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Summary. This paper deals with new immunization strategies for a noncallable and 

default-free bond portfolio. This approach refers to the Fong and Vasicek (1984), the 

Nawaikha and Chambers (1996), the Balbás and Ibáfíez (1998), and the Balbás, Ibáflez and 

López (2002) studies among others and relies on minimizing a single-risk measure which is 

a linear combination of the duration gap and the dispersion o f portfolio payments.
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1. IN T R O D U C T IO N

Management of interest rate risk, the control of changes in value of 

a stream o f future cash flows as a result of changes in interest rates is an 

important issue for an investor. Therefore many researchers have examined 

the immunization problem for a bond portfolio in a situation where the 

investor is in debt and has to pay it off in a fixed horizon date. For 

simplicity, we consider the case where the liability stream consists of 

a single negative cash flow at some specified future date. Multiple liabilities 

can be handled as an extension of the single liability case by separately 

immunizing each of liability cash flow. The investor knows, in advance, 

the sum of money which he owes. An ideal situation is when the portfolio 

present value is equal to the discounted worth of investor s liability at the 

present moment and does not fall below the target value (the terminal 

value of the portfolio under the scenario of no change in the interest rate) 

at prespccified time. Early work on immunization was based upon the 

Macaulay definition of duration (1938) and it was shown independently by 

Hicks (1939), Samuelson (1945) and Redington (1952) that if the Macaulay
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duration of assets and liabilities are equal, the portfolio is protected against 

a local parallel change in the yield curve. Fisher and Weil (1971) formalized 

the traditional theory of immunization defining the conditions under which 

the value of an investment in a bond portfolio is hedged against any 

parallel shifts in the forward rates. The main result of this theory is that 

immunization is achieved if the Fisher-Weil duration of the portfolio is 

equal to the length of the investment horizon. A generalization of the 

Fisher and Weil results (1971) can be found in Montrucchio and Peccati 

(1991). They proved that if the set К  consists of all shocks к such that

portfolio is immunized. The classical theory of immunization is treated in 

details in Fabozzi (1993) and Panjer (1998) among others.

Immunization strategies have been also developed for alternative models 

of interest rate behaviours. Cox et al. (1979), Khang (1979), Bierwag and 

Kauffman (1977), Bierwag (1987), Chambers et al. (1988), Prisman and 

Schores (1988), Crack and Nawalkha (2000) and others assumed various 

models o f interest rate movements and implied different measures of 

duration, which if they are equal to the holding period length, then 

immunization is achieved. Rządkowski and Zaremba (2000) generalized 

bond portfolio immunization for an additive term structure model developing 

a definition of duration. See also Prisman (1986), Shiu (1987), Rcitano 

(1991, 1992), Zaremba (1998), and Zaremba and Smoleński (2000ab). The 

comprehensive treatment of the present state of the art can be found in 

Nawalkha and Chambers (1999) and Jackowicz (1999). But above approach 

and also all mentioned earlier have serious limitation. They imply arbitrage 

opportunities that arc inconsistent with equilibrium -  it is in contradiction 

to the rules of modern finance theory.

To overcome the main drawback of the traditional theory, Fong and 

Vasicek (1984), Nawalkha and Cham bers (1996), Baibas and Ibanez

(1998) and Baibas et al. (2002) examined the effect of an arbitrary inte-

rest change on a default-free, noncallable bond portfolio. They considered 

shocks in a more general context i.e. they worked with differentiable 

functions with bounded derivative (cf. Fong and Vasicek, 1984) or with 

bounded functions (see Baibas and Ibáflez, 1998 and Balbás, Ibáňez and 

López, 2002) and found that the classically immunized portfolio (Fong 

and Vasicek, 1984; Balbás and Ibáňez, 1998; Balbás, Ibáňez and López,

2002) or any portfolio (Nawalkha and Chambers, 1996) had negative 

lower bound depending upon the different dispersion measures thereby 

immunization strategies were advocated. The comprehensive treatment of 

the present state of the art can be found in and Nawalkha and Cham -

bers (1999).

convex, then every duration-matching



The aim of the paper is to present a new strategy of immunization 

based on a single duration-dispersion risk measure (see section 3). As 

a by-product, we generalize the Fong-Vasicek, the Balbás-Ibáňez and the 

Nawalkha-Chambers inequalities that give lower limits on the change in 

the end of horizon value of the duration-matching portfolios.

2. P R E L IM IN A R Y  N O T A T IO N S

Denote by [0, T]  the time interval with t = 0 the present moment. Let 

to be the investor planning horizon, 0 < m < T .  We write q = (q ,, q2, —, q„) 

for the investor portfolio. This vector gives us the number of ith bond 

units qt that the investor bought at time 0. The coupons paid before m will 

be reinvested by purchasing the considered n bonds. We assume qt >  0 to 

exclude short position from the analysis.

Let cit denote the time-m present value of payment of ith bond due 

at time t provided the current instantaneous forward rate is g(t). By 

K(k) we denote the time-m present value of ith bond if the shock 

=  k(t) on the instantaneous forward rate takes place. We assume the 

additive model of shocks although the others can be treated in a similar 

way. Obviously,

Vi(k) = £ c  и exp ̂  j  k(s)ds\  ( 1)

Here and below, the summation is over ali t. Denote by l{q, k) the 

value of the portfolio q at time m under the assumption the shock к =  k(t) 

appeared, i.e.

V(q, k) = t,qiVi(k)  =  L£c( t ,  q)expf jk(s)d.s)  (2)
t= 1 r \r /

1 "
'''here L  denotes a liability due at time m and c(t, q) =  £  qfiü- Let

b i=i
stand for the m arket price of the ith bond at time zero and let 

С denote the total am ount of investment at t = 0. Clearly,

Cexp^Jg(t)dt

Definition. A portfolio q =  (qlt ..., q„) is called a feasible portfolio if

£  q,P> =  C and q , ^  0 for every i.
,s=t



Denote by V(q, К)  the guaranteed value by portfolio q, that is,

V(q, K)  =  infkeKV(q, к) (3)

where К  means a class of feasible shocks. We say that a feasible portfolio 

q is immunized if V{q, K)  >  L.

Definition. A feasible portfolio q is called the duration-matching portfolio 

if the Fisher-Weil duration of portfolio q is equal to the investment horizon

length, i.e. D(q) =  m, where D(q) =  £ t c ( i ,  q).
t

3. D U R A T IO N -D IS P E R S IO N  P O R T F O L IO S

In empirical immunization studies, duration-matching portfolios often 

work as well as more complex immunizing strategies. During the 1980s 

duration has explained 80% to 90% of the return variance for government 

bonds (see e.g. Ilmanen, 1991). It means that parallel movements play 

significant role in shocks behaviour. However, such duration-matching 

portfolios are not unique. How should one of them be chosen? Which 

portfolios produce returns with the least deviation from the promised return?

In the pioneering work, Fong and Vasicek (1984) proposed the following 

wider class of shocks with an arbitrary type of interest rate change, 

including parallel shifts:

K f v  = O s e t i i !  with A > 0  (4)

They proved that if the short sale is forbidden and if q is a duration- 

matching portfolio, then

V(q, K rv) >  l ( \ - X2 M ^  (5)

where M 2 =  £ ( t  — m)2c(t, q) is a dispersion measure. They concluded that 
f

the problem of immunization should be formulated as follows 

PI: find a duration-matching portfolio which minimizes M 2.

The approach is not free from a critique. Bierwag et al. (1993) and others 

examined the theoretical and empirical properties of M 2 in designing



duration-hedged portfolios. They found that minimum M 2 portfolios fail 

to hedge as effectively as portfolios including a bond m aturing on the 

horizon date.

The class of shocks considered by Balbás and Ibáňez (1998) is of the form

Balbás and Ibáňez showed that for any duration-matching portfolio q

where f l  =  £ | t  -  m\c(t, q) (cf. Balbás, Ibánez, 1998, the formula (16) with

£ =  RC).  As a consequence they proposed to

P2: find a duration-matching portfolio which minimizes N.

With an example Balbás and Ibáňez (1998) showed that the duration-matching 

portfolio with minimal Ň  can include a maturity matching bond (cf. the 

empirical results of Bierwag, Fooladi and Roberts, 1993). Balbás and 

Ibánez (1998) took into account many considerations about the possible 

shocks on the interest rates to minimize the Ň  measure.

We propose new strategies of immunization of a bond portfolio based 

on a single-risk measure model. Our approach is close to that of Nawalkha 

and Chambers (1996) because they also focused on a single-risk-measure 

immunization model. Define a functional A which measures the average 

value o f shock. We assume that the functional A is equivariant, i.e. 

4(/c +  c) =  A(k) +  с for all feasible shocks к and real c. We also assume 

that v4(0) =  0. Examples will be given below. Define the following class of 

shocks

Herein 0 ^  a <  oo and W  is a nonnegative and convex function such that 

Щт)  =  0. Observe that the class K(W, a) includes all fiat shocks not 

greater than a. Throughout the paper, со ■ 0 =  0.

Theorem 1. For every feasible portfolio q

(6)

V(q, K(W, a)) ^ L e x p  ( - a \ m -  D(q)\ -  M w) (9)

'vhere M w = X ^ ( t)c ( i , <?)■
Г



Proof. Observe that

V(q, K(W, a)) =  Linf*£jC(„,i(I)jexp^jfe(.vKvJáC(í, q) =

= L  inf*e r,w. e) Jex p |^4(fc)(m -  í) +  |(fe(s) -  /4(fc))á.vJí/C(t, q).

Since the short position is excluded, t —>C(f, q) =  £ c (s , q) is the distribution
><>

function of a probability measure on [0, T) for each q. By the Jensen 

inequality (see e.g. Durrett, 1996, p. 14) with the distribution function 

t - * C ( t ,  q), we get

V(q, K(W, a)) > LinfieJW,e)exp ГЛ(*)|(т -  t)dC(t, q) + J J(fc(s) -  A(k))dsdC(t, q) l  =
L 0 01 J

=  ^inf*eK(»\e)exp j^A(fc)(m -  D(q)) -  J J(fc(s) -  A(k))dsdC(t, q)J. 

By the definition of K(W, a)

V(q, K(W, a)) ^  Lexp j^infteX(^, о)[Л(/с)(т -  D(q))] -  J W(t)dC(t, q )J  =

=  L e x p ( - a \ m -  D(q)\ -  M w).

The proof is complete. □

As a consequence of theorem 1 we propose a new strategy of im-
munization:

P3: find a feasible portfolio which minimizes a\m — D(q)\ + M w. 

Observe that the measure M w is nonncgative (by the convexity of W  and 

the Jensen inequality). Given a strictly convex function W, M w is equal to 

zero if and only if there is one payment (at time m). Therefore M w can 

be treated as a dispersion measure of the stream of portfolio payments. In 

other words, our strategy relics on minimizing a linear combination of the 

absolute value of the duration gap \ m - D ( q ) \  and the dispersion measure 

M w. It is clear that the larger a is, the smaller duration gap of the portfolio 

should be. Clearly, if a =  oo then the strategy P3 is equivalent to the 

following one

P3’: choose a duration-matching portfolio which minimizes M w.

We now introduce a more specific class of shocks which are included in 

K(W, a) for an appropriate chosen function W.



Example 1. Define

= {k; k(t2) -  k(ty) ^  w(t2 -  ij), 0 <  <  i2 «S T, \k(m) | ^  a] (10)

where 0 < a <  oo, w =  w(f) is a nondccreasing and nonnegative function such 

that w(0) =  0. Observe that K a(w) includes all parallel shocks not greater than

a. It is easy to check that Ka(w) c: K(W, a), where K(W,a) is defined by (8)
|r-m |

with A(k) = k (m) and W(t) =  J w(s)ds. From theorem 1 we obtain that
о

/ \

V(q, K a( w ) ) ^ L e \ p (  — a\m — D(q)\ - £ c ( t , i )  J w(s)ds\  ( 1 1 )

for every feasible portfolio q. Our strategy is as follows

P4: find a feasible portfolio which minimizes a\m — D(q)\ +
I« —m|

Z C(A q) j- w(s)ds. 
t o

If w =  0 and if the portfolio duration is equal to the length of the planning 

horizon, then V(q, K a(w)) >  L. Thus the target value L  is a lower bound 

of the terminal value of the portfolio regardless of any shifts in interest 

rates. Another reasonable choice of the function w seems to be w(t) =  Xtp 

with A > 0  for any p such that 0 < p <  1/2 since Brownian paths are Holder 

continuous with exponent p for any 0 <  /7 < 1/2 (see e.g. Durrett, 1996, 

p. 379). This leads to the problem

minimize a m -  Y, qPi
I= 1

+ Z  4iM i subject to £  qtPi = C, q , ^  0,
i=i 1=1

i >  1,

where Di = 1 Y t c „ and M, =  Y \ t - m \ p+lc„ is the duration and the
L , (P +  1 )L t

dispersion measure of ith bond, respectively. This case was considered in 

details by Balbás et al. (2002) with conclusion that the appropriate dispersion 

measures are those that O ^ / J ^ l .  An interesting alternative to the power

dispersion function is w(í) =  /1 due to the following property of 

Brownian paths:

\B(t +  h ) - B ( t ) \  «SC U ŕ )  almost surely,

where B(t) is a Brownian motion, С is a random variable and 0 ^  

í <  t +  h <  T.



As we will see in examples 2-4, theorem 1 not only docs a new strategy 

of immunization provide but also extends the results of Fong and Vasicek 

(1984) and Balbás and Ibáňez (1998).

Example 2. We now give an extension of the Fong and Vasicek result. 

Let A(k): =  k(m) and put

K*FV(a) = jfc ;} (fc (s )-fc (m ))< is^ (t-m )2, 0 < ( < T ,  with | f c ( m) | <a j  (12)

O f course. K FV(a) = K ^ ( t  —m)2, a ĵ, where K(W,a)  is defined by (8). 

From theorem 1 it follows that for every feasible portfolio q

Kq, K*Fv(a)) >  Lcxp ^ -  a\m -  D(q) | -  ^ M 2 j  (13)

and for every duration-matching portfolio q

K ( q , ^ K( o o ) > L e x p ^ - ^ M ^  (14)

Observe that K FV с  K FY(ao), where K FV is defined by (4). In fact, for 

every k e K FV

П

k(s) — k(m) = $k'(t)dt <  Я(з — m) if s ^  m and k(s) — k(m) ^  A(s — m) if s <m.
m

• x
Hence J (Ac(s) — k(m))ds < - ( i  — m)2 for every t so k e K FV( oo) =

m

= K ^ ( t  — m)2, oo J .  Since ex ^ l + x ,  the bound (14) is an improvement

of the Fong-Vasicek one (see (5)).

Example 3. We now give an extension of the Balbás-Ibáňez inequality.

Put A(k) = ^( inf0<l<Tk(t) + sup0t;i<rk(t)). Define 

X 5 /  =  | f e ; } ( Ä ( s ) - X ( k ) ) d s < 2 l m - í l* (15)

Clearly, Kg, = |m — f |, oo^. Recall that K BI is defined by (6). For every 

k e K Bh k(s) ^  k*(s) if s >  m and k(s) >  k*(s) otherwise, where k*(s) = A(k)  4- ^



A m A
for s ž  m and k*(s) = A(k) — -  for s < m. Hence \k(s)ds >  A(k)(t — m) — _ \t-m\

2 t L
for every t. As a consequence we get K BÍ с  K*m. From theorem 1 it follows

that for every duration-matching portfolio q

V (q ,K l t) > L a p ( - ^  (16)

Since K BlczK*BI and е * ^ 1 + х , the inequality (16) is an improvement of 

the Balbás-Ibáňez inequality (7).

Example 4. Consider the following class of shocks

K COnv(W, a) = jfc; í —i► J/c(s)<i.v +  W(t) is convex on [0, T], |/c (m ) |< a j

with W  being a given convex and differentiable function such that W ’(m) = 0 

(cf. M ontrucchio, Peccati, 1991). Observe that K conv(W,a)  includes all
m

parallel shocks not greater than a. By convexity of t —*jk(s)ds+ W(t)

\k(s)ds +  W{t) >  W(m) — k(m)(m — t) = W(m) — A(k)(m — t), 
t

0 < К Г ,

with A(k)  =  k(m) for every k e K co„v(W, a). Hence K conv(W, a) a  

с  K ( W — W(m), a) with A(k) = k(m) (see (8)). Theorem 1 implies that if 

q is a feasible portfolio, then

V(q, K com(W, a)) >  Lexp ( ~ a \ m  -  D(q)\ -  £ (Ж (0  -  W(m))c(t, q)

(17)

Observe that if W  is continuously differentiable, then

Konv(W,a) =  {k,k(t2) - k ( t l ) ^ w ( t 2) - w ( t i ) ,  0 <  f, <  t2 <  T,  |/c(m)|«$a},

where w(f) =  W'(t).  Hence, for a subaddtive function w (i.e. 

w (x +  y ) <  w (x) +  w (у) for all x, y), we have KC0„V(W, a) ę  K a(w), with 

K a(w) defined by ( 10).

In Nawalkha and Chambers (1996) one can find the following result. 

Given k l t k 2e R ,  they defined the class of shocks:



K nch = { k - , k ^  k(t) «S k2, 0 <  t <  T) (18)

and proved that for any feasible portfolio q

V (q ,K NCh) > L ( l - k , M A) (19)

where M A =  £ | i  — m\c(t,q)  and fc3 =  m axfl/c j, \k2\}. Observe that M A =  Ň.  
t

M otivated by (19) they proposed to

PS: choose a feasible portfolio which minimizes M A.
We now provide a modification o f theorem 1 extending the result of 

Nawalkha and Chambers (1996). Letting A be a given real, define the class 

o f shocks:

K NM  a) = j/c; J(k(s) -  A)ds <  W(t), 0 <  t <  t J  (20)

where W  is a nonnegative and convex function such that W{m) =  0. 

Theorem 2. For every feasible portfolio q

V(q, K A(W))  > Lexp(,4(m -  D(q)) -  M w) (21)

where M w =  я)-
t

Proof. The proof is extremely similar to that of theorem 1. □

From theorem 2 we obtain the following strategy

P6 : minimize A (D (q) — m) +  M w over all feasible portfolios q.
Example 5. We give an improvement of the inequality (19). Define

— A)ds <  B\t  — m\, 0 < { ^ т |

with A = '^(kl + k2) and В = ^ ( k 2 — k^), where k l < k 2. By theorem 2, for 

every feasible portfolio q

V(q,K*NCk(A, B)) > Lexp(A(m -  D(q)) -  B M A) (22)

where M A =  £ |£  —m|c(t, q). We proceed to show that (22) is an improvement 

of (19).

K*NCk(A ,B)  = \ k , l ( k ( s )



Since A(m — t) -  B\ t — m \ >  — m axflfcj, |fe2 |} | i - m |  for all t, we have

V(q, K*NCh(A, B)) > L e x p ( -  k3M A) > L (  1 -  k 3M A) (23)

where k 3 =  maxf l fe j ,  |fe2|}. It is easy to check that K NChc: K^chiA, В) so 

from (23) we obtain the inequality (19).
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Marek Kaluszka, Alina Kondratiuk-Janyska

STRATEGIA UODPARNIANIA PORTFELA 

Streszczenie

W artykule przedstawiono nową strategię uodparniania portfela, w sklad którego wchodzą 

obligacje bez opcji zakupu przysługującej emitentowi (noncallable) i wolne od ryzyka niewykupienia 

(default-free). Strategia polega na minimalizacji miary, która jest liniową kombinacją luki 

duracyjnej i miary rozrzutu, przy różnych klasach zaburzeń chwilowej terminowej stopy 

procentowej (instantaneous forward rate). Ponadto otrzymano uogólnienia nierówności Fonga 

i Vasiceka (1984), Nawalkhai i Chambcrsa (1996) oraz Balbása i Ibáňeza (1998) na dolne 

ograniczenie zmiany wartości portfela w chwili rozliczenia.


