X is a countable
union of closed balls, it suffices to show that {4eWe(X):
®(4, x*).nV# F}eG for any closed ball V.

Let V={x: ||x—y| <r}, since
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{AeKc(X): s(4, x*)>a} ={AdeKc(X): An{x: <x, x*> >oc};6®}eG
for every aeR, so the mapping A+ s(4, x*) from Kc(X) to R is G me-

asurable.
Let V,={x: ||x— y||<r+n'1} for n>1. If Ae We(X) and ANV, # &
for n>l then {Ancl V,} is a decreasmg sequence of nonempty weakly

compact subsets of X, so that AnV= ﬂ{An V) # .
n=1

Hence we get
{AeWe(X): AnV# P} = ﬁ{AeWc(X): AnV,#J}eG.

Moreover, for any closed ball V' = {x: ||x—y| <7}, we similarly get
{AeWe(X): AnV+V' # P} = ﬁl{AEWC(X): AnV,nV, # F}eG,

where V, = {x: |[x—y|| <7 +n"1}.

Hence the mapping A+ ANV from We(X) to We(X) is measurable with
respect to (G, G). Thus we have

{Ae We(X): @4, x*). A V# D) = {Ae We(X): ANV# D, ANV, x*) =
=5(4, x*)}eG.

The lemma is proved.

Theorem 1. If {¢p,} is a sequence of independent identically distributed
random variables in L!'[Wec(X)], then

limn~ 1Z(p(co) M as.

n-w

where M = E(gp,).

Proof. For {¢,}, let ¥, (w) =n"* Z ¢{w) for n>1. We get E(p,) € We(X)

by point 4) in section 3. As noted m the proof of Lemma 2 the mapping
A s(4, x*) from Kc(X) to R is G measurable, it follows that {s(¢,(: ),
x*)} is identically distributed for every x*eX*. Hence, by point 3) in
section 2, we get that M = E(¢p,) is independent of n.

We first show that M c s-lim inf ¥ (w) a.s.

Since M is a closed convex hull of its strongly exposed points and
s-lim inf ¥, (w) is closed and convex, it suffices to show that any exposed
point of M is contained in s-lim inf ¥, (w) for a.s. weQ.

Let x be any exposed point of M, then there is an x*e X* with ®(M,
x¥) = {x}. Lemma 2 implies that {®(p,('), x*)} is a sequence of i.i.d.
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random variables in L'[Q, We(X)]. If feS(@(p,(:), x*)), then we have
E(f)eM and <E(f), x*> =s(M, x*), so that E(f) =®M, x*) = {x}.
Hence E(®(¢,(:), x*)) = {x}. By Lemma 1, there exists an f,eL'[Q, X]
such that ®(p,(:), x*) = {f,(w)} a.s. We thus obtain {f,} of independent

identically distributed random variables in L'[Q, X] with E(f,) =x. It

follows from () that lim [n~' ) fi(w) — x| = 0 a.s. Since n™* Y f,(w) € ¥, (w)
n—w i=1 Lo

a.s., we get xes-lim inf ¥ (w) a.s

Now, we show that w-lim inf ¥ (w)eM as.

Since X is separable we can choose a sequence {x]} in X* such that
if <x, x> <s(M, xJ) for all j>i then xeM. The sequence {s(¢(),
x})) is a sequence of iid. random variables in L' with the mean s(M,
xj). Hence there exist Be A with P(B) =0 such that

lim 5(¥,(@), %) = lim n™! 3 s(p,(@), x) = s(M, x})
n-o Ll R =

for every j>i and weQ/B. If xew-lim inf ¥ (w) with w €Q/B then x, — x
(weakly) for some x,es*¥,(w) for k> 1. Since

<x, x> = lim <x, x>)= lims(¥, (@), x)=s(M, x}), for j>i,
n-*w n-*w
we get xe M. Thus w-lim inf ¥, (w)eM a.s.
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TWIERDZENIA GRANICZNE DLA WIELOWARTOSCIOWYCH
ZMIENNYCH LOSOWYCH

W teorii prawdopodobiefistwa mocne prawo wielkich liczb oraz twierdzenie graniczne
stanowig podstawowe teorie konwergencji.

Przy danej mierze przestrzeni probabilistycznej (2, 4, P) zmienna losowa definiowana jest
klasycznie jako odwzorowanie Q na R. Wielowartociowa zmienna losowa jest odwzorowaniem
Q na wszystkie podzbiory X. W pracy wprowadzono pojgcie przestrzeni L, calki dla funkcji
wielowartoSciowej oraz niektére wiasnofci ciagu w przestrzeni Banacha ze wzgledu na
zbieznos¢ wediug metryki Hausdorffa.

Rozwazane s3 réwniez moce prawa wielkich liczb dla wielowartosciowych zmiennych
losowych i twierdzenia graniczne w przestrzeni Banacha.



