Pokaż uproszczony rekord

dc.contributor.authorZielinski, Bartosz
dc.contributor.authorMaślanka, Paweł
dc.date.accessioned2016-04-27T07:34:19Z
dc.date.available2016-04-27T07:34:19Z
dc.date.issued2014
dc.identifier.issn2075-1680
dc.identifier.urihttp://hdl.handle.net/11089/17882
dc.description.abstractAllegories are enriched categories generalizing a category of sets and binary relations. Accordingly, relational products in an allegory can be viewed as a generalization of Cartesian products. There are several definitions of relational products currently in the literature. Interestingly, definitions for binary products do not generalize easily to n-ary ones. In this paper, we provide a new definition of an n-ary relational product, and we examine its properties.pl_PL
dc.description.sponsorshipWe would like to thank the reviewers for their helpful suggestions.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPI AGpl_PL
dc.relation.ispartofseriesAxioms;4
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectallegoriespl_PL
dc.subjectrelationspl_PL
dc.subjectrelational productpl_PL
dc.titleWeak n-Ary Relational Products in Allegoriespl_PL
dc.typeArticlepl_PL
dc.page.number342-359pl_PL
dc.contributor.authorAffiliationUniversity of Łodź, Faculty of Physics and Applied Informaticspl_PL
dc.referencesTarski, A.; Givant, S.R. A Formalization of Set Theory without Variables; American Mathematical Society: Providence, RI, USA, 1987; Volume 41pl_PL
dc.referencesGivant, S. The Calculus of Relations as a Foundation for Mathematics. J. Autom. Reason. 2006, 37, 277–322pl_PL
dc.referencesSchmidt, G.; Ströhlein, T. Relations and Graphs; Springer Heidelberg: Berlin, Germany, 1993pl_PL
dc.referencesBerghammer, R.; von Karger, B. Relational Semantics of Functional Programs. In Relational Methods in Computer Science; Brink, C., Kahl, W., Schmidt, G., Eds.; Advances in Computing Sciences, Springer Vienna: Vienna, Austria, 1997; pp. 115–130pl_PL
dc.referencesAboul-Hosn, K.; Kozen, D. Relational Semantics for Higher-Order Programs. In Mathematics of Program Construction; Springer: Berlin, Germany, 2006; pp. 29–48pl_PL
dc.referencesBackhouse, R.; Hoogendijk, P. Elements of a relational theory of datatypes. In Formal Program Development; Springer: Berlin, Germany, 1993; pp. 7–42pl_PL
dc.referencesBerghammer, R.; Zierer, H. Relational algebraic semantics of deterministic and nondeterministic programs. Theor. Comput. Sci. 1986, 43, 123–147pl_PL
dc.referencesBackhouse, R.C.; Hoogendijk, P.; Voermans, E.; van der Woude, J. A Relational Theory of Datatypes; Department of Mathematics and Computer Science, Eindhoven University of Technology: Eindhoven, The Netherlands, 1992pl_PL
dc.referencesCodd, E.F. A Relational Model of Data for Large Shared Data Banks. Commun. ACM 1970, 13, 377–387pl_PL
dc.referencesZieliński, B.; Maślanka, P.; Sobieski, Ś. Allegories for Database Modeling. In Model and Data Engineering; Lecture Notes in Computer Science; Cuzzocrea, A., Maabout, S., Eds.; Springer-Verlag: Berlin, Germany, 2013; Volume 8216, pp. 278–289pl_PL
dc.referencesBerghammer, R.; Haeberer, A.; Schmidt, G.; Veloso, P. Comparing two different approaches to products in abstract relation algebra. In Algebraic Methodology and Software Technology (AMAST’93); Springer: Berlin, Germany, 1994; pp. 167–176pl_PL
dc.referencesZierer, H. Relation algebraic domain constructions. Theor. Comput. Sci. 1991, 87, 163–188pl_PL
dc.referencesFreyd, P.; Scedrov, A. Categories, Allegories; North-Holland Mathematical Library, Elsevier Science: Amsterdam, The Netherlands, 1990pl_PL
dc.referencesWinter, M. Products in categories of relations. J. Log. Algebr. Program. 2008, 76, 145–159pl_PL
dc.referencesWinter, M. Weak relational products. In Relations and Kleene Algebra in Computer Science; Springer: Berlin, Germany, 2006; pp. 417–431pl_PL
dc.referencesDesharnais, J. Monomorphic Characterization of N-ary Direct Products. Inf. Sci. 1999, 119, 275–288pl_PL
dc.referencesDesharnais, J. Monomorphic Characterization of N-ary Direct Products. Inf. Sci. 1999, 119, 275–288pl_PL
dc.referencesDavey, B.; Priestley, H. Introduction to Lattices and Order; Cambridge mathematical text books, Cambridge University Press: Cambridge, UK, 2002pl_PL
dc.contributor.authorEmailbzielinski@uni.lodz.plpl_PL
dc.relation.volume3pl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 3.0 Polska