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ON DURATION-DISPERSION STRATEGIES FOR PORTFOLIO
IMMUNIZATION

Summary. This paper deals with new immunization strategies for a noncallable and
default-free bond portfolio. This approach refers to the Fong and Vasicek (1984), the
Nawalkha and Chambers (1996), the Balbds and Ibifiez (1998), and the Balbds, Ibafiez and
Lépez (2002) studies among others and relies on minimizing a single-risk measure which is
a linear combination of the duration gap and the dispersion of portfolio payments.
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1. INTRODUCTION

Management of interest rate risk, the control of changes in value of
a stream of future cash flows as a result of changes in interest rates is an
important issue for an investor. Therefore many researchers have examined
the immunization problem for a bond portfolio in a situation where the
Investor is in debt and has to pay it off in a fixed horizon date. For
simplicity, we consider the case where the liability stream consists of
a single negative cash flow at some specified future date. Multiple liabilities
can be handled as an extension of the single liability case by separately
immunizing each of liability cash flow. The investor knows, in advance,
the sum of money which he owes. An ideal situation is when the portfolio
present value is equal to the discounted worth of investor’s liability at the
present moment and does not fall below the target value (the terminal
value of the portfolio under the scenario of no change in the interest rate)
at prespecified time. Early work on immunization was based upon the
Macaulay definition of duration (1938) and it was shown independently by
Hicks (1939), Samuelson (1945) and Redington (1952) that if the Macaulay
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duration of assets and liabilities are equal, the portfolio is protected against
a local parallel change in the yield curve. Fisher and Weil (1971) formalized
the traditional theory of immunization defining the conditions under which
the value of an investment in a bond portfolio is hedged against any
parallel shifts in the forward rates. The main result of this theory is that
immunization is achieved if the Fisher-Weil duration of the portfolio is
equal to the length of the investment horizon. A generalization of the
Fisher and Weil results (1971) can be found in Montrucchio and Peccati
(1991). They proved that if the set K consists of all shocks k such that

m
the function t—-»cxp(jk(s)ds is convex, then every duration-matching
t

portfolio is immunized. The classical theory of immunization is treated in
details in Fabozzi (1993) and Panjer (1998) among others.

Immunization strategies have been also developed for alternative models
of interest rate behaviours. Cox et al. (1979), Khang (1979), Bierwag and
Kauffman (1977), Bierwag (1987), Chambers et al. (1988), Prisman and
Schores (1988), Crack and Nawalkha (2000) and others assumed various
models of interest rate movements and implied different measures of
duration, which if they are equal to the holding period length, then
immunization is achieved. Rzadkowski and Zaremba (2000) generalized
bond portfolio immunization for an additive term structure model developing
a definition of duration. See also Prisman (1986), Shiu (1987), Reitano
(1991, 1992), Zaremba (1998), and Zaremba and Smolenski (2000ab). The
comprehensive treatment of the present state of the art can be found in
Nawalkha and Chambers (1999) and Jackowicz (1999). But above approach
and also all mentioned earlier have serious limitation. They imply arbitrage
opportunities that are inconsistent with equilibrium - it is in contradiction
to the rules of modern finance theory.

To overcome the main drawback of the traditional theory, Fong and
Vasicek (1984), Nawalkha and Chambers (1996), Balbas and Ibafez
(1998) and Balbas et al. (2002) examined the effect of an arbitrary inte-
rest change on a default-free, noncallable bond portfolio. They considered
shocks in a more general context i.e. they worked with differentiable
functions with bounded derivative (cf. Fong and Vasicek, 1984) or with
bounded functions (see Balbds and Ibafez, 1998 and Balbas, Ibafiez and
Lopez, 2002) and found that the classically immunized portfolio (Fong
and Vasicek, 1984; Balbas and Ibafez, 1998; Balbas, Ibafiez and Lépez,
2002) or any portfolio (Nawalkha and Chambers, 1996) had negative
lower bound depending upon the different dispersion measures thereby
immunization strategies were advocated. The comprehensive treatment of
the present state of the art can be found in and Nawalkha and Cham-
bers (1999).
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The aim of the paper is to present a new strategy of immunization
based on a single duration-dispersion risk measure (see section 3). As
a by-product, we generalize the Fong-Vasicek, the Balbas-Ibifiez and the
Nawalkha-Chambers inequalities that give lower limits on the change in
the end of horizon value of the duration-matching portfolios.

2. PRELIMINARY NOTATIONS

Denote by [0, T'] the time interval with t = 0 the present moment. Let
m be the investor planning horizon, 0 <m < T. We write ¢ = (4,, 43, -, 4,)
for the investor portfolio. This vector gives us the number of ith bond
units g, that the investor bought at time 0. The coupons paid before m will
be reinvested by purchasing the considered n bonds. We assume g; >0 to
exclude short position from the analysis.

Let ¢; denote the time-m present value of payment of ith bond due
at time t provided the current instantaneous forward rate is g(f). By
Vi(k) we denote the time-m present value of ith bond if the shock
k= k(t) on the instantaneous forward rate takes place. We assume the
additive model of shocks although the others can be treated in a similar
Way. Obviously,

Vi(k) = Yciexp (}'k(s)ds) (1

Here and below, the summation is over ali t. Denote by Wg, k) the
Value of the portfolio g at time m under the assumption the shock k = k(1)

appeared, i.e.

V(g, k) = Z q,Vi(k) = LY c(t, q) exp (fk(s)ds) (2)
t=1 t t

l n
Where L denotes a liability due at time m and c(t, q)=i Y qicie Let
i=1

P, stand for the market price of the ith bond at time zero and let
C denote the total amount of investment at t=0. Clearly,

L= Cexp (j'g(t)dt k

0
: Definition. A portfolio ¢ = (g,, .., g,) is called a feasible portfolio if
‘g:x q:P; = C and ¢,> 0 for every i.



194 Marek Katuszka, Alina Kondratiuk-Janyska

Denote by V(gq, K) the guaranteed value by portfolio g, that is,

V(q, K) = infy.xV(q, k) (3)

where K means a class of feasible shocks. We say that a feasible portfolio
q is immunized if Ugq, K) > L.

Definition. A feasible portfolio g is called the duration-matching portfolio
if the Fisher-Weil duration of portfolio g is equal to the investment horizon

length, i.e. D(q) = m, where D(q) = ) te(t, g).
t

3. DURATION-DISPERSION PORTFOLIOS

In empirical immunization studies, duration-matching portfolios often
work as well as more complex immunizing strategies. During the 1980s
duration has explained 80% to 90% of the return variance for government
bonds (see e.g. Ilmanen, 1991). It means that parallel movements play
significant role in shocks behaviour. However, such duration-matching
portfolios are not unique. How should one of them be chosen? Which
portfolios produce returns with the least deviation from the promised return?

In the pioneering work, Fong and Vasicek (1984) proposed the following
wider class of shocks with an arbitrary type of interest rate change,
including parallel shifts:

Krv={k;ﬂ‘d(t—t)<l, OStST} with 1> 0 4)

They proved that if the short sale is forbidden and if g is a duration-
matching portfolio, then

V(q, Kpy) 2 L(l - gMz) (5)

where M? = Y'(t —m)?c(t, q) is a dispersion measure. They concluded that

t
the problem of immunization should be formulated as follows
P1: find a duration-matching portfolio which minimizes M?2.
The approach is not free from a critique. Bierwag et al. (1993) and others
examined the theoretical and empirical properties of M? in designing
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duration-hedged portfolios. They found that minimum M? portfolios fail
to hedge as effectively as portfolios including a bond maturing on the

horizon date.
The class of shocks considered by Balbas and Ibadez (1998) is of the form

Kpr = {k;|k(t;) = k(t))| <4, 0ty <[, S T} (6)

Balbas and Ibafiez showed that for any duration-matching portfolio g
A
V(q, Kgr) ?L(l —§N> (7)

where N = Y|t —m|e(t, q) (cf. Balbds, Ibafiez, 1998, the formula (16) with

t
L= RC). As a consequence they proposed to

P2: find a duration-matching portfolio which minimizes N.

With an example Balbas and Ibéafiez (1998) showed that the duration-matching
portfolio with minimal N can include a maturity matching bond (cf. the
empirical results of Bierwag, Fooladi and Roberts, 1993). Balbas and
Ibafiez (1998) took into account many considerations about the possible
shocks on the interest rates to minimize the N measure.

We propose new strategies of immunization of a bond portfolio based
on a single-risk measure model. Our approach is close to that ot" Nawalkha
and Chambers (1996) because they also focused on a single-risk-measure
immunization model. Define a functional A which measures the average
value of shock. We assume that the functional A is equivariant, i.e.
A(k + ¢) = A(k) + ¢ for all feasible shocks k and real c. We also assume
that A(0) = 0. Examples will be given below. Define the following class of

shocks
K(W, a) = {k; j"(k(s) — A(k))ds < Wt), 0<t< T, |AKK)| < a} (8)

Herein 0 <a< o and W is a nonnegative and convex function such that
W(m) = 0. Observe that the class K(W, a) includes all flat shocks not

8reater than a. Throughout the paper, o0 0 =0.
Theorem 1. For every feasible portfolio ¢

V(g, K(W, a)) > L exp (— a|m—D(q)| — M") )

Where MY = Y W(t)c(t, q).
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Proof. Observe that
T m

V(g, K(W, a)) = Linfy,xw,qf exp [I k(s)ds]dC(t, q) =
0 t

T m
= Linfy, xor, o) fexp [A(kxm — 1)+ [(k(s) - A(k»ds]dca, 9.
0 t

Since the short position is excluded, t— C(t, q) = Y c(s, q) is the distribution
sst
function of a probability measure on [0, T] for each g. By the Jensen

inequality (see e.g. Durrett, 1996, p.14) with the distribution function
t—C(t, q), we get

T Tm
V(g, K(W, a)) 2 Linfy xqw, oy exp [A(k)f (m —1)dC(1, q) + { [ (k(s) — A(k))dsdC(t, q)] =
0 t

Tt
= Linfy ¢ xow, o €XP [A(k)(m —D(q)) - { [ (k(s) — A(k))dsdC(t, q)].
By the definition of K(W,a)

T
V(q, K(W, a)) > Lexp [infksx(w. alA(k)(m — D(q))] - { W(n)dC(t, 4)] =
= Lexp (—a|m—D(q)| — M¥).

The proof is complete. o

As a consequence of theorem 1 we propose a new strategy of im-
munization:

P3: find a feasible portfolio which minimizes a|m — D(q)| + M.
Observe that the measure MY is nonnegative (by the convexity of W and
the Jensen inequality). Given a strictly convex function W, M¥ is equal to
zero if and only if there is one payment (at time m). Therefore M¥ can
be treated as a dispersion measure of the stream of portfolio payments. In
other words, our strategy relies on minimizing a linear combination of the
absolute value of the duration gap |m— D(q)| and the dispersion measure
MV 1t is clear that the larger a is, the smaller duration gap of the portfolio
should be. Clearly, if @ = co then the strategy P3 is equivalent to the
following one

P3’: choose a duration-matching portfolio which minimizes M".

We now introduce a more specific class of shocks which are included in
K(W, a) for an appropriate chosen function W.



On Duration-Dispersion Strategies 197

Example 1. Define
K (w) = {k; k(ty) — k(ty) S w(t, — 1), 0<t, < < T, [k(m)| <a} (10)

where 0 <a< oo, w= w(f) is a nondecreasing and nonnegative function such
that w(0) = 0. Observe that K (w) includes all parallel shocks not greater than
a. It is easy to check that K, (w) < K(W, a), where K(W, a) is defined by (8)

with A(k) = k(m) and Wt) = | w(s)ds. From theorem 1 we obtain that
0

[t=m|
V(q, K, (w)) > chp( —alm—D(q)| = Ye(t, q) g W(s)ds) (11)

for every feasible portfolio g. Our strategy is as follow:vs
P4: find a feasible portfolio which minimizes a|m—D(q)|+

2e(t,q) [ w(s)ds.

t
Ifw=0 :nd if the portfolio duration is equal to the length of the planning
horizon, then V(gq, K,(w)) > L. Thus the target value L is a lower bound
of the terminal value of the portfolio regardless of any shifts in interest
rates. Another reasonable choice of the function w seems to be w(t) = At?
with 2> 0 for any p such that 0 < p < 1/2 since Brownian paths are Hélder
continuous with exponent p for any 0<p<1/2 (see e.g. Durrett, 1996,
p. 379). This leads to the problem

minimize a + Y qM, subject to ) q;P;=C, 4,20,
i=1 i=1

m - Z‘th
i=1

iz,
where D, = {Ztc,, and M, = -(—TAITLZIt—mI'“c“ is the duration and the
t p t . .
dispersion measure of ith bond, respectively. This case was considered in

details by Balbas et al. (2002) with conclusion that the apprppriate dispersion
measures are those that 0<p<1. An i_ntcrcsting alternative to the power

dispersion function is w(t) = A_[tIn (D due to the following property of

Brownian paths:

|B(t+ h)—B(t)| <C \/ hin ({) almost surely,

where B(t) is a Brownian motion, C is a random variable and 0<
ISt+h<T.
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As we will see in examples 2-4, theorem 1 not only does a new strategy
of immunization provide but also extends the results of Fong and Vasicek
(1984) and Balbas and Ibaifiez (1998).

Example 2. We now give an extension of the Fong and Vasicek result.

Let A(k): = k(m) and put
Kiv(a) = {k;i(k(s) — k(m))ds < ;(t -m)?, 0<t< T, with |k(m)| < a} (12)

Of course, Kpy(a) =K (g(t—m)’, a), where K(W,a) is defined by (8).

From theorem 1 it follows that for every feasible portfolio g

A
g, K;y(a))zLexp<—alm—D(q)| —iMz) (13)

and for every duration-matching portfolio g

V(g, Kiv(c0) > chp( = guz) (14)

Observe that Kypy < Kpy(o0), where Kyy is defined by (4). In fact, for
every ke Kgy

k(s) — k(m) = }k’(t)dt SMs—m) if s=>m and k(s) — k(m) = A(s —m) if s <m.

t
Hence [(k(s) — k(m))ds < g(t —m)? for every t so keKpy(®)=

A . .
= K (-2(t—m)2, oo). Since e*> 1+ x, the bound (14) is an improvement

of the Fong-Vasicek one (see (5)).
Example 3. We now give an extension of the Balbas-Ibafiez inequality.

Put A(k) = %(info“‘ 7 k(t) 4 supg << r k(t)). Define

Kb = {k; J(k(s) — AGds < 3 1m 11, 0<1< T} 15)

Clearly, Kj; = K(%1 |m —t], oo). Recall that Kp; is defined by (6). For every

ke Kpg;, k(s) < k*(s) if s=>m and k(s) > k*(s) otherwise, where k*(s) = A(k) +;
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for s >m and k*(s) = A(k) - % for s <m. Hence j k(s)ds = A(k)(t —m) — lt—ml

for every t. As a consequcnce we get Ky © K,, From theorem 1 it follows
that for every duration-matching portfolio ¢

V(q, Kgr) ?chp<—;ﬁ> (16)

Since Ky Kj; and e*> 1+ x, the inequality (16) is an improvement of
the Balbds-Ibafiez inequality (7).
Example 4. Consider the following class of shocks

Keon(W, a) = {k; t—blj"'k(s)ds + W(t) is convex on [0, T], |k(m)| < a}

with W being a given convex and differentiable function such that W'(m) =
(cf. Montrucchio, Peccati, 1991). Observe that K.,,,(W,a) includes all

parallel shocks not greater than a. By convexity of t— [k(s)ds + W(t)
t

]"k(s)ds + Wt) = W(m) — k(m)(m — t) = W(m) — A(k)(m — 1),
0<t< T,

with  A(k) = k(m) for every keK,.(W,a). Hence Kn(W,a)c
< K(W— W(m), a) with A(k) = k(m) (see (8)). Theorem 1 implies that if
q is a feasible portfolio, then

V{9, Keono(W, a)) > Lexp ( —alm —D(g)| — 2 (W() — W(m))c(t, q))
(17)

Observe that if W is continuously differentiable, then
Keond W, @) = {k; k(ty) = k(t,) S w(ty) —w(ty), 0<t, <t T, |k(m)| <a},

where w(t) = W'(t). Hence, for a subaddtive function w (i.e.
W(X+y)<w(x)+w(y) for all x,y), we have K. (W, a)<K,(w), with
K (w) defined by (10).

In Nawalkha and Chambers (1996) one can find the following result.
Given ky, k,€R, they defined the class of shocks:
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Kyern = {kiky < k(t) <k,, 0<t< T} (18)
and proved that for any feasible portfolio g

V(q, Kycy) 2 L(1 — kyM#) (19)

where M4 = Y|t —m|c(t, q) and ky = max{|k,|, |k;|}. Observe that M4 = N.

t
Motivated by (19) they proposed to
P5: choose a feasible portfolio which minimizes M4,
We now provide a modification of theorem 1 extending the result of
Nawalkha and Chambers (1996). Letting A be a given real, define the class
of shocks:

Knci(W, a) = {k; J(k(s) — A)ds < W(1), 0< 1< T} (20)

where W is a nonnegative and convex function such that W(m) = 0.
Theorem 2. For every feasible portfolio g

V(q, K (W)) 2 Lexp (A(m — D(q)) — M) 21)
where MY = Y W(t)c(t, q).

Proof. The proof is extremely similar to that of theorem 1. O
From theorem 2 we obtain the following strategy

P6: minimize A (D (gq) —m)+ M" over all feasible portfolios g.
Example 5. We give an improvement of the inequality (19). Define

KXex(A, B) = {k; i(k(s) —~A)ds<B|t—m|, 0<t< T}

with 4 = %(kl +k,) and B = %(kz—k,), where k, <k,. By theorem 2, for
every feasible portfolio g

V(q,KNca(4, B)) = Lexp (A(m — D(q)) — BM*) (22)

where M4 = 3’|t —m|c(t, ). We proceed to show that (22) is an improvement
t
of (19).
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Since A(m —t) — B|t —m| > —max{|k,|, |k,|}|t —m]| for all ¢, we have

V(q, Kica(4, B)) > Lexp (— kyM4) > L(1 — k;M*) (23)

Where ky = max {|k,|, |k,|}. It is easy to check that Kycy < Kyca(4, B) so
from (23) we obtain the inequality (19).
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STRATEGIA UODPARNIANIA PORTFELA

Streszczenie

W artykule przedstawiono nowq strategi¢ uodparniania portfela, w skiad ktérego wchodza
obligacje bez opcji zakupu przyshugujacej emitentowi (noncallable) i wolne od ryzyka niewykupienia
(default-free). Strategia polega na minimalizacji miary, ktora jest liniowa kombinacjg luki
duracyjnej i miary rozrzutu, przy réznych klasach zaburzen chwilowej terminowej stopy
procentowej (instantaneous forward rate). Ponadto otrzymano uogolnienia nierébwnosci Fonga
i Vasiceka (1984), Nawalkhai i Chambersa (1996) oraz Balbisa i Ibdfieza (1998) na dolne
ograniczenie zmiany wartosci portfela w chwili rozliczenia.



