dc.contributor.author | Brzostowski, Szymon | |
dc.contributor.author | Rodak, Tomasz | |
dc.date.accessioned | 2015-07-30T14:57:26Z | |
dc.date.available | 2015-07-30T14:57:26Z | |
dc.date.issued | 2015-01-13 | |
dc.identifier.issn | 1988-2807 | |
dc.identifier.uri | http://hdl.handle.net/11089/11274 | |
dc.description.abstract | Let K be an algebraically closed field and let K((XQ)) denote the field
of generalized series with coefficients in K. We propose definitions of the local
Łojasiewicz exponent of F = ( f1, . . . , fm) ∈ K[[X, Y ]]m as well as of the
Łojasiewicz exponent at infinity of F = ( f1, . . . , fm) ∈ K[X, Y ]m, which generalize
the familiar case of K = C and F ∈ C{X, Y }m (resp. F ∈ C[X, Y ]m), see
Cha˛dzy´nski and Krasi´nski (In: Singularities, 1988; In: Singularities, 1988; Ann Polon
Math 67(3):297–301, 1997; Ann Polon Math 67(2):191–197, 1997), and prove some
basic properties of such numbers. Namely, we show that in both cases the exponent
is attained on a parametrization of a component of F (Theorems 6 and 7), thus being
a rational number. To this end, we define the notion of the Łojasiewicz pseudoexponent
of F ∈ (K((XQ))[Y ])m for which we give a description of all the generalized
series that extract the pseudoexponent, in terms of their jets. In particular, we show
that there exist only finitely many jets of generalized series giving the pseudoexponent
of F (Theorem 5). The main tool in the proofs is the algebraic version of Newton’s
Polygon Method. The results are illustrated with some explicit examples. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Verlag | pl_PL |
dc.relation.ispartofseries | Revista Matemática Complutense;28 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.subject | Generalized power series | pl_PL |
dc.subject | Łojasiewicz exponent | pl_PL |
dc.subject | Parametrization | pl_PL |
dc.subject | Newton polygon method | pl_PL |
dc.title | The Łojasiewicz exponent over a field of arbitrary characteristic | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 487–504 | pl_PL |
dc.contributor.authorAffiliation | University of Łódź, Faculty of Mathematics and Computer Science | pl_PL |
dc.references | Abhyankar, S.S.: Two notes on formal power series. Proc. Am. Math. Soc. 7, 903–905 (1956) | pl_PL |
dc.references | Abhyankar, S.S.: Lectures on expansion techniques in algebraic geometry, volume 57 ofTata Institute of Fundamental Research Lectures onMathematics and Physics. Tata Institute of Fundamental Research, Bombay, Notes by Balwant Singh (1977) | pl_PL |
dc.references | Bivià-Ausina, C., Encinas, S.: Łojasiewicz exponent of families of ideals, Rees mixed multiplicities and Newton filtrations. Rev. Mat. Complut. 26(2), 773–798 (2013) | pl_PL |
dc.references | Bochnak, J., Risler, J.-J.: Sur les exposants de Lojasiewicz. Comment. Math. Helv. 50(4), 493–507 (1975) | pl_PL |
dc.references | Brzostowski, S.: Non-characteristic approximate roots of polynomials. J.Algebra 343, 143–159 (2011) | pl_PL |
dc.references | Antonio, C.: Algebroid curves in positive characteristic. Lecture Notes in Mathematics, vol. 813. Springer, Berlin (1980) | pl_PL |
dc.references | Cha˛dzy´nski, J., Krasi´nski, T.: Exponent of growth of polynomial mappings of C2 into C2. In Singularities (Warsaw, 1985), volume 20 of Banach Center Publ., PWN, Warsaw, pp. 147–160 (1988) | pl_PL |
dc.references | Cha˛dzy´nski, J., Krasi´nski, T.: On the Łojasiewicz exponent at infinity for polynomial mappings of C2 into C2 and components of polynomial automorphisms of C2. Ann. Polon. Math. 57(3), 291–302 (1992) | pl_PL |
dc.references | Cha˛dzy´nski, J., Krasi´nski, T.: A set on which the local Łojasiewicz exponent is attained. Ann. Polon. Math. 67(3), 297–301 (1997) | pl_PL |
dc.references | Cha˛dzy´nski, J., Krasi´nski, T.: A set on which the Łojasiewicz exponent at infinity is attained. Ann. Polon. Math. 67(2), 191–197 (1997) | pl_PL |
dc.references | Jacobson, N.: Basic algebra. II. W. H. Freeman and Company, New York, second edition (1989) | pl_PL |
dc.references | Kedlaya, K.S.: The algebraic closure of the power series field in positive characteristic. Proc. Am. Math. Soc. 129(12), 3461–3470 (2001). (electronic) | pl_PL |
dc.references | Kuo, T.C.: Computation of Lojasiewicz exponent of f (x, y). Comment. Math. Helv. 49, 201–213 (1974) | pl_PL |
dc.references | Lejeune-Jalabert, M., Teissier, B.: Clôture intégrale des idéaux et équisingularité. Ann. Fac. Sci. Toulouse Math. 17(6), 781–859 (2008) | pl_PL |
dc.references | Płoski, A.: Multiplicity and the Łojasiewicz exponent. In Singularities (Warsaw, 1985), volume 20 of Banach Center Publ., PWN, Warsaw, pp. 353–364 (1988) | pl_PL |
dc.references | Płoski, A.: Introduction to the local theory of plane algebraic curves. In: Krasi´nski, T., Spodzieja, S. (eds.) Analytic and Algebraic Geometry,Wydawnictwo Uniwersytetu Łódzkiego, pp. 115–134 (2013) | pl_PL |
dc.references | Ribenboim, P.: Fields: algebraically closed and others. Manuscr. Math. 75(2), 115–150 (1992) | pl_PL |
dc.references | Spodzieja, S.: The Łojasiewicz exponent of subanalytic sets. Ann. Polon. Math. 87, 247–263 (2005) | pl_PL |
dc.contributor.authorEmail | brzosts@math.uni.lodz.pl | pl_PL |
dc.contributor.authorEmail | rodakt@math.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.1007/s13163-014-0165-3 | |