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Abstract. The paper concerns possibility of tail heaviness degree identification
with use of the extreme value index estimation.

For that purpose there are two methods employed and additionally the methods are
compared. One of them is Pickands’ estimator that is based on the k-th order statistics,
and the other, proposed by Berred, is some kind of parallel of the former but based on
the k-th record values.
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I. INTRUDUCTION

One of the main problems of financial risk estimation is to recognize the
degree of tail heaviness of log-returns of relevant time series, whereas the very
choice of tail depends on an investor, since one may be interested in decreases or
in increases or other features of a proper index. However, regardless of any
investor preferences, long-term empirical research shows that in case of many
time series there exists some disproportion between right and left distribution
tails. Moreover, there is well-known fact that the tails of financial data strongly
differ from the ones of the normal distribution.

Properties of estimators used in the paper are verified and compared by
executing simulation research concerning some arbitrarily chosen types of
distributions. However the main research is focused on the use of Berred’s
concept to the extreme value index estimation with respect to several stock
indices (inter alia WIG, Dow Jones, Dax, FTSE). The estimation confirms
a considerable degree of tail heaviness asymmetry of the log-return distributions
for the examined indices.
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II. THEORETICAL BACKGROUND

It is well known that all possible non-degenerate weak limit distribution of
the normalized partial maxima X, , of independent and identically distributed

nn

random variables X, ..., X,, are extreme value distributions, i.e., if there exist

constants a, >0, b,, for n e N, and some non-degenerate distribution function
G such that for all x holds

lim (S ) = GGy (1)

then there exists a constant » € R, such that the limit distribution G(x) is of the
form

~1/y
G(x) = Gy(x) _ { exp(—(1+yx) ), 1+yx>0, for y#0 @

exp(exp(—x)), —w<x<ow, for y=0

The parameter y is called the extreme value index and it is the primary
parameter of interest in the extreme value analysis [de Haan, Ferreira (2006)].

This parameter influences on the asymptotic behaviour of the right tail of the
common distribution . When y >0, we say that the distribution has a heavy
tail, like the Pareto, the Cauchy, and the Student’s distribution. For y =0 the

distribution is light-tailed, for example the normal, the exponential, the gamma
distributions. And for y <0 the distribution has a short tail, like the uniform and
the beta distributions.

Classical estimators of extreme value index are based on upper order
statistics. Among wide variety of such estimators, only the Pickands’ one is
within our interest. The estimator has the functional form [Pickands III (1975),
Gomes et al. (2008)]

R X, -X,_
7/71,),1{ — (ln 2)—1 In n—[k/4]+1,n n—[k/2]+1,n (3)
n—[k/2]+l,n — Xn—k+l,n

for y € R, where [x] denotes the integer part of x, and 4 <k <n.

From the theoretical point of view the main advantage of Pickads’ estimator
is its insensitivity for any linear transformation of data, providing positive slope,
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which is compatible with the very notion of extreme value index. Additionally,
the estimator is convenient for any real y. Nevertheless, from practical point of

view the Pickads’ estimator displays instability, and was criticized in the
literature on the subject. There are many improvements in this area, however the
straightforward generalizations the Pickads’ estimator or other ideas based on
the order statistics lead to estimators that are either adequate for some bounded
range of ¥ ‘s values (e.g. Hill’s case) or sensitive for linear transformations of

data (e.g. Dekkers-Einemahl-de Haan case).

An alternative idea, proposed by Berred [Berred (1995)], is based on the &-th
record values instead of the k-th order statistics. Dziubdziela & Kopocinski
defined the notion of the k-th record values as follows [Dziubdziela, Kopocinski
(1976)].

Let & be an integer. The sequences of the k-th times and the A-th values are
defined by

L(,k)=k, for n=1, (4a)

L(nk) = min{ j>L(n-Lk) : X;> X, 10 por. sy | fOr 7> 1, (4b)

X(k)(n) = XL(n,k)karl,L(n,k) for n>1, (%)

In other words, by eliminating repetitions in the non-decreasing sequence of
k-th order statistics a strictly increasing subsequence is obtained and it is called a
sequence of k-th record values

Xk <Xiom-ksnren <Xior -k 16h) < - (6)

The estimator based on the k-th record values, introduced by Berred, is of
the form

o n( XOm) = XO(n—k) ] 7

XOm-k)-X®(n-2k)

where k =k, is a sequence of positive integers satisfying k,/Inn — o and
k,/n — 0 for n— co. Such a choice of the sequence k, guaranties almost sure
convergence of the estimator. Among many possibilities the sequence of the
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type k, =n", for 1€(0,1), satisfies the above conditions and it is employed in

empirical research, in continuation of this paper.
Limit laws of the considered estimators are known and their theoretical
properties are widely discussed in the literature on the subject. The estimators

(7?,1,),,(" -k, (792 v, —V)\k, are asymptotically zero-mean normal, with
7/2(22}/+1 +1) and 7/2(@2}/"‘1)
(2 =DIn2)*’ (e —1)?

variances equal to , respectively, provided that

y #0.

For y = 0 analogous theoretical results are unknown. Nevertheless both the
7+ (e +))
(27 =DIn2)* " (e’ -1)?
continuous functions for all real numbers y by setting proper limits (that are

expressions may be regarded as well defined and

equal to and 2, respectively) as values for the argument y = 0.

In*2

300 400

200
|
15

T T T T T T T (159985 1 T T
. J £ 0

5]

(@) (b)

Figure 1. Panels (a) and (b) show plots of limit variances of both estimators in different scales.
The limit variance of Berred’s estimator is lower than the limit variance Pickands’ estimator
against any y (going on horizontal axes)

Source: self-study.
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Therefore one of the purposes of the simulation research, hereinafter
described, is to detect differences between limit behaviour of the analysed
estimators with y #0 vs. y =0.

The other purpose is to examine the degree of divergence between variances
for simulated sequences of data and variances for the adequate theoretical limit
distributions, which additionally enables to compare the convergence rapidity of
both analysed estimators with respect to & (introduced before).

I11. SIMULATION RESEARCH

All the simulation research is carried out in R environment.' The choice of
analysed distribution types is made arbitrarily to include distributions of
positive, negative and equal to zero extreme value indices. Thus the standard
log-normal, the standard Cauchy, the standard exponential, the standard uniform
distributions are considered as their extreme value indices are independent of
their parameter changes. Additionally the Burr and the Pareto distributions are
considered for proper choices of parameters, i.e. the Burr distribution for (%, ¢) =
(0.2,0.5), (0.5, 0.2), (0.5, 0.5), (1, 1), (2, 2), and the Pareto distribution for o =
0.05, 0.1, 2, 5, 10, 20. Total number of distribution types is therefore equal to 15.

Firstly, there are simulated 100 series of the length 1000 for each of the
distribution. Then the series of extreme value index estimators of both types are
calculated for all k in range from 4 to 100 with respect to each simulated series.
Values of kin Pickands’ estimator correspond to the k-th order statistics, while
in Berred’s estimator to the k-th records.

And finally, quantile lines of orders 0.1, 0.3, 0.5, 0.7, 0.9 are determined for
each hundred of computed estimator sequences of the both types.

Figure 2. and figure 3. present simulation research results in graphical form
for several selected distributions that represent different values of parameter y .
The other distributions lead to analogous plots and conclusions as well.

The carried simulation study leads to the following conclusions. The
quantile lines in Berred’s estimator case are more fast convergent to the
theoretical limit law quantiles, and they exhibit less degree of volatility, in
comparison with Pickand’s case. The same refers to the variances and their limit
values. Moreover, there are no substantial differences detected for y = 0 against

y # 0 in view of quantile lines and selected series plots for both the estimators.

'The simulations are exercised with use of "Mersenne-Twister" RNG, ie. R’s default
Random Number Generation implementation that has generalized feedback shift register (GFSR)
with period equal to 271,
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Figure 2. All panels present quantile lines (continuous lines) and 3 randomly selected series (points

of 3 different patterns) for the exemplary distributions and for all k£ going on horizontal axes. The
column (a) refers to Pickands’ estimator, while the column (b) refers to Berred’s estimator. The
rows [(1), (2), (3), (4)] comprise plots according to the Burr (k= 0.2, ¢ = 0.5), the exponential, the
Pareto (a = 2), and the uniform distribution, respectively.
Source: self-study.
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Figure 3a. The panels [(1) , (2), (3), (4)] comprise plots according to the Burr (k=0.2, c =
0.5), the exponential, the Pareto (a = 2), and the uniform distribution, respectively. Rough lines
represent empirical variances and straight horizontal lines represent the corresponding limit law
variances. Dashed lines stand for Pickands’ case, while continuous lines stand for Berred’s case
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Figure 3b. The panels [(1) , (2), (3), (4)] comprise plots according to the Burr (k=0.2, ¢ =
0.5), the exponential, the Pareto (a = 2), and the uniform distribution, respectively. Rough lines
represent empirical variances and straight horizontal lines represent the corresponding limit law
variances. Dashed lines stand for Pickands’ case, while continuous lines stand for Berred’s case
Source: self-study.

IV. EMPIRICAL DATA ANALYSIS

The empirical research concerns log-returns of daily closure quotations of 8
stock indices (BUX, DAX, Dow Jones in the sequel in short DOW, FTSE —
FTS, Hang-Seng — HAN, Nikkei225 — NIK, S&P500 — SAP, WIG). Each of
them generates 1000 observations from about October or November, 2005 till
October 30", 2009 (depending on different numbers of working days of every
stocks).”

All of the analysed time series exhibit specific behaviour during the global
economic crisis of 2008, which can be observed on figure 3.

2 BUX — 2005 10 26, DAX — 2005 11 18, DOW — 2005 11 09, FTS — 2005 11 16, HAN —
2005 10 10, NIK — 2005 10 04, SAP —2005 11 08, WIG — 2005 11 07.
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Figure 4. Panels present log-returns of two exemplary stock indices
Source: self-study.

A noticeable increase of volatility emerges after about 700" observation
(September, 2008) with respect to all of the log-returns. Such an increase is
synchronized with the crisis appearance.

In order to detect some qualitative change in the analysed time series
distributions during the crisis, the extreme value indices are calculated in a way
as follows.

First, with respect to every stock index, their log-returns series are
partitioned into 2 subseries compound of the first 700 records, and the last 300
records, respectively.

Second, the extreme value indices of the right and the left tail’> of both
subseries are evaluated with use of the Berred’s estimator. The arithmetic
average of extreme value indices estimated for £‘s from properly chosen range

? From computational point of view the left tail of a variable X is the right tail of the variable —X.
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(k=6, ..., 31)" is treated as the empirical value of y instead of single estimate

(for a fixed k). Thus the risk of over- or underestimation may be reduced, since
each of extreme value index is estimated only for a single empirical series.

Third, shift of disproportion between right and left tails for log-return series
of the analysed stock indices is detected during the crisis. This disproportion is
meant as the difference of extreme value index estimates of right and left tails of
distribution, which reveals dominance of the right tail (if positive), or of the left
one (if negative).

Table 1. The left part contains extreme value index estimators for right and left tails during and
before the crisis [columns labelled by (1) and (2) respectively]. The right part consists of
disproportion values (dv) and points out heavier tail (R, L). Bold fonts (R, L) designate
disproportions that are arbitrarily admitted as significant (> 0.15 ), while contour fonts (R, 1L)
designate insignificant ones

Stock right tail (R) left tail (L) during crisis (1) before crisis (2)
index (1) 2) (1) 2) dv tail dv tail
BUX —0.0647 | —0.3562 | —0.1138 | —0.0686 0.0490 R —0.2876 L
DAX —0.1483 | —0.1459 | 0.3538| -0.3192| -0.5021 L 0.1733 R
DOW | —0.1934| 0.3986| —0.1875| 0.2050| -0.0059 L 0.1936 R
FTS —0.1652| 0.4644| 0.1036| 0.2653| -0.2687 L 0.1991 R
HAN —0.5585| 0.5585| —0.0258 | 0.4054| -0.5327 L 0.1530 R
NIK 0.2415| 0.0669 | 0.7829| 0.0957| -—0.5414 L —0.0289 L
SAP —0.0676 | 0.3911| —0.1599| 0.3333 0.0923 R 0.0578 R
WIG —0.4369 | —0.0667 | —0.0588 | 0.0971| —0.3781 L —0.1638 L

Source: self-study.

Information contained in the table 1. discloses a tendency for log-returns
tails of the analysed indices toward switching their dominance during the crisis.
In general it may be inferred that before the crisis right tails seem to be heavier
than the left ones, whilst after the crisis emerged the situation seems to be
conversed.

4 4, =0.3 and 1, = 0.6 provide k, = [n0'3] s s [no'ﬁ] , where [x] denotes the ceiling of x. For
n=300, [n**1 =6, [n"] =31.
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V. CONCLUSIONS

The presentation of the analysed estimators and the executed simulation
research have demonstrated some advantages of Berred’s estimator over the
Pickands’ one. Moreover, substituting order statistics by record values is
proposed as an alternative approach for estimating the extreme value index in
more precise and simple way than classical approach based on k-th order
statistics.

The exemplary data analysis concerning the log-returns of several stock
indices has disclosed that during the global crisis of 2008 there emerged not only
substantial change in the log-returns volatility, but also a significant switch of
log-return tail dominance.
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INDEKS EKSTREMALNY PRAWYCH I LEWYCH OGONOW ROZKEADOW
DLA SZEREGOW FINANSOWYCH

Praca dotyczy mozliwosci identyfikacji stopnia grubosci ogondw rozktadu poprzez estymacje
indeksu ekstremalnego.

W tym celu stosowane, i dodatkowo porownywane migdzy soba, sa dwie metody. Jedna
z nich jest estymator Pickandsa oparty o k-te statystyki pozycyjne, druga za$ jest alternatywna
metoda zaproponowana przez Berreda oparta o k-te wartosci.



