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their elongation for all analyzed properties (geometric, 
energetic, and electronic), 2,3-quinone derivatives present a 
substantial breaking in monotonicity.

Keywords Quinones · Benzenoids · Energy 
decomposition analysis · Aromaticity

1 Introduction

Quinones belong to the class of π-electron chemical com-
pounds in which two units of CH are replaced by two car-
bonyl groups that have to be located in a way that does not 
lead to ionic canonical structures or in other words to form 
“a fully conjugated cyclic dione structure” [1]. In most 
cases, location of carbonyl group is either in the ortho- 
or in the para-type positions. Derivatives of quinones are 
common constituents of biologically important molecules 
as ubiquinone, which is important for aerobic respiration 
[2], or phylloquinone known as vitamin K [3]. In protic 
solvents, quinones are easily reducible to hydroquinones, 

Abstract In this work, we have studied the relative sta-
bility of 1,2- and 2,3-quinones. While 1,2-quinones have 
a closed-shell singlet ground state, the ground state for 
the studied 2,3-isomers is open-shell singlet, except for 
2,3-naphthaquinone that has a closed-shell singlet ground 
state. In all cases, 1,2-quinones are more stable than their 
2,3-counterparts. We analyzed the reasons for the higher 
stability of the 1,2-isomers through energy decomposition 
analysis in the framework of Kohn–Sham molecular orbital 
theory. The results showed that we have to trace the ori-
gin of 1,2-quinones’ enhanced stability to the more efficient 
bonding in the π-electron system due to more favorable 
overlap between the SOMOπ of the ·C4n−2H2n–CH·· and 
··CH–CO–CO· fragments in the 1,2-arrangement. Further-
more, whereas 1,2-quinones present a constant trend with 
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whereas in aprotic solvents, they are electrochemically 
reduced to radical anions [4, 5]. A very important struc-
tural property of quinones is that the two carbonyl groups 
attached to a benzenoid ring system cause a very strong 
localization of the π-electron structure, i.e., decrease in 
aromaticity. In the case of ortho-benzoquinone, many aro-
maticity indices such as HOMA [6, 7], MCI [8, 9] or FLU 
[10] indicated antiaromatic properties of the ring [11] in 
contrast to benzene ring known as the archetypic aromatic 
π-electron system [12–15]. Moreover, the HOMA [6, 7] 
values for the ring with the two CO groups are −1.353 and 
−1.277 for 1,2- and 2,3-naphthoquinone [16], respectively, 
indicating antiaromaticity, whereas HOMA for the ring in 
naphthalene amounts to 0.811 [17].

Since the localization effect of the quinoid fragment is 
well known, the question may be posed: how far the locali-
zation impact of the ortho-quinoid fragment may affect 
further rings in 1,2- and 2,3-quinone derivatives of acenes? 
Then, the systems of this study are 1,2- (Scheme 1) and 
2,3-quinone (Scheme 2) derivatives of linear benzenoids 
(Scheme 3). It is worth noting that a previous study on the 

aromaticity of pentalenoquinones already indicated that 
the relative position of the two C=O fragments has a large 
influence on the aromaticity of these pentalenoquinones 
[18].

2  Computational methods

2.1  Geometry optimizations

The full geometry optimization of the set of systems shown 
in Schemes 1, 2 and 3 was performed using B3LYP hybrid 
functional [19–21] in conjunction with the 6-311+G(d) 
basis set [22, 23]. For equilibrium structures, a frequency 
analysis was performed in order to check whether all 
geometries corresponded to true ground state stationary 
points. Gaussian 09 [24] software package was used for 
this part of calculations. For open-shell systems, unre-
stricted UB3LYP/6-311+G(d) calculations with broken 
symmetry (using guess = mix option) were also per-
formed. It appeared that for 2,3-anthraquinone and its 

Scheme 1  1,2-quinone deriva-
tives of linear benzenoids O
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larger analogues (tetra-, penta-, and hexa-ones), the lowest 
energy state corresponds to the diradical singlet state. Sta-
bility of their wavefunctions constructed from Kohn–Sham 
orbitals was also checked. All wavefunctions were found to 
be stable.

Accurate calculations of large open-shell systems are 
difficult and expensive; therefore, DFT methods are com-
monly used. The good performance of the UB3LYP method 
is confirmed by recent papers [25–30]. On the basis of pre-
vious results [31], spin contamination corrections were not 
included.

2.2  Stability analysis

The difference between electronic energies of 1,2-(E1,2) 
and 2,3-(E2,3) quinone derivatives of linear benzenoids 
allows to compare their relative stability:

The same analysis can be done through comparison of 
stabilization energies ΔE1,2 and ΔE2,3, which can be esti-
mated for the reaction:

Therefore, the stabilization energies are expressed as 
follows:

It should be mentioned that in order to have the consistent 
model of reaction (2), we used in this scheme the singlet 
state energy of O2 molecule, having in mind the fact that 
the triplet state is the most stable form of that species.

2.3  Energy decomposition analysis

The Amsterdam Density Functional (ADF) program [32–
34] was used to carry out energy decomposition analysis 
(EDA) in the framework of Kohn–Sham molecular orbital 
(MO) theory in single-point energy calculations using the 
B3LYP/6-311+G(d) geometries. All ADF calculations 
were carried out using the B3LYP functional [19–21] with 
the TZ2P basis set.

Each molecule of quinone (for both 1,2- and 2,3-series) 
can be divided into two fragments,·C4n-2H2n–CH·· (2-meth-
triyl-aryl, n = 1–6) and ··CH–CO–CO· (1,3,3-tridehy-
dro-2-oxopropanal) in their quadruplet state, equivalent 
for both isomers. As an example, naphthoquinone is pre-
sented in Scheme 4. The energy of such reaction is equal 
to the total bonding energy, ΔEBE, computed as the energy 

(1)�E = E1,2−E2,3

(2)
Linear benzenoid (EB) + O2

(

EO2

)

= quinone derivative + H2

(

EH2

)

(3)�E1,2 = E1,2 + EH2
−

(

EB + EO2

)

(4)�E2,3 = E2,3 + EH2
−

(

EB + EO2

)

difference between the mentioned molecule and the sum 
of the energies of the relaxed fragments. ΔEBE is com-
posed of two components: (1) the preparation energy, also 
known as deformation energy, ΔEdef, and (2) the interac-
tion energy, ΔEint. The former component is always posi-
tive because it describes the amount of energy required to 
deform the fragments from their relaxed geometry to the 
one they acquire in the final molecule. The latter term is 
focused on the interaction between the deformed frag-
ments, i.e., the fragments in the geometry they adopt in the 
studied molecule. ΔEint may be then divided in the frame-
work of the Kohn–Sham MO model by using a quantita-
tive EDA [35–40] into electrostatic interaction (ΔVelstat), 
Pauli repulsive orbital interactions (ΔEPauli), and attractive 
orbital interactions (ΔEoi):

Moreover, using the extended transition state (ETS) scheme 
[37, 38], the ΔEoi term can be divided into the contribu-
tions of orbitals with different symmetry. For planar sys-
tems, like the ones under analysis in the present work, the 
σ/π separation is possible:

General theoretical background on the bond energy 
decomposition scheme used here (Morokuma–Ziegler) can 
be found in the papers by Bickelhaupt and Baerends [39, 
41]. Finally, in the EDA of the bonding energy, open-shell 
fragments were treated with the spin-unrestricted formal-
ism, but for technical reasons, spin polarization cannot 
be included. This error causes the studied interaction to 
become in the order of a few kcal/mol stronger. To facilitate 
a straightforward comparison, the EDA results were scaled 
to match exactly the regular bond energies. This scaling by 
a factor in the range 0.91–0.93 in all model systems does 
not affect trends.

At this point, it must be mentioned that it has been tech-
nically not possible to undertake the EDA calculations 

(5)�Eint = �Velstat + �EPauli + �Eoi

(6)�Eoi = �Eσ + �Eπ

Scheme 4  EDA fragment analysis of a 1,2-naphthoquinone and b 
2,3-naphthoquinone
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for singlet open-shell systems. Application of EDA to 
singlet open-shell systems leads always to singlet closed-
shell results. Therefore, to estimate the results of the EDA 
for singlet open-shell systems, i.e., 2,3-quinones with 
3 ≤ n ≤ 6, we decomposed the bonding energy of singlet 
closed-shell 2,3-quinones and applied some corrections. 
In particular, we assumed that ΔVelstat and ΔEPauli energies 
for open- and closed-shell singlet species are the same, and 
only the orbital interaction (ΔEoi) term is corrected. For 
this purpose, the energy difference between values for the 
whole system at singlet open-shell and closed-shell compu-
tations is taken into account (added to the ΔEoi term). ΔEσ 
and ΔEπ were also corrected by using the ratio ΔEσ(open)/
ΔEoi(open) = ΔEσ(closed)/ΔEoi(closed) and ΔEπ(open)/
ΔEoi(open) = ΔEπ(closed)/ΔEoi(closed), where corrected 
ΔEoi is used (for such correction ΔEσ + ΔEπ = ΔEoi).

2.4  π-Electron delocalization analysis

Two types of aromaticity parameters have been used as 
quantitative measures of π-electron delocalization: (1) 
structural and (2) electronic based indices.

First, HOMA [6, 7], the geometry-based aromaticity 
index, may serve as a convenient, reliable [42], and easily 
accessible quantitative measure of π-electron delocaliza-
tion [43] of the system (e.g., in the ring). The formula can 
be written as:

where n is the number of bonds taken into the summa-
tion; αj is a normalization constant (for CC and CO bonds 
αCC = 257.7 and αCO = 157.38) fixed to give HOMA = 0 
for a model non-aromatic system and HOMA = 1 for 
a system with all bonds equal to the optimal value Ropt,j, 
assumed to be realized for fully aromatic systems (for CC 
and CO bonds Ropt,CC = 1.388 and Ropt,CO = 1.265 Å), 
whereas Rj denotes bond lengths taken into calculation.

Second, electronic aromaticity criteria using the atomic 
partition provided by the quantum theory of atoms in mole-
cules (QTAIM) [44] have been applied: the aromatic fluc-
tuation index (FLU) [10] and the multicenter index (MCI) 
[8, 9].

FLU measures the amount of electron sharing between 
contiguous atoms. It is defined as:

where A0 ≡ AN (N being the number of atoms in the ring) 
and V(Ai) is the atomic valence given by:

(7)HOMA = 1 −
1

n

n
∑

j=1

αj

(

Ropt, j− Rj

)2

(8)

FLU(A) =
1

N

N
∑

i=1

[(

V(Ai)

V(Ai−1)

)α(

δ(Ai, Ai−1) − δref(Ai, Ai−1)

δref(Ai, Ai−1)

)]2

and α is a simple function to make sure that the first term 
in Eq. (8) is always greater or equal to 1, so it takes the 
values:

The δref(C,C) = 1.389 e, calculated from benzene at the 
B3LYP/6-311++G(d,p) level, was used in the calculations. 
FLU is close to 0 in aromatic species and differs from it in 
non-aromatic ones.

MCI is derived from the Iring index that was defined by 
Giambiagi et al. [45] as:

where Sij(Ak) is the overlap between MOs i and j within the 
domain of atom k. In this formula, it is considered that the 
ring is formed by atoms in the string {A} = {A1, A2, … 
AN}. Extension of this Iring index of Giambiagi by Bultinck 
and coworkers resulted in the so-called MCI index

where P(A) stands for the N! permutations of the ele-
ments in the string {A}. The MCI index has been success-
fully applied to a broad number of situations, from simple 
organic compounds to complex all metal clusters with mul-
tiple aromaticity [8, 46–56]. For planar species, Sij(Ak) = 0 
for i ∈ σ and j ∈ π orbital symmetries; thus, MCI can be 
exactly split into σ- and π-contributions, namely MCIσ and 
MCIπ, respectively. When computed in an aromatic ring, 
the more positive the MCI, the more aromatic the ring.

FLU, Iring, and MCI indices have been obtained with the 
ESI-3D program [10, 57].

2.5  Hardness

The hardness of a chemical system, η, is a measure of the 
resistance of a chemical species to change its electronic 
configuration. It is defined as:

where N is the number of electrons of the system, and ν(�r) 
is the potential acting on an electron at �r due to the nuclear 

(9)V(Ai) =
∑

Aj �=Ai

δ(Ai, Aj)

(10)α =

{

1 V(Ai) > V(Ai−1)

−1 V(Ai) ≤ V(Ai−1)

(11)

Iring(A) = 2N
∑OCC

i1,i2,i3...,iN
Si1i2(A1)Si2i3(A2) . . . SiNi1(AN)

(12)

MCI(A) =
1

2N

∑

P(A)
Iring(A)

=
1

2N

∑

P(A)

∑OCC

i1,i2,i3...,iN
Si1i2 (A1)Si2i3 (A2) . . . SiN i1 (AN )

(13)η =

(

∂2E

∂N2

)

ν(�r)

,
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attraction plus such other external forces as may be pre-
sent. A three points finite difference approximation for the 
derivative leads to the following working definition when 
considering the Koopmans’ approximation: [58] 

where εLUMO and εHOMO are the energies of the LUMO and 
the HOMO orbitals.

3  Results and discussion

It was recently shown that the lowest energy state of higher 
polyacenes can correspond to diradical singlet state instead 
of the closed-shell singlet state [59–61]. Similar results are 
also observed for some studied quinones. Diradical singlet 
state of 2,3-anthraquinone and its larger analogues (n ≥ 3, 
n being the number of the rings), obtained using the unre-
stricted broken symmetry UB3LYP/6-311+G(d) method, 
is found to be more stable than the closed-shell singlet 
state; the energy differences amount to 5.2, 15.9, 12.1,  
and 10.2 kcal/mol for 2,3-anthra-, tetra-, penta-, and hexa- 
quinones, respectively. This is similar to what is found 
for acenes [61], although in these latter cases, the closed-
shell species are more stable until n < 5 or 6. The change 
in the electronic ground state can also be understood using 
the Clar’s π-sextet model [62]. This model, known also as 
Clar’s rule, offers a qualitative picture of the aromatic char-
acter of a particular ring in a polycyclic benzenoid hydro-
carbon molecule. Its implementation allows to classify rings 
according to their π-electron structure into aromatic sextets, 
empty rings, migrating rings, and those with localized dou-
ble bonds. Clar’s rule has been validated experimentally and 
successfully applied in many cases, for review see [63]. As 
can be seen in Scheme 5, by changing from closed-shell (no 
π-sextets) to open-shell singlet state, a π-bond is lost and 
this is partially or totally compensated by the formation of 
a migrating π-sextet and some 1,4 interaction (Dewar-type 
resonance structure). It should be noted that Clar structure 
shown in Scheme 5b is reinforced by all applied aromatic-
ity indices (see Table S1 in Supporting Information). Sum-
marizing, in 2,3-quinones for n > 2, the diradical singlet 
situation is favored, as in the case of the acenes [25, 59, 61, 
63] and in other polycyclic aromatic hydrocarbons [26–30, 
64–69] and graphene nanoflakes [70, 71].

Therefore, for 2,3-isomers, only the results of the ground 
states (singlet closed shell for n ≤ 2 and singlet open shell 
for n ≥ 3) are presented below.

It is well known that structural data are one of the 
most important sources of information about molecules 
[72]. Therefore, before discussing the title question, let us 
look at the structural parameters of 1,2- and 2,3-quinone 
derivatives.

(14)η = εLUMO−εHOMO,

Ortho-quinoid groups are very important structural frag-
ments in both series of quinones. In the case of 1,2-iso-
mers (see Scheme 1), due to the lack of symmetry, the CO 
bonds may differ in lengths, whereas this is not the case for 

(a)

(b)

Scheme 5  Clar structures for the a closed-shell and b open-shell sin-
glet states of 2,3-anthraquinone

Fig. 1  Scatter plots of C=O bond lengths, RC=O, (in Å) versus the 
number of the rings (n) in (a) 1,2- and (b) 2,3-quinone derivatives
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2,3-isomers (Scheme 2). In 1,2-quinones, both CO elon-
gate with increase in the number of rings (Fig. 1). More- 
over, for quinones with n ≥ 2, C1O is always shorter than 
C2O. This difference can be rationalized by the use of the 
so-called Hammett–Streitwieser position constants [73], 
which describe the basicity of a given position for interac-
tions with proton [74]. Their values for positions 1 and 2 
in naphthalene are 0.35 and 0.25, respectively, indicating a 
greater basicity in position 1 and hence shorter C1O bonds. 
Similar data are also for positions 1 and 2 in anthracene 
(0.41 and 0.36, respectively).

Much more interesting is a scatter plot for 2,3-isomers 
presented in Fig. 1b. Even though both CO bonds have 
the same length, we observe important changes in their 
bond lengths for these particular derivatives. In this case, 
the range of the CO bond length variability amounts to 
0.019 Å, whereas in the case of 1,2-derivatives, differences 
are <0.003 Å. Moreover, the shape of the presented rela-
tionships can be described by two linear equations: (1) with 
positive slope (0.0075) for the three shortest quinones and 
(2) with a negative slope (−0.0006) for the three longest 
isomers (the correlations coefficients amount to 0.960 and 
−0.995, respectively). The slope in the first case is almost 
10 times greater than the observed for the second one and 
for 1,2-isomers. In other words, in 2,3-quinones with n ≤ 3, 
the CO bond lengthening is more sensitive to the enlarge-
ment of the molecule by an extra ring. Thus, we observe 
a clear different behavior between 1,2- and 2,3-quinones, 
with the change in trend for this latter found between n < 3 
and n ≥ 3, which coincides with the change in the nature of 
the ground state referred above.

Structural data also allow to study π-electron delocali-
zation; hence, the HOMA index is now the next tool used 
to investigate the differences between 1,2- and 2,3-quinone 
isomers of polycyclic acenes. Figure 2 presents the plots of 
the aromaticity index HOMAperimeter versus the number of 
the ring (n) for the two isomers of quinones; for compari-
son, data of linear benzenoid are also included. HOMA-

perimeter was calculated taking into account only bonds 
along the perimeter of the molecules thereby to describe 
the aromaticity of the whole molecule. Obtained values 
show that all quinone derivatives may be divided into two 
groups: (1) antiaromatic and (2) aromatic. In both cases, 
enlarging of the system results in increasing aromaticity 
(for the first group antiaromaticity decreases). It should be 
mentioned that the observed variability is similar for 1,2- 
and 2,3-quinone derivatives, although 1,2-anthraquinone is 
antiaromatic or non-aromatic, whereas its 2,3-analogue is 
slightly aromatic. Furthermore, the change from antiaro-
matic to aromatic character in 2,3-quinones takes place 
from n = 2 to n = 3, a behavior that coincides with the 
change in the nature of the ground state referred above (see 
Scheme 5). Additionally, obtained HOMAperimeter values 

indicate slightly greater aromaticity of 2,3- derivatives than 
1,2-ones for molecules with n ≥ 3. In contrast with the aro-
maticity of the quinones measured with HOMAperimeter, the 
aromaticity of polyacenes decreases from 0.99 to 0.79 from 
benzene to hexacene, respectively.

HOMA values of particular rings in studied systems are 
presented in Fig. 3. If we first look at the ring containing the 
quinoid fragment (ring I in Schemes 1 and 2), we find that 
for 1,2-isomers the longer the quinone derivative, the lower 
its antiaromaticity (Fig. 3a). In the case of 2,3-derivatives, 
such trend is observed only for the four shortest quinones, 
whereas for the remaining molecules, the HOMA is almost 
constant (Fig. 3b). It should be noticed that antiaromaticity 
changes of the ring I correlate well with the observed CO 
bond length variations for both isomers. Thus, again, we 
can consider this case as two trends: for n < 3 (decrease in 
antiaromaticity) and n ≥ 3 (almost constant); with the low-
est antiaromaticity corresponding to 2,3-tetraquinone. Inter-
estingly, for n = 2, ring II is aromatic for 1,2-naphthoqui-
none, and it is non-aromatic for 2,3-naphthoquinone. This 
is the expected result from the Clar π-sextet rule as ring II 
of 1,2-naphthoquinone, unlike the 2,3-isomer, contains the 
π-sextet. In 2,3-quinones, for n ≥ 3, rings II and succes-
sive are aromatic as expected from the fact that a migrat-
ing π-sextet is generated in the diradicals (see Scheme 5). 
Finally, polyacenes present a monotonic decrease in aroma-
ticity of ring I from benzene to hexacene (Fig. 3c).

For the remaining rings, the shapes of HOMA values in 
polyacenes and 1,2-quinone derivatives are quite similar, 
obviously not taking into consideration the ring I of qui-
nones. Aromaticity of the middle ring is the largest in com-
parison with other rings of the molecule, and the elongation 
of the system causes a decrease in the aromaticity of all 
rings. In the case of 2,3-isomers, the most aromatic is the 
terminal ring of the molecule, although it is non-aromatic 
in 2,3-naphthoquinone (HOMA is close to 0.0).

Fig. 2  HOMAperimeter values for polyacenes, 1,2-, and 2,3-quinone 
derivatives. Arabic numerals denote number of rings in the molecule
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Similar conclusions can be drawn from electronic aro-
maticity criteria FLU and MCI (see Figs S1 and S2) that 
support the above discussed conclusions drawn from geom-
etry-based aromaticity values.

3.1  Which quinone isomer 1,2- or 2,3- is more stable?

Energy differences between the electronic and bonding 
energies of 1,2-quinone derivatives (Scheme 1) and their 
2,3-counterparts (Scheme 2) lead to negative values (Eq. 1, 
see Fig. 4). In other words, 1,2-derivatives of quinone are 
always more stable than their corresponding 2,3-isomers. 
However, some strange peculiarity appears there again. 
As shown in Fig. 4, the variability of energy differences 
ΔE (Eq. 1) for both electronic and bonding energies is 
not monotonic, the largest differences being found for 
anthraquinone isomers. However, we found a monotonic 
decrease in absolute value of the energy differences starting 
from n = 3 (n values corresponding to 2,3-quinones with 
an open-shell singlet ground state).

Since polyacenes are mother compounds for both kinds 
of quinones (Scheme 3), it is reasonable to compare the 
stabilization energies of these latter estimated on the basis 
of the reaction in Eq. 2. The obtained results (see Fig. 5) 
are striking. The stabilization energies of the quinone iso-
mers (Eqs. 3, 4) plotted against the number of rings (n) 
have completely different shapes. For 1,2-isomers with 
1 ≤ n ≤ 6, the observed changes in ΔE1,2 are monotonic 
(their stability increases with increasing n), whereas for 

Fig. 3  HOMA values of particular rings in studied systems: a 
1,2-quinones, b 2,3-quinones, and c linear benzenoids. Arabic numer-
als denote number of rings in the molecule, and Roman ones repre-
sent the labels of individual rings, n, in the molecule (see Schemes 1, 
2, 3)

Fig. 4  Dependence of the difference in electronic energies (ΔE, 
Eq. 1, Gaussian results) and total bonding energies (ΔEBE, Eq. 1, 
ADF results) between 1,2- and 2,3-derivatives on the number of 
rings, n, in the molecule
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2,3-isomers, the energy differences ΔE2,3 pass through a 
maximum (less negative values) for n = 2 and for n ≥ 3 
follow the same trend of decreasing when n increases 
(Fig. 5). Thus, assuming the quinoid fragment fused to the 
polyacene molecule as a perturbation of polyacene electron 
structure, we observe that the resulting changes depend on 
the type of isomer.

3.2  Why 1,2-quinones are more stable than their 
2,3-isomers?

To obtain a deeper insight into the origin of the relative sta-
bilities of 1,2- and 2,3-quinones, an energy decomposition 
analysis was performed following the reaction presented in 
Scheme 4 with the corresponding fragments. It should be 
noted that both isomers can be constructed from two iden-
tical fragments, both in their quadruplet state in order to 
form the corresponding broken one single and one double 
bonds. However, to undertake the EDA analysis for sin-
glet open-shell systems, i.e., 2,3-quinones with 3 ≤ n ≤ 6, 
appropriate corrections have to be applied for technical 
reasons (see Computational methods). Total bonding ener-
gies (ΔEBE) and all their components for both isomers are 
presented in Figs. 6, 7 and 8. Additionally, obtained results 
of the EDA analysis are gathered in Table S2 (see Supple-
mentary Material).

First, 1,2-quinone derivatives show quite constant 
ΔEBE values (see Fig. 6). Their bonding energy range of 
variability is equal 7.8 kcal/mol (for 2 ≤ n ≤ 6 amounts 
to 2.6 kcal/mol, see Table S2), and for systems with n > 1, 
stronger bonding is observed than for ortho-benzoquinone. 
On the other hand, the 2,3- ones show not only a weaker 
bonding, with the weakest value for isomer with n = 3, 
but also a larger variability of ΔEBE values (19.6 kcal/mol, 
Table S2). A look at the deformation energy term, ΔEdef, 
shows that the previous differences in bonding energy can-
not be justified with this component, since it varies in a 
small range (12.2–14.4 and 12.6–15.7 kcal/mol for 1,2- and 
2,3-derivatives, respectively). With the exception of benzo-
quinone, the trend observed for the deformation energy is 
somewhat expected. First, there is an increase in deforma-
tion energy with the increase in size. This is expected if one 
takes into account that the larger the number of rings of the 
system, the more deformation is accumulated (each ring is 
a little bit deformed and contributes to the total deforma-
tion). This trend is lost when going from n = 2 to n = 3 in 
2,3-quinones, but this is again not surprising given the fact 
that when going from 2,3-naphthoquinone to 2,3-anthraqui-
none, there is a change in the electronic state and, therefore, 
deformation energy in 2,3-naphthoquinone is not compa-
rable to that of 2,3-anthraquinone. Then, we must find the 

Fig. 5  Dependence of the stabilization energy for 1,2- and 2,3- qui-
none derivatives, ΔE1,2 and ΔE2,3 (Eqs. 3, 4), on the number of rings, 
n, in the molecule

Fig. 6  Results of EDA analysis: a total bonding energy, ΔEBE and b 
deformation energy, ΔEdef, for 1,2- and 2,3- quinone derivatives with 
enlargement of system by a consecutive ring, n
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corresponding explanation with the interaction energy term 
and its particular components (Eq. 5) depicted in Fig. 7.

The similarity of the trends between ΔEBE and ΔEint 
allows us to conclude that this latter term is responsible 
for the observed ΔEBE changes. Then, the relatively con-
stant value of ΔEint in the 1,2-derivatives is also kept for 
the corresponding three components ΔEPauli, ΔVelstat, and 
ΔEoi that show differences of only 8.3, 2.8, and 3.7 kcal/
mol, respectively (see Table S2 in the Supplementary 
Material). On the other hand, for the 2,3-derivatives, the 
observed trend of ΔEint can be mainly attributed to the 
ΔEoi component, since changes in both repulsive ΔEPauli 
and attractive ΔVelstat terms compensate each other. It is 
important to notice the much larger variability of these 
components for 2,3-isomers, amounting to 19.6, 9.8, and 
particularly 24.8 kcal/mol for ΔEPauli, ΔVelstat, and ΔEoi, 
respectively.

More importantly, if we now decompose ΔEoi into ΔEσ 
and ΔEπ contributions (Fig. 8), we can definitely affirm 

that the different behavior observed in 1,2- and 2,3-isomers 
can be mainly justified through this latter π-contribution, 
which causes the crucial variability with the change of the 
number of rings and gives the trend of ΔEBE observed in 
Fig. 6. Although the ΔEσ component provides most of the 
final ΔEoi term, the observed trend is basically due to the 
ΔEπ contribution. Next, we will try to find the reason for 
such different behavior of this π-component between these 
isomers under analysis.

For this purpose, the overlaps 〈SOMOπ|SOMOπ〉 
between the π single occupied molecular orbitals (SOMOπ) 
of each fragment have been calculated (Fig. 9). Let us 
remind that we consider each fragment at its quadruplet 
state, so we have two unpaired σ electrons and one unpaired 
electron on a π-orbital to form two σ- and one π-bonds in 
the final either 1,2- or 1,3-quinone derivatives. As it can be 
observed, the lowest overlap is found for 2,3-tetraquinone, 
thus justifying the above observed behavior concerning 
ΔEπ.

Fig. 7  Results of EDA analysis: a Pauli repulsive orbital interactions, ΔEPauli, b electrostatic interactions, ΔVelstat, c orbital interactions, ΔEoi, 
and d total interaction energy, ΔEint for 1,2- and 2,3-quinone derivatives with enlargement of the system by a consecutive ring, n
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The higher 〈SOMOπ|SOMOπ〉 overlaps are easily 
understood from the inspection of the SOMOπ shapes of 
the ·C4n−2H2n–CH·· and ··CH–CO–CO· fragments depicted 
in Fig. 10 (SOMOπ of all ·C4n−2H2n–CH·· fragments are 
shown in Table S3). As can be seen, the π-interaction 
between these two fragments is more favorable when the 
·C4n−2H2n–CH·· and ··CH–CO–CO· fragments interact 
to yield 1,2-quinones because the largest lobes of the two 
SOMOπ located in the CH moieties overlap in this particu-
lar 1,2-arrangement. The difference in overlap with the two 
dispositions is less for n = 2 and increases for n ≥ 3, fol-
lowing the same trend as the calculated 〈SOMOπ|SOMOπ〉 
overlaps.

Differences in shapes are also significant for σ-orbitals. 
The shapes of SOMOσ1 (Table S4) and SOMOσ2 (Table 
S5) are clearly different for 1,2- and 2,3-quinones. The 
corresponding orbital overlaps of these latter isomers are 
larger, in line with the stronger attractive σ-orbital interac-
tions observed (see Fig. 8a). The graphical presentation of 
SOMOπ, SOMOσ1, and SOMOσ2 orbitals for the fragment 
with the C=O groups is given in Table S6, but as expected, 
their shapes are very similar for both quinone isomers.

Interrelations of σ- and π-electron energies for both types 
of derivatives are presented in Fig. 11. These relationships 
suggest a much more important contribution of π-electron 
structure as responsible for changes in σ-energy for the 
2,3-quinone molecules than for 1,2-ones. Additionally, in the 
former case, a decrease in ΔEπ is partially compensated by 
strengthening of σ-interactions. Moreover, it should be noted 
that ΔEσ describes changes of two σ-bonds, whereas ΔEπ 
concerns only one bond. Therefore, at least for 2,3-deriva-
tives, σ-type interactions can also be significant.

At this point, it would be worth comparing previous 
1,2-naphthoquinone and 2,3-naphthoquinone isomers 
(Scheme 4) with phenanthrene and anthracene (Scheme 6). 
We can see that the two sets of isomers have a common 
fragment (the left one), although the other ones do not 
differ so much, as, in the sense that the two O atoms are 
changed by two HC=CH groups that are part of an aro-
matic six-membered ring. The corresponding EDA results 
for these systems (for phenanthrene and anthracene simi-
lar results were reported in Ref. [75]) are summarized in 
Table 1.

As in the case of quinone derivatives, 1,2-benzenoid 
analogue (phenanthrene) was found to be more stable 
than 2,3-one (anthracene). Again, we can observe that 
the main component which explains the stability differ-
ences in the two sets of isomers comes from the π-orbital 
interaction component (ΔEπ), with a much higher vari-
ability in quinone derivatives than between anthracene and 
phenanthrene.

Fig. 8  Components of attractive orbital interactions energy: a ΔEσ 
and b ΔEπ for 1,2- and 2,3- quinone derivatives with enlargement of 
the system by a consecutive ring, n

Fig. 9  Dependence of 〈SOMOπ|SOMOπ〉 overlaps between the 
orbitals with the unpaired π-electron of each fragment on the num-
ber of rings, n, of quinone derivatives. The red point denotes data for 
ortho-benzoquinone
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Finally, an important quantity related to stability of a 
given system is the hardness [58], η, defined by Eq. (14). 
Hardness is a measure of the resistance of chemical species 

to change its electronic configuration. As can be seen in 
Fig. 12, the HOMO–LUMO gaps of 1,2-systems are larger 
than for 2,3-ones, in line with greater stability of 1,2-deriv-
atives (see Fig. 4) as well as the changes observed for 
kinked and straight phenanthrene and anthracene by some 
of us [75]. It is worth to note that for 1,2-quinones, the 
maximum is observed for 1,2-naphthoquinone, whereas in 
the case of 2,3-derivatives, HOMO–LUMO gap decreases 
monotonically with enlarging of the molecule. Depend-
ences of HOMO and LUMO orbital energies on the num-
ber of rings for studied quinone derivatives are presented in 
Fig. S3. Energy of the HOMO increases (the value is less 
negative) in a regular way with increasing the number of 
rings for both isomers. LUMO energies of 1,2-quinones are 
higher than for 2,3-ones, according to greater stability of 
the former derivatives.

4  Conclusions

As a whole, 1,2-quinone derivatives of linear benzenoids 
are more stable than their 2,3-quinone isomers. For these 
latter, from 2,3-anthraquinone to longer analogues, the 
diradical singlet state is the ground state structure. By 
means of the energy decomposition analysis (EDA), we 
showed that the larger stability of 1,2-quinones is due to 
stronger bonding that comes from stronger orbital inter-
actions, in which π-contribution plays a main role. Better 
π-orbital interactions are a result of a more favorable over-
lap between the SOMOπ of the ·C4n−2H2n–CH·· and ··CH–
CO–CO· fragments in the 1,2-arrangement. Interestingly, 
the influence of the π-orbital interactions on the relative 

Fig. 10  Graphical presentation 
of SOMOπ orbitals of the a 
··CH–CO–CO·, b ·C6H4–CH··, 
and c ·C10H6–CH·· fragments

Fig. 11  Relationship between ΔEσ and ΔEπ for 1,2- and 2,3-quinone 
derivatives, data for ortho-benzoquinone are denoted by red point
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Scheme 6  Scheme of the fragmentation of phenanthrene (a) and 
anthracene (b)

Table 1  Comparison of the EDA analysis for 1,2- and 2,3-naphthoquinone (Scheme 4) and their benzenoid analogues (Scheme 6) [75]. Ener-
gies in kcal/mol

ΔEPauli ΔVelstat ΔEσ ΔEπ ΔEint ΔEdef ΔEBE

1,2-naphthoquinone 680.18 −409.53 −456.10 −97.30 −282.75 12.15 −252.22

2,3-naphthoquinone 700.50 −416.45 −463.64 −84.03 −263.77 15.73 −229.85

Phenanthrene 539.88 −342.11 −395.66 −85.55 −283.43 8.15 −275.28

Anthracene 555.07 −350.42 −400.75 −83.02 −279.12 8.08 −271.04
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stability between 1,2- and 2,3-naphthaquinones is larger 
than that observed between phenanthrene and anthracene. 
In both cases, the kinked isomers are favored due to better 
π-interactions.

Furthermore, 1,2-quinone derivatives present a mono-
tonic change of the different analyzed properties: either 
structural (C=O bond lengths), aromatic (HOMA, FLU, 
MCI), or energetic criteria. At difference, 2,3-quinone iso-
mers break this monotonic trend from 2,3-naphthoquinone 
to 2,3-anthroquinone in all the different measures. Again, 
through an EDA carried out with two equivalent fragments 
to form any of the two isomers, we can conclude that the 
orbital interactions in the π-system are the responsible for 
such difference.

Concerning the aromaticity analysis, for both isomers, 
the ring containing the quinoid fragment is antiaromatic, 
while electronic delocalization of the remaining rings is 
distributed differently. For 1,2-isomers, the aromaticity 
of the middle ring is the highest, whereas in the case of 
2,3-isomers, the most aromatic is the terminal ring. Elonga-
tion of the system causes the decrease in the aromaticity of 
all rings in both cases.
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Balaban AT (2009) Are thermodynamic and kinetic stabilities 
correlated? A topological index of reactivity toward electrophiles 
used as a criterion of aromaticity of polycyclic benzenoid hydro-
carbons. J Chem Inf Model 49:369–376

 18. Delamere C, Jakins C, Lewars E (2001) Tests for aromaticity 
applied to the pentalenoquinones—a computational study. Can J 
Chem 79:1492–1504

 19. Becke AD (1993) Density-functional thermochemistry. III. The 
role of exact exchange. J Chem Phys 98:5648–5652

Fig. 12  Hardness, η, (in eV) for 1,2- and 2,3-quinone derivatives 
with enlargement of the system by a consecutive ring, n



Theor Chem Acc (2015) 134:35 

1 3

Page 13 of 14 35

 20. Lee C, Yang W, Parr RG (1988) Development of the Colle–Sal-
vetti correlation-energy formula into a functional of the electron 
density. Phys Rev B 37:785–789

 21. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab 
Initio calculation of vibrational absorption and circular dichro-
ism spectra using density functional force fields. J Phys Chem 
98:11623–11627

 22. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-con-
sistent molecular orbital methods. XX. A basis set for correlated 
wave functions. J Chem Phys 72:650–654

 23. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets 
for molecular calculations. I. Second row atoms, Z = 11–18. J 
Chem Phys 72:5639–5648

 24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, 
Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson 
GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, 
Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, 
Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao 
O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro 
F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, 
Kobayashi R, Normand J, Raghavachari K, Rendell AJ, Burant 
C, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, 
Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts 
R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, 
Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth 
GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas 
Ö, Foresman JB, Ortiz JV, Cioslowski JD, Fox J (2009) Gaussian 
09, Revision A.1. Gaussian, Inc., Wallingford

 25. Hachmann J, Dorando JJ, Avilés M, Chan GK-L (2007) The 
radical character of the acenes: a density matrix renormalization 
group study. J Chem Phys 127:134309

 26. Malrieu JP, Trinquier G (2012) A recipe for geometry optimiza-
tion of diradicalar singlet states from broken-symmetry calcula-
tions. J Phys Chem A 116:8226–8237

 27. Snyder GJ (2012) Rational design of high-spin biradicaloids in 
the isobenzofulvene and isobenzoheptafulvene series. J Phys 
Chem A 116:5272–5291

 28. Chilkuri VG, Trinquier G, Amor NB, Malrieu JP, Guihéry N 
(2013) In search of organic compounds presenting a double 
exchange phenomenon. J Chem Theory Comput 9:4805–4815

 29. Luo D, Lee S, Zheng B, Sun Z, Zeng W, Huang K-W, Furukawa 
K, Kim D, Webster RD, Wu J (2014) Indolo[2,3-b]carbazoles 
with tunable ground states: how Clar’s aromatic sextet determines 
the singlet biradical character. Chem Sci 5:4944–4952

 30. Trinquier G, Malrieu JP (2015) Kekulé versus Lewis: when aro-
maticity prevents electron pairing and imposes polyradical char-
acter. Chem Eur J 21:814–828

 31. Poater J, Bickelhaupt FM, Sola M (2007) Didehydrophenan-
threnes: structure, singlet–triplet splitting, and aromaticity. J Phys 
Chem A 111:5063–5070

 32. Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) 
Towards an order-N DFT method. Theor Chem Acc 99:391–403

 33. te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gis-
bergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J 
Comput Chem 22:931–967

 34. Baerends EJ, Autschbach J, Bérces A, Berger JA, Bickelhaupt 
FM, Bo C, de Boeij PL, Boerrigter PM, Cavallo L, Chong DP, 
Deng L, Dickson RM, Ellis DE, van Faassen M, Fan L, Fischer 
TH, Fonseca Guerra C, van Gisbergen SJA, Groeneveld JA, Grit-
senko OV, Grüning M, Harris FE, van den Hoek P, Jacob CR, 
Jacobsen H, Jensen L, Kadantsev ES, van Kessel G, Klooster R, 
Kootstra F, van Lenthe E, McCormack DA, Michalak A, Neuge-
bauer J, Nicu VP, Osinga VP, Patchkovskii S, Philipsen PHT,Post 
D, Pye CC, Ravenek W, Romaniello P, Ros P, Schipper PRT, 
Schreckenbach G, Snijders J, Solà M, Swart M, Swerhone D, te 
Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, 

Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, 
Woo TK, Yakovlev AL, Ziegler T. Scientific Computing & Mod-
eling (SCM), Amsterdam, The Netherlands. See also: www.scm.
com

 35. Kitaura K, Morokuma K (1976) New energy decomposition 
scheme for molecular-interactions within Hartree–Fock approxi-
mation. Int J Quantum Chem 10:325–340

 36. Morokuma K (1977) Why do molecules interact? The origin of 
electron donor–acceptor complexes, hydrogen bonding, and pro-
ton affinity. Acc Chem Res 10:294–300

 37. Ziegler T, Rauk A (1977) On the calculation of bonding ener-
gies by the Hartree Fock Slater method—I. The transition state 
method. Theor Chim Acta 46:1–10

 38. Ziegler T, Rauk A (1979) A theoretical study of the ethylene-
metal bond in complexes between Cu+, Ag+, Au+, Pt0, or Pt2+ 
and ethylene, based on the Hartree–Fock–Slater transition-state 
method. Inorg Chem 18:1558–1565

 39. Bickelhaupt FM, Baerends EJ (2000) Kohn–Sham density func-
tional theory: predicting and understanding chemistry. Rev Com-
put Chem 15:1–86

 40. von Hopffgarten M, Frenking G (2012) Energy decomposition 
analysis. WIREs Comput Mol Sci 2:43–62

 41. Bickelhaupt FM, Nibbering NMM, van Wezenbeek EM, Baer-
ends EJ (1992) Central bond in the three CN• dimers NC–CN, 
CN–CN, and CN–NC: electron pair bonding and Pauli repulsion 
effects. J Phys Chem 96:4864–4873

 42. PvR Schleyer (2001) Aromaticity: introduction. Chem Rev 
101:1115–1117
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