Show simple item record

dc.contributor.authorPlebaniak, Robert
dc.contributor.authorGabeleh, Moosa
dc.date.accessioned2015-07-23T12:38:40Z
dc.date.available2015-07-23T12:38:40Z
dc.date.issued2015-04-09
dc.identifier.issn1687-1812
dc.identifier.urihttp://hdl.handle.net/11089/11165
dc.description.abstractA new class of multivalued non-self-mappings, called SK-contractions with respect to b-generalized pseudodistances, is introduced and used to investigate the existence of best proximity points by using an appropriate geometric property. Some new fixed point results in b-metric spaces are also obtained. Examples are given to support the usability of our main resultspl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Baselpl_PL
dc.relation.ispartofseriesFixed Point Theory and Applications;2015:50
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectbest proximity pointpl_PL
dc.subjectfixed pointpl_PL
dc.subjectSK-contractionpl_PL
dc.subjectb-generalized pseudodistancespl_PL
dc.titleMultivalued SK-contractions with respect to b-generalized pseudodistancespl_PL
dc.typeArticlepl_PL
dc.page.number1-20pl_PL
dc.contributor.authorAffiliationPlebaniak Robert, University of Łódź Department of Nonlinear Analysispl_PL
dc.contributor.authorAffiliationGabeleh Moosa, Ayatollah Boroujerdi University, Department of Mathematicspl_PL
dc.referencesKhamsi, MA, Kirk, WA: An Introduction to Metric Spaces and Fixed Point Theory. Pure and Applied Mathematics. Wiley-Interscience, New York (2001)pl_PL
dc.referencesKannan, R: Some results on fixed points. Am. Math. Mon. 76(4), 405-408 (1969)pl_PL
dc.referencesReich, S: Kannan’s fixed point theorem. Boll. Unione Mat. Ital. 4, 1-11 (1972)pl_PL
dc.referencesReich, S: Some remarks concerning contraction mappings. Can. Math. Bull. 14, 121-124 (1971)pl_PL
dc.referencesReich, S: Fixed points of contractive functions. Boll. Unione Mat. Ital. 5, 26-42 (1972)pl_PL
dc.referencesKikkawa, M, Suzuki, T: Some similarity between contractions and Kannan mappings. Fixed Point Theory Appl. 2010, Article ID 649749 (2010)pl_PL
dc.referencesDamjanovic, B, Doric, D: Multivalued generalizations of the Kannan fixed point theorem. Filomat 25, 125-131 (2011)pl_PL
dc.referencesKirk, WA, Reich, S, Veeramani, P: Proximinal retracts and best proximity pair theorems. Numer. Funct. Anal. Optim. 24, 851-862 (2003)pl_PL
dc.referencesAbkar, A, Gabeleh, M: The existence of best proximity points for multivalued non-self-mappings. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 107, 319-325 (2013)pl_PL
dc.referencesGabeleh, M: Best proximity points: global minimization of multivalued non-self mappings. Optim. Lett. 8, 1101-1112 (2014)pl_PL
dc.referencesGabeleh, M: Best proximity point theorems for single- and set-valued non-self mappings. Acta Math. Sci., Ser. B 34, 1661-1669 (2014)pl_PL
dc.referencesWlodarczyk, K, Plebaniak, R, Banach, A: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 70, 3332-3342 (2009)pl_PL
dc.referencesWlodarczyk, K, Plebaniak, R, Banach, A: Erratum to: ‘Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces’. Nonlinear Anal. 71, 3583-3586 (2009)pl_PL
dc.referencesSankar Raj, V: A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal. 74, 4804-4808 (2011)pl_PL
dc.referencesGabeleh, M: Global optimal solutions of non-self mappings. Sci. Bull. ‘Politeh.’ Univ. Buchar., Ser. A, Appl. Math. Phys. 75, 67-74 (2013)pl_PL
dc.referencesAbkar, A, Gabeleh, M: Global optimal solutions of noncyclic mappings in metric spaces. J. Optim. Theory Appl. 153, 298-305 (2012)pl_PL
dc.referencesGabeleh, M, Shahzad, N: Existence and uniqueness of a solution for some nonlinear programming problems. Mediterr. J. Math. 12, 133-146 (2015). doi:10.1007/s00009-013-0380-zpl_PL
dc.referencesCzerwik, S: Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 46, 263-276 (1998)pl_PL
dc.referencesKirk, WA, Shahzad, N: Fixed Point Theory in Distance Spaces. Springer, New York (2014)pl_PL
dc.referencesEldred, AA, Veeramani, P: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323(2), 1001-1006 (2006)pl_PL
dc.referencesAl-Thagafi, MA, Shahzad, N: Convergence and existence results for best proximity points. Nonlinear Anal. 70(10), 3665-3671 (2009)pl_PL
dc.referencesAli, MU, Kamran, T, Shahzad, N: Best proximity point for α-ψ-proximal contractive multimaps. Abstr. Appl. Anal. 2014, Article ID 181598 (2014)pl_PL
dc.referencesKarpinar, E, Raju Kosuru, GS, Tas, K: Best proximity theorems for Reich type cyclic orbital and Reich type Meir-Keeler contraction maps. J. Nonlinear Anal. Optim. 5(1), 1-10 (2014)pl_PL
dc.referencesKarpinar, E, Petrusel, G, Tas, K: Best proximity point theorems for KT-types cyclic orbital contraction mappings. Fixed Point Theory 13(2), 537-545 (2012)pl_PL
dc.referencesSadiq Basha, S, Shahzad, N: Best proximity point theorems for generalized proximal contractions. Fixed Point Theory Appl. 2012, 42 (2012)pl_PL
dc.referencesAl-Thagafi, MA, Shahzad, N: Best proximity pairs and equilibrium pairs for Kakutani multimaps. Nonlinear Anal. 70(3), 1209-1216 (2009)pl_PL
dc.referencesSuzuki, T, Kikkawa, M, Vetro, C: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71(7-8), 2918-2925 (2009)pl_PL
dc.referencesShukla, S: Partial b-metric spaces and fixed point theorems. Mediterr. J. Math. 11, 703-711 (2014)pl_PL
dc.referencesPlebaniak, R: On best proximity points for set-valued contractions of Nadler type with respect to b-generalized pseudodistances in b-metric spaces. Fixed Point Theory Appl. 2014, 39 (2014)pl_PL
dc.referencesKada, O, Suzuki, T, Takahashi, W: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 44(2), 381-391 (1996)pl_PL
dc.referencesTataru, D: Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms. J. Math. Anal. Appl. 163(2), 345-392 (1992)pl_PL
dc.referencesSuzuki, T: Generalized distance and existence theorems in complete metric spaces. J. Math. Anal. Appl. 253(2), 440-458 (2001)pl_PL
dc.referencesLin, L-J, Du, W-S: Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J. Math. Anal. Appl. 323(1), 360-370 (2006)pl_PL
dc.referencesValyi, I: A general maximality principle and a fixed point theorem in uniform space. Period. Math. Hung. 16(2), 127-134 (1985)pl_PL
dc.referencesWlodarczyk, K, Plebaniak, R: Maximality principle and general results of Ekeland and Caristi types without lower semicontinuity assumptions in cone uniform spaces with generalized pseudodistances. Fixed Point Theory Appl. 2010, Article ID 175453 (2010)pl_PL
dc.referencesWlodarczyk, K, Plebaniak, R: Contractions of Banach, Tarafdar, Meir-Keeler, ´ Ciri´c-Jachymski-Matkowski and Suzuki types and fixed points in uniform spaces with generalized pseudodistances. J. Math. Anal. Appl. 404(2), 338-350 (2013)pl_PL
dc.contributor.authorEmailrobpleb@math.uni.lodz.plpl_PL
dc.identifier.doi10.1186/s13663-015-0300-y


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa 3.0 Polska