Show simple item record

dc.contributor.authorZielinski, Bartosz
dc.contributor.authorMaślanka, Paweł
dc.date.accessioned2016-04-27T07:34:19Z
dc.date.available2016-04-27T07:34:19Z
dc.date.issued2014
dc.identifier.issn2075-1680
dc.identifier.urihttp://hdl.handle.net/11089/17882
dc.description.abstractAllegories are enriched categories generalizing a category of sets and binary relations. Accordingly, relational products in an allegory can be viewed as a generalization of Cartesian products. There are several definitions of relational products currently in the literature. Interestingly, definitions for binary products do not generalize easily to n-ary ones. In this paper, we provide a new definition of an n-ary relational product, and we examine its properties.pl_PL
dc.description.sponsorshipWe would like to thank the reviewers for their helpful suggestions.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPI AGpl_PL
dc.relation.ispartofseriesAxioms;4
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectallegoriespl_PL
dc.subjectrelationspl_PL
dc.subjectrelational productpl_PL
dc.titleWeak n-Ary Relational Products in Allegoriespl_PL
dc.typeArticlepl_PL
dc.page.number342-359pl_PL
dc.contributor.authorAffiliationUniversity of Łodź, Faculty of Physics and Applied Informaticspl_PL
dc.referencesTarski, A.; Givant, S.R. A Formalization of Set Theory without Variables; American Mathematical Society: Providence, RI, USA, 1987; Volume 41pl_PL
dc.referencesGivant, S. The Calculus of Relations as a Foundation for Mathematics. J. Autom. Reason. 2006, 37, 277–322pl_PL
dc.referencesSchmidt, G.; Ströhlein, T. Relations and Graphs; Springer Heidelberg: Berlin, Germany, 1993pl_PL
dc.referencesBerghammer, R.; von Karger, B. Relational Semantics of Functional Programs. In Relational Methods in Computer Science; Brink, C., Kahl, W., Schmidt, G., Eds.; Advances in Computing Sciences, Springer Vienna: Vienna, Austria, 1997; pp. 115–130pl_PL
dc.referencesAboul-Hosn, K.; Kozen, D. Relational Semantics for Higher-Order Programs. In Mathematics of Program Construction; Springer: Berlin, Germany, 2006; pp. 29–48pl_PL
dc.referencesBackhouse, R.; Hoogendijk, P. Elements of a relational theory of datatypes. In Formal Program Development; Springer: Berlin, Germany, 1993; pp. 7–42pl_PL
dc.referencesBerghammer, R.; Zierer, H. Relational algebraic semantics of deterministic and nondeterministic programs. Theor. Comput. Sci. 1986, 43, 123–147pl_PL
dc.referencesBackhouse, R.C.; Hoogendijk, P.; Voermans, E.; van der Woude, J. A Relational Theory of Datatypes; Department of Mathematics and Computer Science, Eindhoven University of Technology: Eindhoven, The Netherlands, 1992pl_PL
dc.referencesCodd, E.F. A Relational Model of Data for Large Shared Data Banks. Commun. ACM 1970, 13, 377–387pl_PL
dc.referencesZieliński, B.; Maślanka, P.; Sobieski, Ś. Allegories for Database Modeling. In Model and Data Engineering; Lecture Notes in Computer Science; Cuzzocrea, A., Maabout, S., Eds.; Springer-Verlag: Berlin, Germany, 2013; Volume 8216, pp. 278–289pl_PL
dc.referencesBerghammer, R.; Haeberer, A.; Schmidt, G.; Veloso, P. Comparing two different approaches to products in abstract relation algebra. In Algebraic Methodology and Software Technology (AMAST’93); Springer: Berlin, Germany, 1994; pp. 167–176pl_PL
dc.referencesZierer, H. Relation algebraic domain constructions. Theor. Comput. Sci. 1991, 87, 163–188pl_PL
dc.referencesFreyd, P.; Scedrov, A. Categories, Allegories; North-Holland Mathematical Library, Elsevier Science: Amsterdam, The Netherlands, 1990pl_PL
dc.referencesWinter, M. Products in categories of relations. J. Log. Algebr. Program. 2008, 76, 145–159pl_PL
dc.referencesWinter, M. Weak relational products. In Relations and Kleene Algebra in Computer Science; Springer: Berlin, Germany, 2006; pp. 417–431pl_PL
dc.referencesDesharnais, J. Monomorphic Characterization of N-ary Direct Products. Inf. Sci. 1999, 119, 275–288pl_PL
dc.referencesDesharnais, J. Monomorphic Characterization of N-ary Direct Products. Inf. Sci. 1999, 119, 275–288pl_PL
dc.referencesDavey, B.; Priestley, H. Introduction to Lattices and Order; Cambridge mathematical text books, Cambridge University Press: Cambridge, UK, 2002pl_PL
dc.contributor.authorEmailbzielinski@uni.lodz.plpl_PL
dc.relation.volume3pl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa 3.0 Polska