Pokaż uproszczony rekord

dc.contributor.authorBrzostowski, Szymon
dc.contributor.authorRodak, Tomasz
dc.date.accessioned2015-07-30T14:57:26Z
dc.date.available2015-07-30T14:57:26Z
dc.date.issued2015-01-13
dc.identifier.issn1988-2807
dc.identifier.urihttp://hdl.handle.net/11089/11274
dc.description.abstractLet K be an algebraically closed field and let K((XQ)) denote the field of generalized series with coefficients in K. We propose definitions of the local Łojasiewicz exponent of F = ( f1, . . . , fm) ∈ K[[X, Y ]]m as well as of the Łojasiewicz exponent at infinity of F = ( f1, . . . , fm) ∈ K[X, Y ]m, which generalize the familiar case of K = C and F ∈ C{X, Y }m (resp. F ∈ C[X, Y ]m), see Cha˛dzy´nski and Krasi´nski (In: Singularities, 1988; In: Singularities, 1988; Ann Polon Math 67(3):297–301, 1997; Ann Polon Math 67(2):191–197, 1997), and prove some basic properties of such numbers. Namely, we show that in both cases the exponent is attained on a parametrization of a component of F (Theorems 6 and 7), thus being a rational number. To this end, we define the notion of the Łojasiewicz pseudoexponent of F ∈ (K((XQ))[Y ])m for which we give a description of all the generalized series that extract the pseudoexponent, in terms of their jets. In particular, we show that there exist only finitely many jets of generalized series giving the pseudoexponent of F (Theorem 5). The main tool in the proofs is the algebraic version of Newton’s Polygon Method. The results are illustrated with some explicit examples.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Verlagpl_PL
dc.relation.ispartofseriesRevista Matemática Complutense;28
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectGeneralized power seriespl_PL
dc.subjectŁojasiewicz exponentpl_PL
dc.subjectParametrizationpl_PL
dc.subjectNewton polygon methodpl_PL
dc.titleThe Łojasiewicz exponent over a field of arbitrary characteristicpl_PL
dc.typeArticlepl_PL
dc.page.number487–504pl_PL
dc.contributor.authorAffiliationUniversity of Łódź, Faculty of Mathematics and Computer Sciencepl_PL
dc.referencesAbhyankar, S.S.: Two notes on formal power series. Proc. Am. Math. Soc. 7, 903–905 (1956)pl_PL
dc.referencesAbhyankar, S.S.: Lectures on expansion techniques in algebraic geometry, volume 57 ofTata Institute of Fundamental Research Lectures onMathematics and Physics. Tata Institute of Fundamental Research, Bombay, Notes by Balwant Singh (1977)pl_PL
dc.referencesBivià-Ausina, C., Encinas, S.: Łojasiewicz exponent of families of ideals, Rees mixed multiplicities and Newton filtrations. Rev. Mat. Complut. 26(2), 773–798 (2013)pl_PL
dc.referencesBochnak, J., Risler, J.-J.: Sur les exposants de Lojasiewicz. Comment. Math. Helv. 50(4), 493–507 (1975)pl_PL
dc.referencesBrzostowski, S.: Non-characteristic approximate roots of polynomials. J.Algebra 343, 143–159 (2011)pl_PL
dc.referencesAntonio, C.: Algebroid curves in positive characteristic. Lecture Notes in Mathematics, vol. 813. Springer, Berlin (1980)pl_PL
dc.referencesCha˛dzy´nski, J., Krasi´nski, T.: Exponent of growth of polynomial mappings of C2 into C2. In Singularities (Warsaw, 1985), volume 20 of Banach Center Publ., PWN, Warsaw, pp. 147–160 (1988)pl_PL
dc.referencesCha˛dzy´nski, J., Krasi´nski, T.: On the Łojasiewicz exponent at infinity for polynomial mappings of C2 into C2 and components of polynomial automorphisms of C2. Ann. Polon. Math. 57(3), 291–302 (1992)pl_PL
dc.referencesCha˛dzy´nski, J., Krasi´nski, T.: A set on which the local Łojasiewicz exponent is attained. Ann. Polon. Math. 67(3), 297–301 (1997)pl_PL
dc.referencesCha˛dzy´nski, J., Krasi´nski, T.: A set on which the Łojasiewicz exponent at infinity is attained. Ann. Polon. Math. 67(2), 191–197 (1997)pl_PL
dc.referencesJacobson, N.: Basic algebra. II. W. H. Freeman and Company, New York, second edition (1989)pl_PL
dc.referencesKedlaya, K.S.: The algebraic closure of the power series field in positive characteristic. Proc. Am. Math. Soc. 129(12), 3461–3470 (2001). (electronic)pl_PL
dc.referencesKuo, T.C.: Computation of Lojasiewicz exponent of f (x, y). Comment. Math. Helv. 49, 201–213 (1974)pl_PL
dc.referencesLejeune-Jalabert, M., Teissier, B.: Clôture intégrale des idéaux et équisingularité. Ann. Fac. Sci. Toulouse Math. 17(6), 781–859 (2008)pl_PL
dc.referencesPłoski, A.: Multiplicity and the Łojasiewicz exponent. In Singularities (Warsaw, 1985), volume 20 of Banach Center Publ., PWN, Warsaw, pp. 353–364 (1988)pl_PL
dc.referencesPłoski, A.: Introduction to the local theory of plane algebraic curves. In: Krasi´nski, T., Spodzieja, S. (eds.) Analytic and Algebraic Geometry,Wydawnictwo Uniwersytetu Łódzkiego, pp. 115–134 (2013)pl_PL
dc.referencesRibenboim, P.: Fields: algebraically closed and others. Manuscr. Math. 75(2), 115–150 (1992)pl_PL
dc.referencesSpodzieja, S.: The Łojasiewicz exponent of subanalytic sets. Ann. Polon. Math. 87, 247–263 (2005)pl_PL
dc.contributor.authorEmailbrzosts@math.uni.lodz.plpl_PL
dc.contributor.authorEmailrodakt@math.uni.lodz.plpl_PL
dc.identifier.doi10.1007/s13163-014-0165-3


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 3.0 Polska