Pokaż uproszczony rekord

dc.contributor.authorWardowski, Dariusz
dc.date.accessioned2015-09-03T13:04:58Z
dc.date.available2015-09-03T13:04:58Z
dc.date.issued2015-06-03
dc.identifier.issn1687-1847
dc.identifier.urihttp://hdl.handle.net/11089/11661
dc.description.abstractThe aim of the paper is to present a nontrivial and natural extension of the comparison result and the monotone iterative procedure based on upper and lower solutions, which were recently established in (Wang et al. in Appl. Math. Lett. 25:1019-1024, 2012), to the case of any finite number of nonlinear fractional differential equations.pl_PL
dc.description.sponsorshipThe author is very grateful to the reviewers for the remarks, which improved the final version of the manuscript. This article was financially supported by University of Łódź as a part of donation for the research activities aimed at the development of young scientists, grant no. 545/1117.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer International Publishingpl_PL
dc.relation.ispartofseriesAdvances in Difference Equations;2015
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleMonotone iterative procedure and systems of a finite number of nonlinear fractional differential equationspl_PL
dc.typeArticlepl_PL
dc.page.number1-16pl_PL
dc.contributor.authorAffiliationDepartment of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódźpl_PL
dc.referencesBabakhani, A, Daftardar-Gejji, V: Existence of positive solutions of nonlinear fractional differential equations. J. Math. Anal. Appl. 278, 434-442 (2003)pl_PL
dc.referencesBai, ZB: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 72, 916-924 (2010)pl_PL
dc.referencesBai, ZB, Lu, HS: Positive solutions of boundary value problems of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495-505 (2005)pl_PL
dc.referencesBelmekki, M, Benchohra, M: Existence results for fractional order semilinear functional differential equations with nondense domain. Nonlinear Anal. 72, 925-932 (2010)pl_PL
dc.referencesBelmekki, M, Nieto, JJ, Rodriguez-Lopez, R: Existence of periodic solution for a nonlinear fractional differential equation. Bound. Value Probl. 2009, Article ID 324561 (2009)pl_PL
dc.referencesEl-Shahed, M: Positive solutions for boundary value problem of nonlinear fractional differential equation. Abstr. Appl. Anal. 2007, Article ID 10368 (2007)pl_PL
dc.referencesLakshmikantham, V, Vatsala, AS: Basic theory of fractional differential equations. Nonlinear Anal. 69(8), 2677-2682 (2008)pl_PL
dc.referencesLakshmikanthan, V, Vatsala, AS: General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Lett. 21, 828-834 (2008)pl_PL
dc.referencesMcRae, FA: Monotone iterative technique and existence results for fractional differential equations. Nonlinear Anal. 71, 6093-6096 (2009)pl_PL
dc.referencesWang, G, Agarwal, RP, Cabada, A: Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations. Appl. Math. Lett. 25, 1019-1024 (2012)pl_PL
dc.referencesWei, Z, Li, Q, Che, J: Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative. J. Math. Anal. Appl. 367, 260-272 (2010)pl_PL
dc.referencesZhang, S: Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives. Nonlinear Anal. 71, 2087-2093 (2009)pl_PL
dc.referencesZhang, S: The existence of a positive solution for a nonlinear fractional differential equation. J. Math. Anal. Appl. 252, 804-812 (2000)pl_PL
dc.referencesAhmad, B, Nieto, JJ: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838-1843 (2009)pl_PL
dc.referencesBai, C, Fang, J: The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations. Appl. Math. Comput. 150, 611-621 (2004)pl_PL
dc.referencesBhalekar, S, Daftardar-Gejji, V: Fractional ordered Liu system with time-delay. Commun. Nonlinear Sci. Numer. Simul. 15, 2178-2191 (2010)pl_PL
dc.referencesChen, Y, An, H: Numerical solutions of coupled Burgers equations with time and space fractional derivatives. Appl. Math. Comput. 200, 87-95 (2008)pl_PL
dc.referencesDaftardar-Gejji, V: Positive solutions of a system of non-autonomous fractional differential equations. J. Math. Anal. Appl. 302, 56-64 (2005)pl_PL
dc.referencesGafiychuk, V, Datsko, B, Meleshko, V: Mathematical modeling of time fractional reaction-diffusion systems. J. Comput. Appl. Math. 220, 215-225 (2008)pl_PL
dc.referencesJafari, H, Daftardar-Gejji, V: Solving a system of nonlinear fractional differential equations using Adomian decomposition. J. Comput. Appl. Math. 196, 644-651 (2006)pl_PL
dc.referencesLazarevi, MP: Finite time stability analysis of PDα fractional control of robotic time-delay systems. Mech. Res. Commun. 33, 269-279 (2006)pl_PL
dc.referencesSu, X: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22, 64-69 (2009)pl_PL
dc.referencesKilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)pl_PL
dc.referencesPodlubny, I: Fractional Differential Equations. Mathematics in Science and Engineering. Academic Press, New York (1999)pl_PL
dc.referencesSamko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993)pl_PL
dc.contributor.authorEmailwardd@math.uni.lodz.plpl_PL
dc.identifier.doi10.1186/s13662-015-0504-9
dc.relation.volume167pl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 3.0 Polska