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where ! ~ denotes an n, x 1 vector of unities in the design
p 5
matrix. Very often in growth curve applications T 4is a matrix

whose rows aré powers of the time byt = ti“
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For the jth subject we could have the univariate linear model

|
gy TR Kegyt 3 m A B evnaing (1.2)

where var (e(j)) =g for every j and B' = (B, By, «ouy ﬂp_1)-

The growth curve associated with the jth individual is of the
form

- . p~!
E(y) By * Bot + Bot™ + ... 4 5p_1t )
and the generalized least squares estimator of § is
B = (T’:“T)"r'z'1x(j).

We suppose that g = (810' Byqr ""‘sijp-1). when the subject

falls in the ith group. In this 1-way MANOVA situation the para-

meter matrix
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The covariance matrix of the elements of B is given as
cov(vech) = (x'x) to(rE-1m™! (1.6)

Let us consider the estimation of estimable linear functions
of the form CBD, where C and D are known matrices of order
gxm and p % v respectively. This can be written in vector
form as vec(D'B'C') = (CeD')vecB'. The BLUE for the estimable
function (CwD)vecB' 1is '

(cep") [(x'%x)" 'x'@(1 3’11')"1--::"1] vecy' 2C1.7)

which means that

1

chp = c(x' ) xvr e ) o (1.8)

is the BLUE of CBD. The covariance matrix of (CeD')vecB' is di-
rectly computed to be

1

(cen) [(x'x) ' (2™ '1)"" ] (x'eD)

= c(x‘x)“c'-o'(w'z”'x')"‘o (1.9)

In practice T is usually unknown and sheuld be estimated.
Let us reparametrize the model (1.1) for a while so that I =
= BT', Then we have an ordinary multivariate linear model E(Y) =
= X', where I'' {is restricted to the space spanned by the co-
lumns of T. The general theory of multivariate linear nodels
shows (see e.q. Arnold [2), p. 350) that

~

L=

ek gt S gl R P ) o ol S (1,10)

\ S 2
is an unbiased estimate of L and is independent of I = (X'X) X'y,

In fact £ follows the Wishart distribution Wq(n - m, YT%TTF £)

" with n - m degrees of freedom. If we replace I by £ in (1.5)
and (1.8), we obtain an empirical estimate for B:

B = (x'x)'ﬁx'vﬁT(T"ﬁT)”. : (1,11a)

ana for CBD:

1 Vo=

¢Bp = c(x'x) " x vf T (e E T ey (1.11p)
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In a similar way we obtain empirical estimates for the co-
variance matrices of these estimators by replacing I by § in
the expressions (1.6) and (1,9)., XK h at r i [6] showed that B
is the maximum-likelihood (ML) estimate of B with the property
that

[(y - XBT')'(Y = XBT')| 4is minimum at B = B 118

However, B is no longer BLUE. Note that £ is not the ML
estimate of L; the ML estimate under the normality assumption:
(khatri [6))is

Ty " %s +-%-(F - Br) 'x'x(f - Br")
where § = ¥' [I = X(X'X)”'x'JY ana f = x'x) %'y, Generally
CBD is an unbiased estimator of CBD for all symmetric distribu-
tions of Y. Although B 1is not BLUE, E is a consistent estima-
ter of £ and if n is large, f would be near L, and B would

Le near the BLUE. P

2, INFLUENCE OF A PART OF DATA

We are interested in the effect of deleting a part of measu-
rements from data. Let ] be the estimate of B based on full
data and let ﬁA be an alternative estimator based on a subset
of data. The subset of data can be obtained by deleting obser-
vations (some rows of Y), by deleting measurements at a given
time-point (certain columns of the observation matrix Y and
corresponding rows of T) or by deleting any other subset of
measurewents from the data. In this application the influence of
deleting measurements at given time-points 1is of primary inter-
est, but we will consider the problem of assessing the influence
more generally.

Let T be an s vector of indices that specify the incomplete
observations. Y(I) denote the observations, where no measure-
ments are de}eted. Y(I) can also be empty. Let YI denote that
set of observations from which some measurements are deleted.
Further, we partition ¥ . such that YIJ containQ the deleted

measurements and . YI(J) the rest of the data contained in Y. For
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example, data on bulls born in 1966 contain 208 bulls measured
at 12 time-points. If we delete for 10 bulls measurements at the
ages of 90 and 120 days, YIJ will be a 10 x 2 matrix and YI(J) a
a 10 x 10 matrix. The growth curve model (1,1) can be expressed
as a set of models as follows

E(y I(J) = X,BT'K 2419

and

= 'K
E(YIJ) XBT'K,

where X(I) is the n, x m known across-individuals design ma-
trix for complete observations and Xy is the n, x m design ma-
trix for incomplete observations. The matrices B and T are
the same as in model (1.1) K is a g x g, incidence matrix of
Zeroes and ones which indicate the times with measurements for
cases indexed by I. Correspondingly K is a qx (q = q1) inci~-
dence matrix indicating the times with missing measurements, When
measurements at the ages of 90 and 120 days are deleted, K is as
follows

X (0 01000000000 0)
0001000000000
and K is a 13 x 11 matrix of zeroes and ones. Note that KX' +
+ KK' = I,3413+ Denoting vecY?I) = Yqr vecvi(J) =¥ and

vexY'IJ = y3 we may write the model as follows

¥4 ol & il
Y2 X; ®K'T vecB' + veck' (2.2)
¥3 X ® K'T

Let us further denote K'T = T(3) K'T = T;, and K'EK =
where "(J)" denotes the indeces of cases deleted from the data.
If y, 4is deleted from data, one obtains
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L ' ' =1
vecB (IJ’ - [X (I)x(I).T L T +

\ 1 -’ 1 -1 ’
+ XX T DTy Ryt Ty, +
-1 .

Substituting S into (2,3) in place of L yields the estimate
E(IJ) for B, when Y . is deleted from the data. The empirical
influence function is now B

IF(IJ) = B - E(IJ) (2.4)

When T = I, we can derive convenient matrix formulas for
the difference B - s(IJ)‘ However, in this connection we do not
consider this an inportant special case.

2.1. Measuring Influence at the Desicn Stage

In order to obtain a measure of information we compare tta-'
ces of covariance matrices. Although measurements indexed by IJ
are unavailable, the proportion of change in the trace of cova-
riance matrix of the estimator of (CaD')vecB' can be defined as

trV(CB(IJ)D - trv(cBD)
trV(CBD)

(cBD) = (2.5)

1oy

Note that CBD = [g'(i)agj), where C = (9(1), S(2)r e
g(g)) ‘and D = (d,, dys +.., & ). However, we adopt a slightly

different approach, which is more flexible and more simple. We
calculate information on every E'(i)ng according to the formu-
la (2.5), and denote it as

I (o [g(i)ogj]' Ev(ﬁ(IJ)) - v(B)] [g(i)ng
(13) ~(i)B§'j) = [s(iﬁj].V(Bj [g(i)°gj]

]
1o 't2.6)

As information measure for CBD could be defined as a weight-
ed sum of the information measures (2.6). If all elements of CBD
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are of equal interest, then the arithmetic mean of I(IJ)(°21)ij)
would be appropriate:

Therefore with respect to the parameter matrix B, the infor-
mation contained in the measurements indexed by IJ is simply
the average of information figures of the elements of B. We sug-
gest calculating the information matrix

IM(IJ)(Q) - ‘I(IJ)(Bij)) i (2-8)

which proves a useful statistic. Looking at this matrix we can
see the information contained in the observations indexed by IJ
with respect to every element of B, We can easily set that

I(IJ)(g'(i)agj) - g:,'(i)m(m)(rs)gj (2.9)
Ghosh [5] suggested a kind of measure similar to that

in (2.6) in the context of ordinary linear models.

2.2, Influence at the Inference Stage

pPerhaps the most popular influence measure at the inference
stage in the context of regression models is the distance measu-
re proposed by C ook [4]. No similar measure can be used
straightforwardly in a growth curves model. In order to derive a
measure for influence suitable in multivariate situations, we
consider first testing the hypothesis

H, : CBD = M (2.10)

in the model
Elvecy') =(XaT)vecs' 2 {25197)
The hypothesis (2.10) can be expressed equivalently by

(cwD')vecB' = vecM' (2.12)
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In order to simplify notation we choose M = 0 in the sequel,
1f necessary (CoD')vecB' could easily be replaced by (CsD')vecB'
- vecM' in the following formulas. If T were known, we could
use the ordinary x2 statisvic known from the theory of linear
models. If we denote CaD' = K', we have

x? =(K'vecB') ' {K' (x-T)'(Iot)"(xnr)'1x}’1(x'vecﬁ') =

1

= (K'vecﬁ)'({C(X'X)-1C']-1|[D‘T'2- T3-1DJ](K'vec§) -

= tr (sH[D'(T't"T)"o]" (2.13)
where
8y = (cBp) ' [etx %)~ 'e'1 ™ Y(chn) (2.14)

It is well-known that under Ilj : CBD = 0 the statistic (2,13)
follows the central x> distribution with s and n - wp de-
grees of freedom, where s = gv /15 the nunber of rows in Cweb'
being full row rank. In certain cases % might e known from oth-
er experiments, and this ‘"estimate" could be used in nlace oft
L. Perhaps in some appplications there are good reasons for the
use of 02 I in place of §. Usually, however, Y is unknown.

Now we consider testing the hypothesis (2,12}, when & s
unknown. As noted in the preceeding section, £ defined in (1.10)
is an unbiased estimator of T in the restricted linear model

E(Y) = XT 2.15

wnere I = BT'., Otherwise the assumptions are the same as in
the model (1,1), It is known (e.g. Muirhead (9], D
430) that the maximum 1likelihood estimates of T and L in the
model are f = (X'X)"'x'y and (1/n)s = (1/n)y'[1~x(x'x)'1x']v.
Moreover (f, S) is sufficient for (I', £J. The maximum likeli-
nood estimates [ and S are independently distributed and
S ~ wq(n-m, £). Since (1/n)S is the ML estimate of &£ in the
model (2,15), (1/n)sS is a consistent' estimator of £, or in
other words (1/n)S converges in probability to ¥ as n  in-
creases without limit. We write (1/n)s® ~ & as n = w. This
result can also be proved using the weak law of large members
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(Arnold [2)], p. 365) and the fact that S~W_(n -m, I).
Naturally the unbiased estimator § is also consistent.

If we substitute &£ ML for £ in the expression of the sta-
tistic (2.13), we no longer know the distribution of the result-
ing statistic. However, the asymptotic distribution of this sta-
tistic can be obtained.

After this substitution we have

(K'vecﬁ)'(K'[(XQT)'(InﬁML)'1(XDT)]—1K)_1(K'vec§') (2.16)

which is the Wald Statistic for testing H_ : K'vecB' = 0 (see
e.g. Silvey [15], p. 116). wWald [17] showed that
under the null hypothesis (2.16) is asymptotically distributed
as xz(s), where & 4is the number of rows in X'. We noted a-
bove that (1/n)S is a consistent estimator of &£ (and also £ =
= [1/(n - m)]s). Since ﬁML is a consistent estimator of £,
the estimators EML and £ are asymptotically the same. We sub-
stitute © for ﬁbu, in (2.16), which yields the statistic

-1

RS m)?r(SHSE ) (2.17)

where S, is as in (2.13) and

H

B; = D'('r's'1'r)"1n (218

Not it is easy to see that also

Q, ~ x(s) (2.19)

asymptotically, when H_ is true. We call W_ the Wald stati-
stic., Kleinbaum [7] proposed this approach for testing
linear hypotheses in this generalized growth curve model.

To determine the degree of influence the measurements index-
ed by IJ have in the estimate B, we suggest the measure de-
fined by

D(;5y(CBD) = tr(sHs;') (2.20)

where :
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: Sthn . g

sy = [c(B - B 0l lex'x)™ ¢']17 [c(B - B(14y)D] (2.21)

We again adopt the same approach as in introducing the de-
sign stage measure and calculate first the influence of every

'
c (i)ij' Thus we have

= = 2
[ots)¢B-B15y) 4]

D (g',,yBd,) = (2.22)
(z3) = (1)"=3 yon=1 >
g (1)(X' KD gy T8 15Ty

The following relation holds between these measures:

' - '
P(13)'11)B%y) = Tz Sa)Pdy)

far, o (BB, a2

;e S (2.23)

vigt Birgydy) - Vig(y)Bdy) : 3

Suppose now for a moment that E = I. Then we can write

' 2 a 2 3
lelyy(B - B(IJ))gj] (2.24)
' ' oy ' -1/ ' ' ' ' ] ‘
= (c(i)ugj)(“ Xer'T) (X @T )'AA' (X @T ) (X'XeT'T) (c{i)nga),-
where
A= (I-HIJ)-1[vechIJ) - (XIuTJ)vecB'] (2.25)

It can easily be shown that E(AA') = (I - HIJ)-1' Therefore (2.6)
and (2.24) yield the result /

E(D (1) (cly)BdP] = T(15y(ety)Bds) (2.26)

= 5 ol
when £ =1, the maximum value of D(IJ)(S(i)ng) is
A'(xllTJ)(x'an'T)'1(qu TJ)'A, which is the largest eigenvalue

of the matrix (xlnTJ)'AA'(XIQTJ)(X'XDT'T)-1. Further, it can
easily be discerned (see e.g. Ghosh ([5]) that

~7
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E[maxD(IJ)(g'Bgﬂ = maxI(c'Bd) / (2.27)
c,d c,d .

~l e ~l s

It should be emphasised tnat the preceding 1$ent1tiea d$ not
hold in the case where B 1is not equal to (X'X)™ X'yT(T'T)” .

3, AN EXAMPLE

Now we investigate the influence of deleting measurements
‘at different time-points, when data on 20€ bulls born in 1966
are under consideration. A polynomial of third deqree was fitted
Ehem. In Figure 1 the values of the inference staae influence
neasure (2.20) for different ages are civen.

4.0 926
41 3f° T

A\
A\}

0.9

-
o
T

0.3 0-3 0.‘ 0 1 0'3
, T oo ] 00% I
30 60 90 120 150 180 210 240 270 300 330 365

Fig. |. Tne values of the influence uy asure D( J)(B) for different time-points

when the measurcments at the corresponding point are deleted. Data coacern
bulls borm in 1966

Wihen the measurements are egually spaced, it is expected that
the observations at the beginning and at the end of the sample
period are most influential. his follows from the fact that de-

' tecting observations at'the ends of the sample period reduces
most the variance of B (see the identities (2.5) and (2.26)).
Note that the statistic (2.17) is the Lawley-Hotelling trace sta-
tistic.’ This is used as a basis for our influence measure, sin-
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ce the statistic can be easely interpreted as a distance measure
as can be seen from (2,16) and from (2.21). The magnitude of (n =
m)D(IJ)(CBD) may be assessed by comparing it to the probability
points of the corresponding Lawley-Hotelling statistic under Hoz
: CBD = 0,

The degree of influence is greatest at the points, 30, 90
and 365 days of ages. For economic and other practical seasons,
measurements at the ages 30, 90, 120 and 150 days were not taken
after the year 1970, If we delete these ages from the data on
pulls born in 1966, the degree of‘ influence D(J)(B) = 3q2.7,
where J = (1, 3, 4, 5)., Deleting the first three ages 30, 60
and 90 days yields the value 3593.4 for D(J)(B), but dropping
out the four ages 60, 120, 150 and 240 gives the value 0.5, The
95% significance point of the corresponding Lawley-lotelling sta-
tistic is 0.06. Therefore 0.5 is highly signific . If 4 weigh~-
ing times must be deleted, one natural approachieg to find such
points which have least influence on the estimates. Finding the
minimum is not straigntforward since some time-points may be
jointly influential but incéividually uninfluential, and conver-
sely: some time-points may be individually influential but jo-
igtly uninfluential.

However, there might also be some practical side-conditions
for selecting weighing times. On the other hand, it may be im-
portént to attain a good £fit to data in individual bulls spg-
cially at a given age interval. Of course, the influence %f a
yiven set of measureaments also depends on the mathematical form\
of a thosen growth curve, Therefore this influence analysis ser-
ves as a means for comparing the robustness of various models
to missing measurenents and to different study designs (i.e. sets
of target ages).
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Brkki P. Liski

OBSERWACJE WPLYWOWE W UOGOLNIONEJ ANALIZIE
MODELU WARIANCJI

Podano opis modelu GMANOVA wielowymiarowej analizy wariancji (zwanego
czasem modelem krzywych wzrostu),

Dyskutowano problemy analizy skutkéw wystepowania wpiywowych wynikéw ob=
serwacji na wtasnodci estymatoréw, Okazato sie, ze skutki te sg rézne w za-
leznosci od ksztaltu estymowanej funkcji parametrycznej,

Proponuje si¢ pomiar tych skutkéw w fazie planowania eksperymentéw oraz
w‘fazie analizy danych eksperymentalnych., Wyniki analizy =zilustrowano rezul-
tatami badari eksperymentalnych 2 zakresu hodowli zwierzat. b



