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Abstract. One of the most important problems in spatial econometrics is the compu-

tation of the log of the Jacobian of variable transformations in models with spatial inter-

actions. The computation is necessary in ML estimation and Bayesian analysis of models 

with spatial dependence (Smirnov and Anselin 2009).  

The effectiveness of the implementation of ML depends on computing effectiveness 

of the log-determinant of a matrix, especially for sparse and large matrices.  

The second problem is the  numerical accuracy of computation of the log-determinant 

using different methods as it was shown by Walde et al. (2008). These issues provoked a 

search of new methods of estimation for spatial models. One of them is GMM being 

easier but more restrictive for computation than ML (Lee 2004, 2007). Another solution 

is to make some simplifications based on regular  grids or band matrices (Rue, Held 

2005). 

In the paper we test and comment the method of computing the log-Jacobian of the 

variable transformation for models with spatial interactions, suggested by Smirnov and 

Anselin (2009), for some practical case studies. 

 

 

1. INTRODUCTION 

 

Describing an object with a precise spatial location is a specific property of 

the data used in economic geography and the Regional Science. Standard meth-

ods (both statistical and econometric) have a little use for the analysis of such 

data, because they do not take into account the spatial aspect. Moreover, the use 

of spatial data for modelling the various processes by classical methods of 

econometrics can lead to false conclusions based on the test. 

The space may be one of the factors that influencing on investigated phe-

nomena and processes in different locations by the presence of so-called spatial 

effects. The classical methods and econometric models do not include the exis-

tence of such effects. Therefore, since the `50s of the XX century began re-

searches to develop new methods and models, which in the `70s were placed in 

the domain of a new scientific discipline - spatial econometrics. 
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The general linear spatial model used in many papers (e.g. Anselin [1988]) 

is usually presented in the form: 
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The symbols in these equations mean, respectively: y - dependent k x 1 vari-

able vector,   - k x 1 vector of parameters exogenous variables, X -  n x k matrix 

of exogenous variables are coefficients for the autoregressive dependent variable 

and spatially lagged error term. Matrices W1, W2 are square matrices of size n. 

The vector of unknown parameters of this spatial model: 

 !2' , , , , ' , ! ""#  ' "
                                                 

(2) 

where:   has k elements, and "  contains p elements. Thus, the vector composed 

k+p+3 of unknown model parameters. 

It is often assumed that random error µ  is normally distributed with zero ex-

pectation and some covariance matrix V . In the above formulation the model 

could be used in the case of homoscedasticity (additional assumption are 

needed) as well as heteroscedasticity case situation. 

A few known spatial model structures result when subvectors of the parame-

ter vector are set to zero. Specifically, the following situations correspond to the 

four traditional spatial autoregressive models discussed in the literature (Anselin 

[1988], Griffith [2003], Arbia [2006], Bivand [1984]): 

1) The classical linear regression model: 

0,  0,  !" # " " "y X ! " ,                                        (3) 

2) The mixed regressive-spatial autoregressive model 

1 0,  0,, !%" # # " "y W y X ! "                                  (4) 

3) The spatial error model 

2,  ,  0,  0& %" # " # " "y X ! ! W µ " .                       (5) 

The two N x N matrices W1 and W2 are standardized or unstandardized spa-

tial weight matrices, respectively associated with a spatial autoregressive process 

in the dependent variable and in the error term. This allows two different spatial 

processes. Estimation of model parameters 1) is usually a classical method of 

least squares (OLS). Parameter estimators are consistent, unbiased and most 

efficient. 

As shown in Anselin [1988], in the presence of: 
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C1)  lagged dependent variable, OLS estimator is biased and inconsistent, 

C2)  spatial residual autocorrelation, OLS estimator is inefficient, due to 

non-diagonal structure of disturbance variance matrix. 

For the cases C1) and C2), to estimate the parameters of spatial autoregres-

sive model and spatial error model the OLS method should be replaced by an-

other. The most common method used method is the maximum likelihood (ML). 

The maximum likelihood estimators and discussion on their properties can be 

found in numerous works of Cliff and Ord [1981], Ripley [1981] and Anselin 

[1988]. This is not the only method of estimating the parameters of models with 

spatial dependence. For the spatial error model, the estimators are derived based 

on the GLS (Generalised Least Squares). In turn, Haining [1978] and Bivand 

[1984] suggested the use of instrumental variables (IV) to estimate the spatial 

models. There are used also generalised method of moments and Bayesian ap-

proach. 

For the general spatial model, the maximum likelihood estimates are ob-

tained from a maximization following log-likelihood function with respect to 

parameters  , ", and !. 

 !  !11 1
ln ln ln ln ' '
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where: 

,   &" ( " (A I W B I W . 

For the mixed regressive autoregressive spatial model we have !=0, and for 

the linear regression with spatially dependent error terms we have  =0. 

From computational point of view one of the important problems is the calcula-

tion of log-Jacobians ln  (I W  and ln &(I W . 

The computation is necessary in ML estimation and Bayesian analysis of 

models with spatial dependence (Smirnov and Anselin [2009]). The effective-

ness of the implementation of ML depends on computing effectiveness of the 

log-determinant of a matrix, especially for sparse and large matrices. 

The second problem is the numerical accuracy of computation of the log-

determinant using different methods as it was shown by Walde et al. [2008]. 

These issues provoked to a search for the new methods of estimation for spatial 

models. One of them is GMM being easier but more restrictive for computation 

than ML (Lee [2004], [2007]). Another solution can be some simplifications 

based on regular grids or band matrices (Rue and Held 2005). 

In the paper we test and comment the method of computing the log-Jacobian 

of the variable transformation for models with spatial interactions, suggested by 

Smirnov and Anselin [2009], for some practical case studies. 
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2. METHODS 

 

Spatial weights matrix is defined as a formal expression of spatial dependen-

cies between units of observation (Anselin [1988]). It defines a spatial neighbor-

hood structure, and measures the strength of potential interactions. There is no 

convincing view about how the store should be a spatial neighborhood structure. 

Therefore, the literature has already identified a number of encoding spatial 

weights matrix elements. 

The simplest spatial weights matrix is a binary matrix of the immediate vi-

cinity of C - the weights will take values 1 for close neighbours, and 0 other-

wise. The neighborhood is generally understood as a fact of having a common 

border. There are two types of such a neighborhood: a) rook - where individuals 

contiguous borders with non-zero length, b) queen - is taken into the neighbor-

hood through a point. The matrix C is a symmetric matrix which elements are 

lying on the principal diagonal under the convention are zero. Standardizing the 

immediate vicinity of the matrix C by the formula: 

1
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,                                                 (7) 

we obtain a matrix in which the sum of the elements in each row is 1. This is the 

most common used definition of spatial weights matrix. Tiefelsdorf, Griffith and 

Boots [1998] noted that in the row standardized matrix too much weight are 

assigned to units with a small number of neighbors, for example, located on the 

border area under consideration. 

In addition to these definitions of the matrix of spatial scales, to the most 

popular encoding schemes can be classified as (Getis and Aldstadt [2004]): a) 

the inverse of the distance between the observations raised to the power, 2) the 

length of their common border, divided by the parameter, 3) the distance not 

greater than the distance to the n-th neighbor, 4) ordered distance, 5) distance 

limited to constant, 6) all centroids to the critical distance d, 7) n nearest 

neighbors, 8) based on local statistics. 

Now let us comment properties of the above defined matrices in matricial 

and topological language (following Smirnov and Anselin [2009]). Let N  be the 

size of the spatial dataset. The spatial weights matrix W = (wij)  is obtained from 

a symmetric nonnegative matrix C by its row-standardization, i.e. W = D
-1

C, 

where D is the diagonal N x N matrix of positive row-sums. Thus the matrix W 

is generally non-symmetric, but the matrix  Ws, obtained by the similarity trans-

formation: 

1/2 1/2 s
("W D W D ,                                             (8) 



THE METHOD OF COMPUTING THE LOG-JACOBIAN OF THE VARIABLE … 165

is symmetric (symmetry of C follows from the property of distance function or 

contiguity), which implies that the set of eigenvalues of  W and Ws coincides 

and determinants are equal. So: 

ln lns  ( " (I W I W .                                          (9) 

The matrix C, and in consequence, matrix W are usually sparse non-

negative matrices for large N. The proportional number of non-zero elements 

decreases while N is increasing. It would be convenient from mathematical point 

of view to have spatial weights matrices equivalent to band matrices. But in fact 

it is not true - spatial weights matrices generally are not equivalent to band ma-

trices even cannot be approximated by a band matrix (Rue and Held [2005]). 

The level of reducibility of given sparse matrix to band matrix depends on 

Hausdorff dimension, as it was described by Anselin and Smirnov (1996). They 

used the spatial weights matrix to define topological distance D(i,j) between i-th 

and j-th locations. On the basis of the D(i,j) they defined the topological circle of 

radius r for the location i as the set of points with topological distance Sr(i) from 

i of r or less:  (   ( ))  ( ( , )  )rt S i D i j r* + , . 

It is obvious that the size of set Sr(i) is monotonically increasing with radius 

r and the level of growth rate depends on location. 

The Hausdorff dimension d of the spatial dataset in the R-vicinity of each lo-

cation is a positive real number for which for all locations specified in matrix W: 

1

( )
 ( ),    {1,2,...,  }

( )

r

d
S i

r r R
S i

, *O ,                              (10) 

where |.| denotes the number of elements of the set and R is a finite positive inte-

ger number. 

Although Hausdorff dimension is defined on the infinite datasets, Smirnov 

and Anselin [2009] extended the notion of the topological dimension to a finite 

dataset. Specifically, they used the smallest d for which (10) is satisfied to de-

termine the Hausdorff dimension in the vicinity of each location. If the Haus-

dorff dimension is finite, d indicates the topological dimension of the spatial 

dataset. Finally, Smirnov and Anselin [2009] came to conclusion that most geo-

spatial data have finite Hausdorff dimension. 

The topological dimension of the spatial dataset “describes” the structure of 

non-zero elements in the spatial weights matrix W. For the case d =1 we have 

single-dimensional spatial dataset and there exists such order of elements with 

the corresponding spatial weights matrix being a band matrix. In this case the 

band is finite and it is independent of the size of the dataset. The crucial (the 

most problematic for calculation) situation is when the spatial dataset has topo-

logical dimension  d = 2 because the spatial weights matrix cannot be trans-
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formed by row and column permutation into a matrix with a fixed band. Unfor-

tunately,  most of geo-spatial data have dimension two, which leads us to corre-

sponding spatial weights matrices with a band that increases with matrix size. It 

implies that band matrix techniques would be a poor choice for solving spatial 

problems. 

The numerical method presented by Smirnov and Anselin [2009] delivered 

an O(N) method for the spatial datasets with a finite and constant topological 

dimension. The assumption of the method is mostly satisfied for practical spatial 

samples. The theoretical base for the method is described below. 

The log-determinant of a positive definite matrix ln  (I W is given by: 

1
ln ln(1 )

N
ii

 %-"( " ()I W ,                                  (11) 

where #i are eigenvalues of the matrix W (Anselin, 1988; Ord, 1975).  

Since the matrix W is symmetrizable via transformation (8), its eigenvalues 

are real, but their computation is impractical if not impossible for large W be-

cause of lack of numerical methods for computing all eigenvalues. Using follow-

ing notation for the non-central moment of the set of eigenvalues of the matrix: 

1

N
j j

i
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It is important to note that the formula (12) holds for any real matrix W ob-

tained by the similarity transformation (81) because the latter preserves its ei-

genvalues. Numerical approximation with chosen m 

1

1
ln   ( )

m
j j

m
j

 R
j
% %

"
( " ( . ()I W ,                           (13) 

where Rm( ) is a generally positive with zeros only in the absence of spatial de-

pendence. 

The key component of the efficient computation relies on the following 

j , ,

1 1

  ( )  ( )  ( ) 
N N

j j j
i i i

j j

$ tr tr tr
" "

" " " ") )W W I W % % % W% ,              (14) 

where %i is the N x 1 vector that has only one non-zero element equal to 1 on 

the i-th position. 

Below we present steps of the algorithm proposed by Smirnov and Anselin 

[2009] based on formulas mentioned above. 
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Efficient method for computation of  $j = 0,  j=1,…, m: 

1:    set $j = 0,  j=1,…, m 

2:    for i *{1, 2, …, N} do  

3:    initialize % = %i  

4:    j:=2  

5:    repeat  

6:    & := W&  

7:   1 :  'j j$ $( " # & %   

8:   :  'j j$ $" # & &  

9:    % = &  

10:  j:=j+2  

11:  until j > m  

12:  end for 

 

3. DATA 

Typical spatial systems used in geographical analysis, are those based on the 

basic units of territorial division of the country. A characteristic feature of this 

type of spatial systems is a relatively large number of their constituent units, 

usually a few thousands. In this paper the method proposed by Smirnov and 

Anselin was used to calculate the log-Jacobian for quite large three datasets. We 

analysed: 

1) Poland  (communes – Polish name: gminy) 2478 spatial units, 

2) Slovakia (communes – Slovakian name: obce) 2920 spatial units, 

3) Czech Republic (communes – Czech name: obce) 6249 spatial units. 

Below we present maps of this three cases showing borders of spatial units. 

Fig. 1. Map of administrative units in Poland (gminy - communes) 

 

Source: developed by the authors. 
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Fig. 2. Map of administrative units in Slovakia (obce - communes) 

 
Source: developed by the authors. 

 

Fig. 3. Map of administrative units in Czech Republic (obce - communes) 

 
Source: developed by the authors. 

 

4. RESULTS AND DISCUSSION 

 

The method of calculating the log-Jacobian proposed by Smirnov and 

Anselin [2009] was used for the three previous sets of data. Its numerical per-

formance has been tested on a typical PC equipped with 2.4GHz Intel processor, 

running on Windows Vista. The algorithm of calculation of the logarithm of the 

determinant was developed and launched in Matlab 7.9 R2009b. 

In the first step the first-order neighborhood matrices for Poland, Slovakia 

and the Czech Republic administrative units were constructed, and then their 

row-standardized versions were calculated. The matrices were characterized by a 

high degree of sparseness. The matrix constructed for Polish has 14214 non-zero 

(on figures noted  by "nz") elements, which constitute 0.23% of all its elements. 

For Slovakia, the matrix has 17104 nonzero elements, or 0.2%, and for the 

Czech Republic was 37012 nonzero elements, i.e. 0.09%. Analyzed weighting 

matrices are given in Figure 4-6. It is easy to observe that their structures are far 

from regular. 
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Fig. 4. Spy matrix – Poland 

 
Fig. 5. Spy matrix – Slovakia 

 
Fig. 6. Spy matrix – Czech Republic 

 
Source: developed by the authors. 
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In the next step the algorithm calculating value of lower moments of  eigen-

values of the matrix  W and logarithm of the determinant of a matrix (I– W) 

was running. Due to the fact that the series expansion of the logarithm of the 

determinant is theoretically infinite sum, it was essential to establish criteria to 

stop the algorithm. It is the value of m beyond which the logarithm will be 

stopped. The rule of stopping the algorithm was adopted arbitrarily for such even 

value of m, for which the calculated value of the logarithm of the determinant 

does not differ from that calculated for m-1 and m-2 to the nearest fourth deci-

mal place. 

Positive definiteness of the matrix (I– W) requires that   should be con-

tained in the interval 
min max

1 1
,

- -
1 2
3 4
5 6

 , which also guarantees existence of the limit 

(12). In the paper, similarly as in Smirnov and Anselin [2009], we took  =0.5. 

The calculated values $j = 0,  j=1,…, m and the subsequent approximations 

of the logarithm of the determinant are given in Tables 1-3. For the Polish case 

the logarithm of the determinant of the value stabilized at a level -76.1353, for 

m=18, for Slovakia it was -83.3156 for m=20, and for Czech Republic value was 

-176.7591 with m=20. It is worth noting that the value of the logarithm of the 

determinant for Slovakia did not change at the fourth decimal place already for 

m = 15, and for Rep. Czech m = 19, but in both cases the value of m was odd (m 

is required to be even). 

Tab. 1. Results of log-Jacobian computation for Poland 

m  
j.  

ln  (I W  

1 0,0000 0,0000 

2 527,8508 -65,9808 

3 140,6423 -71,8410 

4 193,3311 -74,8617 

5 121,1219 -75,6188 

6 127,7235 -75,9514 

7 98,0888 -76,0608 

8 91,5162 -76,1055 

9 79,6153 -76,1228 

10 74,7609 -76,1301 

11 67,0151 -76,1331 

12 62,5022 -76,1343 

13 57,6532 -76,1349 

14 54,3728 -76,1351 

15 50,7052 -76,1352 

16 47,9883 -76,1353 

17 45,2621 -76,1353 

18 43,1204 -76,1353 

Source: developed by the authors. 
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Tab. 2. Results of log-Jacobian computation for Slovakia 

m  
j.  

ln  (I W  

1 0,0000 0,0000 

2 566,3908 -70,7989 

3 180,4263 -78,3166 

4 221,7587 -81,7816 

5 148,8706 -82,7120 

6 146,7932 -83,0943 

7 118,9219 -83,2270 

8 108,1242 -83,2798 

9 96,0125 -83,3007 

10 88,5236 -83,3093 

11 80,6016 -83,3129 

12 74,5767 -83,3144 

13 69,3046 -83,3151 

14 64,9274 -83,3153 

15 60,9180 -83,3155 

16 57,4529 -83,3155 

17 54,3786 -83,3155 

18 51,6544 -83,3156 

19 49,1747 -83,3156 

20 46,9441 -83,3156 

Source: developed by the authors. 

Tab. 3. Results of log-Jacobian computation for Czech Republic 

m  
j.  

ln  (I W  

1 0,0000 0,0000 

2 1205,9002 -150,7327 

3 377,3803 -166,4575 

4 457,9719 -173,6145 

5 306,1114 -175,5320 

6 300,5133 -176,3093 

7 241,8057 -176,5814 

8 218,5798 -176,6792 

9 193,1210 -176,7315 

10 177,6003 -176,7437 

11 160,8189 -176,7519 

12 148,4907 -176,7551 

13 137,3276 -176,7562 

14 128,4723 -176,7572 

15 120,0194 -176,7581 

16 113,0403 -176,7588 

17 106,5926 -176,7591 

18 101,1308 -176,7591 

19 95,9583 -176,7591 

20 91,4894 -176,7591 

Source: developed by the authors. 
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The effectiveness of the Smirnov-Anselin algorithm may be measured over 

time, after which a satisfactory approximation of values of  ln |I– W| is re-

ceived. The time required for obtaining approximations is included in Table 4. 

 

Tab. 4. The time needed to computation the log-detrminant 

Data N m Time (s) 

Poland 2478 18 357.12 

Slovakia 2920 20 653.25 

Czech Republic 6249 20 6448.76 

Source: developed by the authors. 

Commenting the results let us note that there is difference in the time needed 

to obtain approximations for Slovakia and the Czech Republic, as both cases 

required m=20. In the case of Slovakia, this time was 653.25 [s], with N=2920, 

while in the case of the Czech Republic was 6,448.76 [s] for N=6249. The pro-

portion of sample size for Slovakia to sample size of the Czech Republic number 

is approximately equal to k=2.14. The appropriate ratio for the length of calcula-

tion time is 9.87, which is close to k3=9.80. Thus, k fold increase in sample size 

implies approximately k3 fold increase in operating time of the algorithm for a 

fixed m. 

 

 

5. CONCLUSION 

 

The O(N) parallel method of computing the log-Jacobian of the variable 

transformation for models with spatial interaction presented by Smirnov and 

Anselin [2009] is extremely effective for 3.0 GHz dual-processor with quad core 

- as was proved in the paper. It turned out sufficiently effective (due to the time 

of computation) even for standard PC for relatively big set of data typically used 

in geographical analysis. Thus the aforementioned method can be used in typical 

research without advanced hardware and software calculation support. 
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METODA OBLICZANIA LOGARYTMU JAKOBIANU TRANSFORMACJI 

ZMIENNYCH W MODELACH PRZESTRZENNYCH - TEST I KOMENTARZE 

Jednym z najwa niejszych problemów w ekonometrii przestrzennej jest obliczenie 

logarytmu jakobianu transformacji zmiennych w modelach z interakcj! przestrzenn!. 

Wyznaczenie tego logarytmu jest konieczne przy estymacji modeli metod! najwi"kszej 

wiarogodno#ci i analizie Bayesowskiej modeli zale no#ci przestrzennej (Smirnov i An-

selin [2009]). Efektywno#$ implementacji metody najwi"kszej wiarogodno#ci (ML) 

zale y od efektywno#ci obliczeniowej logarytmu wyznacznika macierzy, w szczególno-

#ci dla du ych i rzadkich macierzy. Drugim problemem jest dok%adno#$ oblicze& nume-

rycznych logarytmu wyznacznika macierzy przekszta%cenia przy u yciu ró nych metod, 

co wykazano w pracy Walde i in. [2008]. Problemy te spowodowa%y poszukiwania no-

wych metod szacowania modeli przestrzennych. Jedn! z nich jest prostsza obliczeniowo 

uogólniona metoda momentów, ale bardziej restrykcyjna ni  metoda najwi"kszej wiaro-

godno#ci (Lee [2004], [2007]). Innym rozwi!zaniem jest dokonanie pewnych uprosz-

cze& w oparciu o regularne kraty lub band matrices (Rue i Held [2005]).  

W artykule przetestowano i skomentowano metod" obliczania logarytmu jakobianu 

przekszta%cenia zmiennych w modelach interakcji przestrzennych, zaproponowane przez 

Smirnova i Anselina [2009], na kilku praktycznych przyk%adach. 


