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THE TWO-STAGE ITERATIVE METHOD
FOR ESTIMATING THE CES PRODUCTION FUNCTION

1, Introduction

Consider two-factor CES production function in the form

' s
(1) f(K,L) = o [8&"9 + (1 -6)1."9] ?.

K, L denoting outlays of capital and labour, respectively. As-
suming that the output of production process Y is & random va=
riable depending on a random term € the two simplest stachastic
models are

RO Y = f(K,L) + E
and
(3). Y = £(K,L) of.

The choice of (2) or (3) for the model describing production pro=
cess determines the methods of estimation that can be applied to
the estimation of production function parameters.

: Out of well known and commonly accepted methods of estima-
" tion,  the Gauss=Newton’s and Marquardt’s methods are epplied
~ to the model (2) and Kmenta“s to the model (3).

The methods are based on a linearization of  the CES func-
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tion. In Gauss-Newton“s method the CES function is expanded (as
e function of variables 0,6.9.3) in Taylor series around the point
(ao. 60, Vot By) UP to tho terms containing first partisl ce-
rivotes. MNext, accepting a criterion of minimizing the sum of
residual aquureai, iterotive procodure is ospplied to find estie
mates a, b, ¢, r of paramatere a,8,v,e regpuctively, Gauas~ilev
ton“s mnethod is thus o eimple iterative procedure which does not
ensure convergence, Marquardt’s mothod is & combination of li-
nearization principle with graodient method, The method iwplies
the copvergence of residual squares obtained for a linearized
form, 8

The Knenta“s mothod is a one-step-procedure consisting in an
expancion of the natural logarithm of the function (1) (treoted
as a function of p) in Maclaurin series with the accuracy up to
the first two terms of this expansion, Investigations carriod
out in [3], [4] on properties of the CES function parameter es-
timates obtained when the above method 1s applied, proved the
existence of the bias in parametor cstimates for emall samples,
Apart from that the estimates showed also high variation coeffi~
cients, The worst results of estimation were obtained for the
perameter p.

~pplying Kmenta®s method enables, however, getting a core
ract estimate of the paramoter v . Its bias and variation are
small, Such a situation makes it possible to use the estimate
of paraneter v as an a priori information in another CES funce
tion parameters estimation,

The method of estimation of the CES production function pre=
sented in this paper mekes use of an a priori information wbout

the value of parameter v, The method belongs to a group of
least squares methods., More precisely, the problem of seeking
the eininum of a non-linear criterion=function (which is not a

squere forn) coneists in solving a non-linear system of normal a-
quations, '

1
form.

~ = A '
In such a procedure the sum of residual equres is a square
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2. Estination of CES Function Paramgters
by Two=Stage Iterative tlethod

CES production function constitutes a non~linear model  for
the sample {YYi‘ Ki' T PR OX IC N n}. It has the form

g
(4) v, = a[5K8 + (1 -8)3f] €4 g,

where:
Y = output,
K = fixed assets,
- employment,
- parameter of the scale of production,
distribution parameter,
= homogeneity paremeter,
- substitution parameter,
- random term,

Taking into consideration the nocessity of economic inter=
pretation the paramaters of the above function should fulfil the
following conditions: o e (0,+®),6e(0, 1), v @ (0,+o0)pe(=1,0)v
VU (o,+m). For f =0 production function (4) becomes the Cobb=
=~Douglas type.

The problem of estimating the parameter of function (4) using
the least squares method, given a priori Vv, reduces to seeking
the values A, b, r such that the function : (

™D < n R r
'

-2
(5) 3(A,b,r) = Z": {"\r1 N [ € o "}2
i=1

.@ttains minimum,

The existence of optimum values A,b,r of function (5) 1is,
first of all, conditioned by the existence of the following sy«
stem of equations’ solution:
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. i=1
where:
g, = b K"+ (1 - bILS",
oy
Gi - (91) r'
veln g g“
G;-Gl- 2 1’%’_&.’
r= 9y

* -r -r
o = =b K" 1n K, ~(1-B)L" In L.

The solution of system (6) is equivalent to finding of zero-
points of the system of functions

[ Z(Y-AG)G

- imi

(z) ) Z(Y-M)G-L-——L

. _
Py Z (v, - AG,)GY,
- iml

where F1' 20 F3 are non-linear functions of estimates A, B P
80 that the analytic way of determination of zero=-points estima~
tors” values 1is highly complicated end practically impossible,
Only the value of A 1s in this case easy -to be establishe
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ed? (as & function of b and r), Making use of the first equ-
ation of (6), we have '

Y48y .

(8) A = Alb,r) -1,"—1-———-— .

>

i=1

So the system of equations (6) assumes the form

r A e AT

0 i 1

Z (v, = Alb,r) ¢)6, - - 0,
iei 9

(9) : 4

n
L"E‘:; hr1 - A(b.r)Gt)G; - 0.

In order to solve the above system we shall apply the following
iterative method, '

Assuming some starting velues b = b(o). ro= r(o) the itera=~
tive process proceeds in such a way (where k denotes the given
iteration numbar), that '

1° for o determined b = b(k) in the successive iterations
such r = r(ke1) is found that |F3(b(k). r(k’i))|<:wu where W
is an a priori implied value, for example W = 1078,

2° for the previously determined r = r(k’i) in the succes-,
sive iterations such b = b ked) is found that QFa(r(k'1)b(k’15t
< W; ' ; v _ .

3° the iterations described in 1° and 2° are repeatea by
turns until for k = IT, and thus b(IT). r(IT). ‘the  absolute
valuas of 33/9A, 33/ab 23/3r become smaller than i,

The determined values rt and b k=1) are obtained as &

- result of successive approztnottone'ueing the tangent qethod i.e
- for determined values of b k )

1) and r(5" we intercept the tan-

+ ~a

2 The value of A obtained in this néy constitutes a good

'éottuate‘of parameter o it is supported by the results of many

experiments,
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gent  of the function F3(b(k'1). r(k'l))of the varioble r; the

point ¢f intersection of the tangent and Or axie is a nen va=
lue of the varliable r in a first step of the internal interac=
tion = so we get r k'l). Next a new tangent of F, ie construc-
ted o point (%" 1) (k'i)L The abscissa of the point of ine
tarsoction with Or axis dotormxnoa 6 new valus rzk"1 P and 80
on, The internal iterations are continued until 1in a succes-
sive step ITT such a velue r§¥;1) = r(k) is produced thatholark:
< ¥,

The series of values rsk'i) is iteratively calculpted wusing
the recuretive formula

(k-x) (k-!.)

L (k1) | (k1) _ Fa(b )

b =1 (k=1) r(k-l))
. J_i

My (b

for J=1, .e., ITT, where:

f

)+

Z (v, + 6] = AG; - 2AG,G}) 1n(gt -r

i=1

~lS

)2

2

(
-rz (v, - AG)G, g‘g" 91
i=1 91

g** = bk™" 1n%k + (1-b)L"" 1n2L,

Z(Y 2AG,) * G
A w2A _im 1 e
2 or ¢

In the same w3y the volué b(k) is established, at r(k)doterngn-'

od, 1.0, bIK) aplked) g4 onl,( Iaq>/ab| <u, for b = btk=2lgng

r.=r k . Successive values . for j=1, ..., ITB are es=
teolishod using the formula : ' '
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Fz(b(k-.‘.) r(k))

(ket) , plk=1) | [20ped -
bJ bj-1 ; ;

Mi(bJ-; o

wheres
n
aF Z " Ko L;'
My, = 35~ = (\ri.a1 - Alci - 2A°151) —— 4
1-1 91
n ;r 4 L‘;I"
= Z(Yz = A6 0y Pk,
i=1
A
Ay *3p°

Such an iterative way of finding the solution of the system
(9) 4s the base for elaborating the estimation method for para-
meters A, b, r, while criterion (5) is assumed. The method 1is
called the two-stage iterative method (TSIM).

3. Génerating of Sample Space

To establish the properties of the presented CES function es=
timation method a Monte-Carlo experiment wae used, For this the
sample space 0 -<BY, K, L)} fulfilling relation (1) - has  been
constructed, - The construction consisted in finding theoretical
values,of the endogenous variable YT,, i=1, .., N for the given
values, of exogenous variables {(K1, Li)' 151, 000, n}- and, of
parameters a,&gne(aosumed a priori), the theoretical values of *
the ondogeqoqo variable {YTi, i=1, ...,'n}- according  to  the
formula "N '

R (LR ¢! -5 L;E]'%
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S E—

The calculatod values YT, were thon added to the random term €
s0 that the values of endogenous variable Y were equal to

Vi YT "% €

1 1 10 1 - 10 L n.

The values of the random variables E, were generated from

the normal distribution N(O,d&LThe parameter dt was determined as

°E © S(YT)V{;;éf:.;o

where S(YT) denotes the standard deviation of YT ard RZ is the
coefficient determining the part of variation of varisble Y be~-
ing explained by YT, 1,e. it is equivelent to the theoretical
determination coefficient for model (1),

Drawing IP times the realizations of £ we get the sample
space

n({(xt. L), L=, ..., n} . cl.S,v,B,Rz)-

T L F PR, L0 S S TRV {2

The space N constitutes the base for the determination of the
sequence of estimates {Ao}'{ba}'{'s} (e =1, ,.., IP) of para~
meters o, 8,p generating this space,
" A few types of sample spaces were investigated, the source

of variation being: - y

1% the range of correlation of the variables K and L,
® the velues of parameters o, §, e
the value of Rz,
sample size (n),
the quantity IP, y
n the first case the variation of the sample space coneisted
in the choice of two different setse of values (K, L)1 and (K.L)z
correlation coefficients between K and L being 0,03 and 0,97,re=~
spectively, The set (K, L)1 was chosen from random number ta=-
bles, but the set (K, L), corresponds (with the accuracy to the
essumed scale) to the real values of fixed assete and employment
in the Polish economy in the ysars 1958-1977. A

The set of'pérameters was varying in relation to p teking p =

o

o

H O M N
(=}
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= =0,5, =0.2, 0,2, 0.5, 1.0 for o = 2.0, § = 0.4, v = 1.0.
Such a concept 4s due to the economic importance of the para-
meter o as well as to rhe worst estimates of this parameter
obtoined using other methods, For R? values 0,99, 0.98, 0.95
and 0.90 were assumed, Investigations were made for samples of
20, 25 and 30 elements, :

On the basis of sequonces of estimates {Aa}' {bs}' {ra}(s =
=1, «.., IP), the properties of parameter estimates are ostab-
lished for every type of sample space. Mean values of the es~
timated biae, veriation coefficient, the variance about the
mean and about the real value of perameter werc analysed.

4, Efficiency of the Two-Stage Iterative Method
for s Deterministic Model

Initially the process of the TSIM convergence  Was analysed
for the case of deterministic models, 1i.,e. when R2 = 1,0 (then
Y = YT). The analysie was expected to give answers to the fol-
lowing questions:

1. Is the convergence process dependent on the choice of
starting points? :

2. Vhat is an average number of iterations and average time
of reaching the assumed real point?

3, In what way the iterative process is influenced by the
range of correlation of exogenous variables K and L?

Numerical experiments carried out on ODRA 1304 computer using
# CES 4 program proved the convergence of the iterative process.
The number of iterations depends on the choice of accuracy3 (w),
as well as on the choice of starting point, more precisely on
€y’ and on the range of correletion of vpriablqé. The results
allow us to put out several interesting conclusions.

" 1% All perameter estimates ere convergent to the assumed pa-
rameter values. The only exception is in the case when start-
1ng_r° and real p are the numbers with opposite eigns i.e. for

3 It is obvious that the smaller the value VW the larger the
number of iterations. y
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starting r e (-1, 0) and real value of paremeter g>0 (and
inversely) and increase (or decrease) up to 0 or r obtained in
successive iterations 4is observed., And, 4in turn, with r tende
ing to 0 the iterative process 4s no longer convergent, In eve~
ry iteration the values of r "travel" about O which ise implied by
numerical properties of an expression of the following forn‘:

)
Alb KI™ ¢ (1 - pNJ"] ",

In this case when TSIM is epplied, the sign of starting value r
should be changed, If the situation is still the same after the
change of the sign then the hypothesis should be accepted  that
the relation between the output and production factors 4is of
the Cobb-Douglas type, "i.e. a function with the elasticity of
substitution o = 1 , It follows that expecting the elasticity
of substitution greater than [1] we should assume positive start-
ing r i expecting 6 < 1 we should choose negative Fo*

29 The convergence of the iterative process does not depend
on a choi~e of starting values (if only the condition on the
sign of parameter r 4is satisfied), It was observed, that the
number of iterations is smaller when starting velue r is grea-
ter than p for g >0, and smaller than p for p <O0.

. 3° The estimates of parameter § become stable much sooner
than the estimates of parameter p. So that for'etarting b e-
qual to § theg estimate of r 41s equal to the real value of pa=
rameter p in the first iteration IT already,

4° The convergence in the proposed method does rot depend on
the renge of correlation of exogenous variables. In both cases
(pyL = =0.036, PkL = 0.966) the a priori assumed reel values
‘were obtained, But the range of correlation influences signifi-
cantly the number of iterations., It is obvious that the great-
er the correlation coefficient, the greater the number of ite=-
rations, ’ ' ‘ 4

On the basis of the results obteined for the deterministic
model it should be stated that the two stage iterative method

4 For r = O the function (1) transforms into Cobb-Douglas one.



The Tvo-stag Iterative Method for Estimating the CES 77

provides good results and is efficient., However, for stochastic
models the bias and effectiveness of parameter estimates should
be investigated, The following part of the paper 1is devoted to
this problem,

5. Properties of TSIM for a Stochastic Model

The sample spaces and Monte-Carlo experiments were opplied
to establish the properties of TSIM estimates, Particular at-
tention was paid to basic characteristics of the obtained sa~=
quences of parameter estimates {Ae}' {b.}. {r‘}. Especially the
following values have been analysed: mean values from the IP
repetitions, variances and standard deviations from the sample
(calculated in relation to the mean), variation coefficients for
the means, the values of bias for the means, variances and
standard deviations calculated in relation to the parameters.
The same characteristics have been determined for the sum of
squares of residusls (Q), estimates of determination coeffi-
cient R® from the samples and the velue F determined as a sum
of squares of partial derivates of the criterion function $.

The obtained results, being rather preliminary, are better
than expected in view of a small number of undertaken experi-
ments, The parameter estimates were supposed to be biased for
two reasons: the basic sample covered 20-elements and was a
small one, and, secondly, in @ common widely-accepted opinion,
the iterative methods are biased, In the experiments qarriod out
fér R = 0,990 the statistically significant parameter bias has
not been observed as mean parameter estimetes did not differ from
the real values of these parameters more than by one standard de-
viation for the mean, The dependence of mean parameter estimates
on the number of repetitions IP is presented in Figs 1-3. :

The mean value of the sum of residual squares Q and the
mean R showed a very similar behaviour, The characteristic ob-
tained in IP repetitions were identical for different starting
values. The experimental results fdr,Rz =0,99,  a =20 § =
= 0,4, p =0.2 obtained in suocoﬁaiye repetitions IP = 50, 100,
200 are shown in Table 1. It is worthwhile to note that the



78

Czentawva Jackiewicz

—

x=20

» Halina Klepacz, Elibleta Z6ltowska

'

.0 0 20 N N N & T H N W MW 2 MO W OB O O W

Fig. 1. Mean value of the parameters o estimates calculated after IP repstiticns
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Table 1

Meen sample poramoter gstimates
and their characteristics for RZ = 0,990, n = 20

Characteristics The number of repetitions (1p)
for a sequence
of estimates 50 100 200..
W S 3 4 5
Arp 1,99892 2.00060 1,99977
s2(a) 0,00082 0.00092 0.00076
s(A) 0,02858 0,03029 0,02767
(A} stmA’ 0.01429 0.01513 0.01363
A=-a 0,00108 ~0,00060 0.00023
s2(A) 0.00082 0.00092 0.00077
S(A) 0.02860 0.03029 0,02767
byp . 0,40330 0.40144 0.40182
s%(b) 0,00024 0.00027 0.00028
s(b) 0.01549 0.01645 0.01665
{b,}| stw)/b 0.03840 0.04097 0.04143
b=-5& ~0,00330 -0,00142 ~0.00182
s%(b) 0.00025 0.00027 0.00028
s(b) 0,01584 0.01651 0.01674
Typ 0.18041 0.20424 0.19790
s2(r) 0.00654 0.00855 0.00749
s(r) o.oéogo ‘0.09244 0.08656
{re } - str/F 0.44843 0.45262 0.43738
T=p 0.01959 ~0.00424 0.,00210
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Table 1 (contd.)

[' ;L< 2 3 4 5
;
{ 8%(r) 0.00693 0.00856 0.00750
5(r) 0.00324 0.09254 0.08658
Re, 0.99150 0.99175 0.99172
' 52 (r?) 4.7 »10°% | 8,7 ..20°° 6.7 » 10°°
s(R?) 0.00217 0.00238 0.00259
{r,}| s(R®/R 0.00219 0.00240 0,00261
R? - R2 0,00150 0.00175 0.00172
s2,(R?) 6.9 + 1076 | 8.7 + 12076 9.6 « 10°°
RO
sRZ(RZ) 0.00264 0.00296 0.00311
[+
e 361.67 352,22 351.41
s2(Q) 9047, 37 10 803,84 11 993,04
I 10V 95,12 103.94 109,51
{e,} | s)/@;, | o.28 0,29 0.31
Urp - -2,19 . 11,64 12,46
sg(Q) 9052.17 10 939.33 12 148.20
SQ(Q) 95,14 104,59 110,22
Fip 1,58 - 10°%| 1,87 . 12077 1.82 « 1077
s%(F) 5.21 - 1079 5,36 . 10718 | 5,82 . 20718
S(F) 2,28 - 107°| 2.3 - 107° 2.41 + 1077
s(F)fFip 1,44 1.23 1432
Fip =0 1.58 + 2077 | 1.87 . 12077 1.82 - 10~°
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Table 1 (contd.)

1 2 3 4 5
85(F) 7.75 « 1079 | e.08 - 120728 | 9,13 . 107%°
8, (F) 2,78 « 1077 | 2,98 - 10"° | 3.02 . 1077

number of iterations 4in successive samplings wes identical to
that in the determinietic case (7 till 10), In the process of
sampling there were generated such two talplos (where the gene-
rator started from 0.41053835 oand 0,65214471) that the number
of iterations was stopped with IT = 30 and the results, espe-
cielly for r, eeriously differed from the real ones, The va-
lues of Q and the indicator F were Iorgb for the two cases,
The two samples were not taken 4into eccount in establishing the
mean estimates and their characteristics,

Canclusions concerning the characteristice of parameter estie
mates obtained on the bseis of numericsl experiments always de-
pend on the scope of the experiments, i,e, on the number of re=-
petitions for o basic sample., It is a priori assumed that the
number IP should be indifinitely large. Practically the fulfil-
ment of this condition is almost 1nposstble because of time~ and
labour=-consumption, Therefore, a limitation on the nymber of
repetitions is necessary,

Interesting results follow from the analysis of empirical di-
stributions of paraometer estimates (for IP = 200). The highest
stability showed the estimote of parometer o i the varistion
coefficient for it was equal to 1,58, (4t wes measured as a sha-
re of a standsrd deviation in the mean), The lowest stability
was revealed by the estimate of parameter p; the variation co-
efficient =~ very high = was equal to circs 45.1%. The va-
riation coefficient for the estimate of parameter 5 was | equal
to 4,08%. The empirical distributions of the cstimates of para=
meters a, 5, g  are shown in Fige 4-6, These distributions show
left=hand side ssymmetry for A and right hand side sasymmetry for
b and r.

The above presented results constitute only a part of those
which we obtained, These which are not pressnted here, have very
similar properties. The proposed two=sts iterative method
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can be therefore applied to estimate ' the parameters of CES
production function, aseuming that all conditions for tha ran-
dom term are fulfilled., The analysis of properties of this
method in the case of weaker ;oauuptiona is carried out at the
Institute of Econometrics and Statistice, University of tédi,

The peper is based on the investigatione carried out under
the contract R,III,9,5.
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Fig. 6. Diagram of omp1r1c31 distribution of estimate r
or IP = 200 (R® = 0,990, n = 20)
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DIWUSTOPNIOVWA ESTYMACYINA METODA ESTYMACII
FUNKCII PRODUKCII TYPU CES

« artykule przedstswiono propozycje metody estymacji funkcji
produkcji CES z addytywnie wprowadzonym skiadnikiem losowym, Me=
toda ta jest oparta na klasycznej metodzie najmniejszych kwadra-
téw. Otrzymany uklad nieliniowych réwnan normalnych  rozwigzuje
si¢ W spost iterocyjny dwustepniowo. Y artykule przedstawiono
réwniaz wyniki eksperymentu Monte-Carlo uzyskane tg metodq.



