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Abstract. In parametric statistics estimators such as maximum likelihood or OLS 

typically estimate stochastic models, which play an important role in finance and insur-

ance. These methods are generally optimal for an assumed reference model. Slight de-
viations from the assumed model may easy destroy the good statistical properties of the 

estimator. We present some aspects related to robust estimation in the context of extreme 

value theory (ETV). We discuss some methodological aspects how robust methods can 

improve the quality of extreme value theory data analysis by providing information on 

influential observations.
Key words: Extreme value theory, Extreme value distributions, Robust estimation, 

^/-estimator.

I. INTRODUCTION

Robust statistics achieves this by a set o f different statistical frameworks that 

generalize classical statistical procedures such as maximum likelihood or OLS. 

Seminal contributions are Huber (1981) and Hampel et al. (1986). Since then 

many different and related approaches have emerged. Dell’Aquila and Ronchetti 

(2006) give a comprehensive introduction to the principles o f robust statistics 

estimation, testing and model selection and apply and extend the theory to dif-

ferent models used in risk management, asset allocation and insurance. We dis-

cuss how robust methods can improve the EVT data analysis by providing in-

formation on influential observations, deviating substructures and possible 

wrong specification o f a model. Basically EVT is using in risk management, see 

Embrechts et al. (1997) and McNeil et al. (2005). We find that robust statistical 

methods can improve the data analysis process of the skilled analyst and provide 

him with useful additional information. We will shortly review some key con-

cepts from EVT and robust statistics and next we will consider how the whole 

data analysis process can be improved by additionally using robust statistical 

procedures.
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II. EXTREME VALUE THEORY

Extreme value theory is more and more used in recent years to model ex-

tremes o f financial and economic data or natural phenomena. The EVT frame-

work provides on the one hand asymptotic distributions for the description of 

(normalized) maxima or minima and on the other hand the asymptotic distribu-

tion of extremes over a high threshold. Basic references with a focus on finance 

and insurance are Embrechts et al. (1997) and Malevergne and Somette (2006).

The EVT analyses the asymptotic distribution o f (normalized) maxima or 

minima o f i.i.d. samples, i.e. Mn = max(Xi, . . . , Xn). It turns out that under weak 

conditions, the normalized maximum of n i.i.d. random variables is distributed 

as Gumbel, Weibull or Fréchet, depending on the data generation process.

The generalized extreme value (GEV) distributions can be combined into a 

single form

The parameters /и and ß  are the location and scale and, £ is the shape pa-

rameter of limiting distribution. Its sign determines the three possible limiting 

forms of the GEV of distribution of maxima:

-  If £ =  0 the limit distribution is the Gumbel distribution (double- exponential),

-  If £>  0 the limit distribution is the (shifted) Fréchet power-like distribution,

-  If  £ <  0 the limit distribution is the Weibull distribution.

A special case is the Gumbel distribution (taking the limit £ -»  0)

2.1. Generalized extreme value distributions

( 1)

where

FeGum ( X )  =  ( X )  =  expf -  exp f— (2)
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This distribution is widely used as it is the appropriate limit of maxima from 

many common distributions, e.g. normal, lognormal, Weibull and gamma.



2.2. Generalized Pareto distribution

Another important result in EVT is related to the distribution function for 

exceedances over a given threshold. It turns out that excesses over a high thresh-

old и have a generalized Pareto distribution (GPD) with distribution function:

FeGPD(x) = F % D(x) =
1 - 0  + - dl a £ * 0  

ß

1 -е х р ( -* /Д ) , dla £ = 0

(3)

where

ß> 0  and x ^ O  when £, ž 0,

O í x á  - when č, < 0,

for £ =  0 the limiting distribution is exponential.

The case £ > 0 corresponds to heavy-tailed distributions whose tails decay 

like power functions, such as the Pareto, Student t, Cauchy, Burr, log-gamma 

and Fréchet distributions. The case £ = 0 corresponds to distributions like the 

normal, exponential, gamma and lognonnal, with tails essentially decaying ex-

ponentially. The final group of distributions (£, < 0) are short-tailed distributions 

with a finite right endpoint, such as the uniform and beta distributions.

Ш. ESTIMATION METHODS

Consider a parametric model given by a distribution Fe with density fe  . In 

classical statistics, one often chooses an estimation framework that is optimal at 

the assumed model distribution (e.g. the maximum likelihood framework deliv-

ers the asymptotically most efficient estimator at the model distribution). How-

ever, as soon as the real underlying model deviates from the assumed one, the 

estimator may lose its good statistical properties and many alternative estimators 

may perform better.

In robust statistics we want to construct estimators and tests that have good 

statistical properties (high efficiency, low bias) for a whole neighbourhood o f  the 

assumed model distribution Fe . Such a neighborhood can, for example, be for-

malized by:

Ar(F fi) = {Ge\Ge = (1 -  e)Fe + sG, G arbitrary} 

and 0 < e < 1, thought o f as a measure for contamination.



The aim of robust statistics is to provide statistical procedures:

-  which are still reliable and reasonably efficient under small deviations 

from the assumed parametric model and to quantify the maximal bias on the sta-

tistical quantity o f interest when the underlying distribution lies in a neighbor-

hood of the reference model1.

-  these procedures should highlight which observations (e.g. outliers) or de-

viating substructures have most influence on the statistical quantity under obser-

vation.

3.1. Maximum likelihood estimators

The parameter <9for distributions such as GEV ( в  = [/а Д  £]r) or GDP ( 0 -  

[ß, ŠÝ) are typically estimated by maximum likelihood, i.e.:

П
<9 = a r g m in ^ lo g /0(x,) (4)

/ - 1

or finding the zeros of the estimating equations

2 > ( * „ 0 )  = O (5)

/-i

where

is the score function.

J( r ) = £ i o g A W  (6)
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3.2. Af-estimators

We will consider only the most general robust framework, the M-estimation 

framework. M-estimators can be seen as a generalization of the maximum likelihood 

approach and allow to analyses the robustness properties of estimators and tests.

An M-estimator is defined as the solution to the minimization problem

it

= arg m in Y /?(*,;#) (7)
6e@  *— •

/=1

1 In this sense it is a generalization of the classical statistical procedures.



for some objective function p. If p  has a derivative

(8)

then the Af-estimator satisfies the first order conditions

П

Y JV'(xi,0) = O. (9)

In general we restrict to estimators, which are Fisher consistent, we require 

a yy such that

Under weak conditions on ц/ it can be shown that the resulting estimator is 

normally distributed with variance-covariance matrix given by

General results in robust statistics imply that an estimator with

-  a bounded asymptotic bias in a neighbourhood of the reference model can 

be constructed by choosing a bounded function i//(in x);

-  a high asymptotic efficiency can be achieved by choosing a \\i function 

which is similar to the score function s(x; 9) in the range where most o f the ob-

servations lie.

ЕРвМ х ;в )]  = 0. ( 10)

V = M ~X •E[i//(X;0)t//(X;e)r ] -M -r ( 1 1 )

where

( 12)

The classical maximum likelihood estimator corresponds to

p (x-e) = - \ o g f e(x) (13)

or

(14)

where s(x-,0) is the score function.

3.3. Robust estimators - properties



There is an trade off between maximal asymptotic bias in a neighbourhood 

of the model distribution Fe and the asymptotic efficiency o f the estimator at the 

reference model. Because ц/ enters in the linear approximation o f the asymptotic 

bias as well as in the asymptotic variance o f the estimator (11), it is possible to 

solve a general optimality problem to find the estimator that is the most efficient 

given a bound on the maximal bias o f the estimator in a neighbourhood o f the 

model.

The solution to this problem is the A/-estimator defined by

v t ' a{x\6) = he( A m s ( x ,0 )  -  a(0)) (15)

where

С
K(r) = r m in ( l , |- |)

is a multivariate version o f the Huber function seen above and the matrix Л and 

the vector a are determined by solving:

EFe[he( A m X - a m ]  = 0 and Е , . [ ^ а( Х ; в ) ^ а(Х;в)]г = /  (16)

which ensure that the estimator is consistent and the asymptotic bias remains 

below the chosen bound. In the one-dimensional location case presented above, 

the optimal solution reduces to using the \\ic function, in particular in this sym-

metric case a  = 0. For asymmetric reference models, а(в) must be typically 

found numerically to ensure consistency o f the estimator. The computation of 

the estimator can typically be performed by a slightly adapted Newton-Raphson 

type procedure.

IV. APPLYING ^/-ESTIMATORS TO EVT

We consider the estimation of a Gumbel model, one o f the GEV distribu-

tions. It can be verified that the score function is unbounded in a*, ln this example 

(Dell’Aquila, Ronchetti, 2006) we would like to highlight that the robust (in this 

case the optimal robust) estimator is able to detect observations that do not con-

form to the bulk o f the data, even in the case of a very asymmetric model. These 

observations must not necessarily be far away. To illustrate this robustness issue, 

we generate 300 observations from a contaminated model given by 95% from 

a Gumbel with ju= 4 and ß =  2 and 5% from a Gumbel with ju = -  0.5 and /? =

0.2; notice that the contaminated model puts more mass on the left o f the ‘true’ 

Gumbel distribution as can be seen in Figure 1, which plots the two densities.



Figure 2 shows that the classical estimator for {ß, ß) is clearly attracted by the 

contaminating structure and fails to model part of the majority of the data. The 

robust estimator (tuned to have approximately 90% efficiency at the model) fits 

the distribution much better where most data are located.

Pdf Gumbel, ^=-0.5. |i=0.2
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Fig. 1. Gumbel model -  the GEV distributions 

Source: Dell’Aquila, Ronchetti (2006).

Fig. 2. Contaminated model 

Source: Dell’Aquila, Ronchetti (2006).

Similar robustness issues apply for other EVT distributions such as the 

Weibull and GPD distribution and for other distributions such as gamma, beta, 

etc. We can observe that robust methods do not down weight ‘extreme’ observa-

tions if they conform to the majority of the data. Additionally robust methods 

can guarantee a stable efficiency, MSE and a bounded bias over a whole 

neighborhood of the assumed distribution.



V. CONCLUSIONS

In this paper we have discussed how robust statistics may improve the data 

analysis process in the specific case o f EVT. We have seen that robust methods 

can help to identify deviating structure, influential observations and guarantee 

good statistical properties over a whole set of underlying distributions, therefore 

considerably enhancing the data analysis. In this sense there is no ’obvious’ con-

tradiction between robustness and EVT. Overall we find that robust statistical 

methods can improve the data analysis process of the skilled analyst and provide 

useful additional information. Similar robustness issues arise for many other 

models such as linear regression, generalized linear models, multivariate models 

and virtually all time series models.
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Grażyna Trzpiot

ROZKŁADY WARTOŚCI EKSTREMALNYCH A ESTYMACJA ODPORNA

Modele stochastyczne są istotne dla zastosowań w finansach czy w ubezpiecze-

niach. Statystyczne metody estymacji parametrycznej wykorzystywane najczęściej do 

wyznaczania parametrów modeli to metoda największej wiarygodności lub MNK. Me-

tody te dają optymalne oszacowania modeli, jednakże odchylenia obserwowanych war-

tości w kalibrowanym modelu mogą zachwiać dobre własności estymatorów. Przedsta-

wimy pewne aspekty estymacji odpornej w kontekście rozkładów wartości ekstremal-

nych. Podejmiemy dyskusję metodologicznych aspektów zagadnienia pokazując, jak 

estymatory odporne wpływają na jakość analiz z wykorzystaniem rozkładów wartości 

ekstremalnych poprzez informacje o obserwacjach wpływowych.


