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MEASURES OF DIVERSITY AND THE CLASSIFICATION ERROR 

IN THE MULTIPLE-MODEL APPROACH

Multiple-model approach (model aggregation, model fusion) is most commonly used in 

classification and regression. In this approach К  component (single) models C |(x), C |(x ) ,..., Ck{ \)  

are combined into one global model (ensemble) C '(x ) , for example using majority voting:

T u r n e r  i G h o s h  ( 1 9 9 6 )  p r o v e d  that the classification error o f the ensemble C "(x) de-

pends on the diversity o f the ensemble members. In other words, the higher diversity o f component 

models, the lower classification error o f the combined model.

Since several diversity measures for classifier ensembles have been proposed so far in this 

paper we present a comparison o f the ability o f selected diversity measures to predict the accuracy 

o f classifier ensembles.

Key words: Multiple-model approach, Model fusion, Classifier ensemble, 

Diversity measures.

Several variants o f aggregation methods have been developed in the past 

decade. They differ in two aspects: the way the subsets to train component 

classifiers are formed and the method the base classifiers are combined. 

Generally there are three approaches to obtain the training subsets:
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1. Introduction



• Manipulating training examples, e.g. Bagging ( B r e i m a n ,  1996); 

Boosting ( F r e u n d  and S h a p  i re,  1997) and Arcing ( Br e i  ma n ,

1998).

• Manipulating input features: Random subspaces (H o, 1998); Random 

split selection (Amit and Geman, 1997), Random forests ( B r e i man ,  

2001).

• Manipulating output values: Adaptive bagging ( B r e i ma n ,  1999); 

Error-correcting output coding (D i e 11 e r i c h and B a k i r i, 1995).

Having a set o f classifiers they can be combined using one o f the following 

methods:

• averaging methods, e.g. average vote and weighted vote;

• non-linear methods, e.g. majority vote (the component classifiers vote for 

the most frequent class as the predicted class), maximum vote, Borda 

Count method, etc.;

• stacked generalisation, where the classifiers are fitted to training 

subsamples obtained by leave-one-out cross-validation (W o 1 p e r t ,  

1992).

2. Diversity

The high accuracy of the classifier ensemble C*(x) is achieved if the 

members o f the ensemble are “weak” and diverse. The term “weak” refers to 

classifiers that have high variance, e.g. classification trees, nearest neighbours, 

and neural nets.

Diversity among classifiers means that they are different from each other, 

i.e. they misclassify different examples. This is mostly obtained by using 

different training subsets, assigning different weights to instances or selecting 

different subsets o f features (subspaces).

T u r n e r  and G h o s h  (1996) proved that the classification error of the 

ensemble C  (x) depends on the diversity of the ensemble members:

e(C ')  = ев (С' )  + 1 + Г{* ~ 1)е(С,.), (2)
К

where e"(C*)  is the Bayes error, r is average correlation coefficient between 

errors of component classifiers, К  is the number o f base classifiers, and e(C,) is 

an error o f individual classifier.

As we can see in formula (2) the ensemble error decreases with decrease of 

the correlation between the component classifiers.



In general, S h a r k e y  and S h a r k e y  (1997) introduced four levels of 

diversity:

• Level 1 -  no more than one classifier is wrong on each example.

• Level 2 -  up to half of classifiers could be wrong for each example 

(majority vote is always correct).

• Level 3 -  al least one classifier is correct for each example.

• Level 4 -  none o f the classifiers is correct for some examples.

The level of diversity among candidate classifiers determines the method 

they should be combined. For example, the majority vote is good for the 

classifiers that exhibit the level 1 an 2 diversity. Otherwise some more complex 

methods, e.g. stacked generalization, are more appropriate.

Several combining methods that take into account the diversity of classifiers 

have been proposed in the literature. For example, R o s e n  (1996) presented 

a combination method that incorporates an error-dscorrelation penalty term. It 

allows component classifiers to make errors which are uncorrelatcd. H a s  h e m 

(1999) proposed the use of relative accuracy of component classifiers as weights 

in linear combinations of the members of an ensemble. O z a  and T u r n e r  

(1999) developed a method named input decimation that eliminates features low 

correlated with the class. Z e n o b i  and C u n n i g h a m  (2001) have used the 

hill-climbing search for feature subsets that is guiding by a diversity measure.

Recently, M e l v i l l e  and M o o n e y  (2004) developed a method called 

DECORATE that reduces the classification error of the ensemble by increasing 

diversity. It adds artificial examples to the original training set, i.e. examples 

oppositely labelled.

3. M easures o f diversity

We can simply measure the agreement between two classifiers C,(x) and 

C j (x) as:

Agreem ent(C i ,C J) = ^ - Y j I ( C i( x ll) = (3)
™ 11 = 1

but this takes into account both correct and incorrect classifications of the 

component models.

In order to overcome this drawback we define the „oracle” output (O) of the 

classifier C k( \ )  as:



0 , ( x , ) = '  = *  (4)
[0 Ck( \ i) ^ y l

In other words, the value of Ok(x) = 1 means that the classifier C*(x) is 

correct, i.e. it recognizes the true class (y) of the example x, and 0*(х) = 0 

means that the classifier is wrong. The relationship between a pair o f classifiers 

is presented in two-way contingency table (Table 1).

T a b l e  1

Oracle labels for two classifiers

0,(x) = 1 O, (x) = 0

1 il a b
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S o u r c e :  own study.

The most simple measure of diversity (or rather similarity) of two classifiers 

is the binary version of the Pearson’s correlation coefficient:

,. .4 ad -  be
r( i ,  j )  = ---------------------------------- --------- (5)

(a + b)(c + d)(a + c)(b + d)

P a r t r i d g e  and Y a t e s  (1996), and M a r g i n e a n t u  a n d D i e t t r i c h  

(1997) have used a measure named within-set generalization diversity (kappa 

statistics):

K(i, j ) = ------------ 2(- — -Ы )------------  (6)
(a + b)(c + d) + (a + c)(b + d)

It measures the level of agreement between two classifiers with the 

correction for chance.

S к a 1 a к (1996) has proposed the disagreement measure.

DM(i,j) = — - 
a+b+c+d



This is the ratio between the number of examples on which one classifier is 

correct and the other is wrong to the total number of examples.

G i a c i n t o  and R o l i  (2001) have introduced a measure named 

compound diversity:

C D ( i J )  = ----- ----------- (8)
a + b + c + d

This measure is also named “double-fault measure” because it is the 

proportion of the examples that have been misclassified by both classifiers.

K u n e  h e  v a  et cd. (2000) recommended the Yule’s Q statistics as 

diversity measure:

. a d - b e

0 0 ,./)  =  —7—7 "  (9)a d  + be

The Yule’s Q statistics is the original measure of dichotomous agreement, 

designed to be analogous to the correlation. This measure is pairwise and 

symmetric and varies between -1 and 1. A value of “0” indicates statistical 

independence of classifiers, positive values mean that the classifiers have 

recognized the same examples correctly and negative values -  that the classifiers 

commit errors on different examples.

G a t n a r (2005) proposed the H am ann’s cocfficicnt:

(a + d ) - ( b  + c) . . . .

= i------ ' — r  (10)a + b + c + d

This binary similarity coefficient is simply the difference between the 

matches and mismatches as a proportion of the total number of entries. It ranges 

from -1 to 1. A value of “0” indicates an equal number o f matches to 

mismatches, “- 1 ” represents perfect disagreement and “ 1” -  perfect agreement.

In the case o f pairwise measures, the overall value of diversity for the 

ensemble C*(x) is computed as the mean:

Diversity(C ' ) = I  ■ X  Y j  Diversity(Ci , C; ) (11)
A  ( A  ~ 1 )  /=| j=i+\

Several non-pairwise measures have been also developed to estimate the 

diversity between classifiers C|(x), C|(x), ..., C a ( x ).



H a n s e n  and S a l a m o n  (1990) proposed the measure o f difficulty:

D 1 = T  í ( P y W - P y ) 2 0 2 )
^  *-i

It is in fact the variance o f variable p v(k) representing the proportion of 

classifiers that correctly classify an example x chosen at random.

P a r t r i d g e  and K r z a n o w s k i  (1997) have introduced the generalized 

diversity measure:

GD = 1 -  (13)

P<X)

where:

P ^  = ) ; ^ L k 'Pk and P(2) = * Л П к  ( 14)
^  *=i M * *) *=i

and p k is thef probability that к classifiers mischassify an cample x choscn at 

random .

C u n n i g h a m  and C a r n e y  (2000) used the entropy function:

where N" is number o f base classifiers that misclassified x„ to class C,.

4. Experim ents

In order to compare the ability of the diversity measures to detect the 

accuracy o f combined classifier we followed the synthetic experiment presented 

in ( K u n c h e v a  et al. , 2000). We have generated two artificial sets o f classifier 

ensembles of known classification accuracy.

In the first experiment we have used a test set o f 10 examples (N=  10) and 

3 classifiers: C ,(x),C 2(x),C 1(x) (i.e. K =  3) and each has the same 

classification error e(Cr) = 0.4 (6 out of 10 examples are recognized correctly). 

That gave the total number of 28 different combinations of classification results 

for the test set.

We have used all the measures of diversity mentioned above and majority 

vote combining. The Pearson’s correlation coefficients between the ensemble 

error and the diversity are presented in Table 2.



T a b l e  2

Pearson’s correlation with the ensemble error in experiment 1

Diversity measure Correlation with the error

К 0.209

DM 0.387

CD 0.408

Q 0.421

H 0.532

D l 0.324

GD 0.543

IEN 0.412

S o u r c e :  own study.

In the second experiment we have generated a test set o f 100 examples 

(N=  100) and also 3 classifiers: C ,(x),C2(x),C3(x) (i.e. K =  3) each has the 

same classification error e(C,) = 0.4 (60 out o f 100 examples are recognized 

correctly). That gives the total number of 36 151 different combinations of 

classification results.

We have used all the measures of diversity and majority vote combining. 

Pearson’s correlation coefficients between the ensemble error and the diversity 

are presented in Table 3.

T a b l e  3

Pearson’s correlation with the ensemble error in experiment 2

Diversity measure Correlation with the error

К 0.387

DM 0.402

CD 0.478

0 0.471

H 0.598

Dl 0.539

GD 0.678

IEN 0.578

S o u r c e :  own study.



5. Conclusions

In this paper we compared the ability of several diversity measures to detect 

the accuracy o f a classifier ensemble.

As the result of two experiments we conclude that the Hamann’s coefficient 

is the best diversity measure among the pairwise diversity measures, while in the 

group o f non-pairwise measures the Partridge and Krzanowski’s measure is the 

recommended.

In general, we observed that non-pairwise measures better identify the 

diversity among component models (which is the main reason of the prediction 

error) than the pairwise ones.
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M iary zróżnicowania modeli a błąd klasyfikacji 

w podejściu w iclom odelowym

Podejście wielomodelowc (agregacja modeli), stosowane najczęściej w analizie 

dyskryminacyjnej i regresyjnej, polega na połączeniu M  modeli składowych Ci(x), ..., Сл/(х) jeden 

model globalny C ’ ( x ) :

T u  m e r  i G h o s h  (1996) udowodnili, że błąd klasyfikacji dla modelu zagregowanego 

C ‘ (x) zależy od stopnia podobieństwa (zróżnicowania) modeli składowych. Inaczej mówiąc, 

najbardziej dokładny model C ’(x) składa się z modeli najbardziej do siebie niepodobnych, tj. 

zupełnie inaczej klasyfikujących te same obiekty.

W literaturze zaproponowano kilka miar pozwalających ocenić podobieństwo 

(zróżnicowanie) modeli składowych w podejściu wielomodelowym.

W artykule omówiono związek znanych miar zróżnicowania z oceną wielkości błędu 

klasyfikacji modelu zagregowanego.

Eugeniusz Gatnar


