Pokaż uproszczony rekord

dc.contributor.authorNazarski, Ryszard Bolesław
dc.contributor.authorWałejko, Piotr
dc.contributor.authorWitkowski, Stanisław
dc.date.accessioned2016-12-14T16:36:37Z
dc.date.available2016-12-14T16:36:37Z
dc.date.issued2016
dc.identifier.issn1477-0520
dc.identifier.issn1477-0539
dc.identifier.urihttp://hdl.handle.net/11089/20203
dc.description.abstractOverall conformations of both anomeric per-O-acetylated glucosyl derivatives of 2,2,5,7,8-pentamethylchroman- 6-ol were studied in the context of their high flexibility, on the basis of NMR spectra in CDCl3 solution and related DFT calculation results. A few computational protocols were used, including diverse density functional/basis set combinations with a special emphasis on accounting (at various steps of the study) for the impact of intramolecular London-dispersion (LD) effects on geometries and relative Gibbs free energies (ΔGs) of different conformers coexisting in solution. The solvent effect was simulated by an IEF-PCM approach with the UFF radii; its other variants, including the use of the recently introduced IDSCRF radii, were employed for a few compact B3LYP-GD3BJ optimized structures showing one small imaginary vibrational frequency. The advantage of using IDSCRF radii for such purposes was shown. Of the four tested DFT methods, only the application of the B3LYP/6-31+G(d,p) approximation afforded ensembles of 7–8 single forms for which population-average values of computed NMR parameters (δH, δC and some nJHH data) were in close agreement with those measured experimentally; binuclear (δH,C 1 : 1) correlations, rH,C 2 = 0.9998. The associated individual ΔG values, corrected for LD interactions by applying Grimme’s DFT-D3 terms, afforded relative contents of different contributors to the analyzed conformational families in much better agreement with pertinent DFT/NMR-derived populations (i.e., both data sets were found to be practically equal within the limits of estimated errors) than those calculated from dispersion uncorrected ΔGs. All these main findings were confirmed by additional results obtained at the MP2 level of theory. Various other aspects of the study such as the crystal vs. solution structure, gg/gt rotamer ratio, diagnostic (de)shielding effects, dihydrogen C–H⋯H–C contacts, and doubtful applicability of some specialized DFT functionals (M06-2X, ωB97X-D and B3LYP-GD3BJ) for the description of highly flexible molecules are also discussed in detail.pl_PL
dc.language.isoenpl_PL
dc.publisherThe Royal Society of Chemistrypl_PL
dc.relation.ispartofseriesOrganic & Biomolecular Chemistry;14
dc.rightsUznanie autorstwa-Użycie niekomercyjne 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/pl/*
dc.titleMulti-conformer molecules in solutions: an NMR-based DFT/MP2 conformational study of two glucopyranosides of a vitamin E model compoundpl_PL
dc.typeArticlepl_PL
dc.page.number3142-3158pl_PL
dc.contributor.authorAffiliationUniversity of Łódź, Faculty of Chemistry, Department of Theoretical and Structural Chemistrypl_PL
dc.contributor.authorAffiliationUniversity of Białystok, Institute of Chemistrypl_PL
dc.referencesE. Michalik and R. B. Nazarski, Tetrahedron, 2004, 60, 9213–9222pl_PL
dc.referencesR. B. Nazarski, J. Phys. Org. Chem., 2009, 22, 834–844pl_PL
dc.referencesR. B. Nazarski, B. Pasternak and S. Leśniak, Tetrahedron, 2011, 67, 6901–6916pl_PL
dc.referencesR. Ditchfield, Mol. Phys., 1974, 27, 789–807pl_PL
dc.referencesK. Wolinski, J. F. Hilton and P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251–8260pl_PL
dc.referencesJ. R. Cheeseman, G. W. Trucks, T. A. Keith and M. J. Frisch, J. Chem. Phys., 1996, 104, 5497–5509pl_PL
dc.referencesT. Helgaker, M. Jaszuński and K. Ruud, Chem. Rev., 1999, 99, 293–352pl_PL
dc.referencesCalculation of NMR and EPR Parameters. Theory and Applications, ed. M. Kaupp, M. Bühl and V. G. Malkin, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004pl_PL
dc.referencesM. W. Lodewyk, M. R. Siebert and D. J. Tantillo, J. Chem. Rev., 2012, 112, 1839–1862pl_PL
dc.referencesG. W. Burton and K. U. Ingold, Acc. Chem. Res., 1986, 19, 194–201pl_PL
dc.referencesP. B. Nielsen, A. Müllertz, T. Norling and H. G. Kristensen, Int. J. Pharm., 2001, 222, 217–224pl_PL
dc.referencesC.-C. Chang, J.-J. Lee, C.-W. Chiang, T. Jayakumar, G. Hsiao, C.-Y. Hsieh and J.-R. Sheu, Pharm. Biol., 2010, 48, 938–946pl_PL
dc.referencesJ. R. Sheu, C. R. Lee, G. Hsiao, W. C. Hung, Y. M. Lee, Y. C. Chen and M. H. Yen, Life Sci., 1999, 65, 197–206pl_PL
dc.referencesJ. R. Sheu, C. R. Lee, C. C. Lin, Y. C. Kan, C. H. Lin, W. C. Hung, Y. M. Lee and M. H. Yen, Br. J. Pharmacol., 1999, 127, 1206–1212pl_PL
dc.referencesY. J. Suzuki and L. Packer, Biochem. Biophys. Res. Commun., 1993, 193, 277–283pl_PL
dc.referencesT. A. Thompson and G. Wilding, Mol. Cancer Ther., 2003, 2, 797–803pl_PL
dc.referencesD. Liang, J. Lin, H. B. Grossman, J. Ma, B. Wei, C. P. Dinney and X. Wu, Cancer, Causes Control, Pap. Symp., 2008, 19, 981–992pl_PL
dc.referencesS. Witkowski and P. Wałejko, Z. Naturforsch., B: Chem. Sci., 2001, 56, 411–415pl_PL
dc.referencesS. Witkowski and P. Wałejko, Z. Naturforsch., B: Chem. Sci., 2002, 57, 571–578pl_PL
dc.referencesA. Hryniewicka, P. Wałejko, J. Morzycki and S. Witkowski, Pol. J. Chem., 2009, 83, 78–80pl_PL
dc.referencesT. Parman, D. I. Bunin, H. H. Ng, J. E. McDunn, J. E. Wulff, A. Wang, R. Swezey, L. Rasay, D. G. Fairchild, I. M. Kapetanovic and C. E. Green, Toxicol. Sci., 2011, 124, 487–501pl_PL
dc.referencesK. Shimoda, Y. Kondo, K. Abe, H. Hamada and H. Hamada, Tetrahedron Lett., 2006, 47, 2695–2698pl_PL
dc.referencesT. Satoh, H. Miyataka, K. Yamamoto and T. Hirano, Chem. Pharm. Bull., 2001, 49, 948–953pl_PL
dc.referencesS. Witkowski, D. Maciejewska and I. Wawer, J. Chem. Soc., Perkin Trans. 2, 2000, 1471–1476pl_PL
dc.referencesS. Witkowski and I. Wawer, J. Chem. Soc., Perkin Trans. 2, 2002, 433–436pl_PL
dc.referencesS. Witkowski, K. Paradowska and I. Wawer, Magn. Reson. Chem., 2004, 42, 863–869pl_PL
dc.referencesD. K. Stępień, M. K. Cyrański, Ł. Dobrzycki, P. Wałejko, A. Baj, S. Witkowski, K. Paradowska and I. Wawer, J. Mol. Struct., 2014, 1076, 512–517pl_PL
dc.referencesM. Górecki, A. Suszczyńska, M. Woźnica, A. Baj, M. Wolniak, M. K. Cyrański, S. Witkowski and J. Frelek, Org. Biomol. Chem., 2014, 12, 2235–2254pl_PL
dc.referencesP. Karlson, H. B. F. Dixon, C. Liébecq, K. L. Loening, G. P. Moss, J. Reedijk, S. F. Velick and J. F. G. Vliegenthar, Pure Appl. Chem., 1982, 54, 1507–1510pl_PL
dc.referencesK. Brzezinski, P. Wałejko, A. Baj, S. Witkowski and Z. Dauter, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2011, 67, o718–o718pl_PL
dc.referencesJ. Tomasi, B. Mennucci and E. Cancès, J. Mol. Struct. (THEOCHEM), 1999, 464, 211–226pl_PL
dc.referencesJ. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999–3094pl_PL
dc.referencesG. Scalmani and M. J. Frisch, J. Chem. Phys., 2010, 132, 114110pl_PL
dc.referencesJ.-Y. Tao, W.-H. Mu, G. A. Chass, T.-H. Tang and D.-C. Fang, Int. J. Quantum Chem., 2013, 113, 975–984pl_PL
dc.referencesD.-C. Fang, IDSCRF-RADII, Beijing Normal University, Beijing, Chinapl_PL
dc.referencesL. Zhao and D.-C. Fang, Eur. J. Org. Chem., 2015, 4772–4781pl_PL
dc.referencesZhang and D.-C. Fang, Org. Biomol. Chem., 2015, 13, 7950–7960pl_PL
dc.referencesW.-H. Mu, S.-Y. Xia, Y. Li, D.-C. Fang, G. Wei and G. A. Chass, J. Org. Chem., 2015, 80, 9108–9117pl_PL
dc.referencesE. A. Skorupska, R. B. Nazarski, M. Ciechańska, A. Jóźwiak and A. Kłys, Tetrahedron, 2013, 69, 8147–8154pl_PL
dc.referencesR. B. Nazarski, J. Inclusion Phenom. Macrocyclic Chem., 2014, 78, 299–310pl_PL
dc.referencesJ. Vondrášek, L. Bendová, V. Klusák and P. Hobza, J. Am. Chem. Soc., 2005, 127, 2615–2619pl_PL
dc.referencesT. van Mourik, J. Chem. Theory Comput., 2008, 4, 1610–1619pl_PL
dc.referencesS. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104pl_PL
dc.referencesI. Wawer and S. Witkowski, Curr. Org. Chem., 2001, 5, 987–999pl_PL
dc.referencesY.-M. Xing, L. Zhang and D.-C. Fang, Organometallics, 2015, 34, 770–777pl_PL
dc.referencesS. Grimme, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2011, 1, 211–228pl_PL
dc.referencesS. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465pl_PL
dc.referencesN. Marom, A. Tkatchenko, M. Rossi, V. V. Gobre, O. Hod, M. Scheffler and L. Kronik, J. Chem. Theory Comput., 2011, 7, 3944–3951pl_PL
dc.referencesJ. Klimeš and A. Michaelides, J. Chem. Phys., 2012, 137, 120901pl_PL
dc.referencesD. Roy, M. Marianski, N. T. Maitra and J. J. Dannenberg, J. Chem. Phys., 2012, 137, 134109pl_PL
dc.referencesS. Grimme and M. Steinmetz, Phys. Chem. Chem. Phys., 2013, 15, 16031–16042pl_PL
dc.referencesL. Goerigk, J. Chem. Theory Comput., 2014, 10, 968–980pl_PL
dc.referencesL. I. Smith, H. E. Ungnade, H. H. Hoehn and S. Wawzonek, J. Org. Chem., 1939, 4, 311–317pl_PL
dc.referencesY. Yamamoto and K. Itonaga, Org. Lett., 2009, 11, 717–720pl_PL
dc.referencesB. Helferich and E. Schmitz-Hillebrecht, Berichte, 1933, 66, 378–383pl_PL
dc.referencesJ. Herzig, A. Nudelman, H. E. Gottlieb and B. Fischer, J. Org. Chem., 1986, 51, 727–730pl_PL
dc.referencesR. B. Nazarski, Magn. Reson. Chem., 2003, 41, 70–74pl_PL
dc.referencesJ. F. Stoddart, Stereochemistry of Carbohydrates, Wiley-Interscience, New York, 1971, pp. 129–145pl_PL
dc.referencesD. R. Bundle and R. U. Lemieux, Methods Carbohydr. Chem., 1976, 7, 79–86pl_PL
dc.referencesJ. C. Lindon and A. G. Ferrige, Prog. Nucl. Magn. Reson. Spectrosc., 1980, 14, 27–66pl_PL
dc.referencesT. Kupka and J. O. Dzięgielewski, Magn. Reson. Chem., 1988, 26, 353–357pl_PL
dc.referencesF. A. Anet and D. J. O'Leary, Tetrahedron Lett., 1989, 30, 2755–2758pl_PL
dc.referencesL. Griffiths, Magn. Reson. Chem., 2001, 39, 194–202pl_PL
dc.referencesC. Morat, F. R. Taravel and M. R. Vignon, Magn. Reson. Chem., 1988, 26, 264–270pl_PL
dc.referencesR. M. van Well, K. P. Ravindranathan Kartha and R. A. Field, J. Carbohydr. Chem., 2005, 24, 463–474pl_PL
dc.referencesL. Shi, G. Zhang and F. Pan, Tetrahedron, 2008, 64, 2572–2575pl_PL
dc.referencesA. Kumar, Y. Geng and R. R. Schmidt, Eur. J. Org. Chem., 2012, 6846–6851pl_PL
dc.referencesD. Chatterjee, A. Paul, R. Yadav and S. Yadav, RSC Adv., 2015, 5, 29669–29674pl_PL
dc.referencesM. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT 06492, USA, 2013pl_PL
dc.referencesC. Adamo and V. Barone, J. Chem. Phys., 1998, 108, 664–675pl_PL
dc.referencesM. W. Lodewyk and D. J. Tantillo, J. Nat. Prod., 2011, 74, 1339–1343pl_PL
dc.referencesM. W. Lodewyk, C. Soldi, P. B. Jones, M. M. Olmstead, J. Rita, J. T. Shaw and D. J. Tantillo, J. Am. Chem. Soc., 2012, 134, 18550–18553pl_PL
dc.referencesC. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter, 1988, 37, 785–789pl_PL
dc.referencesA. D. Becke, Phys. Rev. A, 1988, 38, 3098–3100pl_PL
dc.referencesA. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652pl_PL
dc.referencesP. J. Stephenes, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623–11627pl_PL
dc.referencesM. J. Frisch, J. A. Pople and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265–3269pl_PL
dc.referencesB. J. Lynch, Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2003, 107, 1384–1388pl_PL
dc.referencesG. I. Csonka, A. D. French, G. P. Johnson and C. A. Stortz, J. Chem. Theory Comput., 2009, 5, 679–692pl_PL
dc.referencesR. B. Nazarski, J. Phys. Org. Chem., 2007, 20, 422–430pl_PL
dc.referencesI. Alkorta and J. Elguero, New J. Chem., 1998, 22, 381–385pl_PL
dc.referencesA. Perczel and A. G. Császár, Eur. Phys. J. D, 2002, 20, 513–530pl_PL
dc.referencesA. Buczek, M. Makowski, M. Jewgiński, R. Latajka, T. Kupka and M. A. Broda, Biopolymers, 2014, 101, 28–40pl_PL
dc.referencesR. Wałęsa, T. Ptak, D. Siodłak, T. Kupka and M. A. Broda, Magn. Reson. Chem., 2014, 52, 298–305pl_PL
dc.referencesR. Wałęsa, T. Kupka and M. A. Broda, Struct. Chem., 2015, 26, 1083–1093pl_PL
dc.referencesSymbols for Specifying the Conformation of Polysaccharide Chains [The IUPAC-IUB Joint Commission on Biochemical Nomenclature (Recommendations 1981)] – P. Karlson, H. B. F. Dixon, A. Cornish-Bowden, C. Liébecq, K. L. Loening, G. P. Moss, J. Reedijk, S. F. Velick and J. F. G. Vliegenthar, Pure Appl. Chem., 1983, 55, 1269–1272pl_PL
dc.referencesNomenclature of Carbohydrates [The IUPAC-IUB Joint Commission on Biochemical Nomenclature (Recommendations 1996)] prepared for publication by A. D. McNaught, Pure Appl. Chem., 1996, 68, 1919–2008pl_PL
dc.referencesV. S. Rao and A. S. Perlin, Can. J. Chem., 1983, 61, 2688–2694pl_PL
dc.referencesH. Ohrui, Y. Nishida, H. Itoh and H. Meguro, J. Org. Chem., 1991, 56, 1726–1731pl_PL
dc.referencesI. Tvaroška and J. Gajdoš, Carbohydr. Res., 1995, 271, 151–162pl_PL
dc.referencesG. D. Rockwell, T. B. Grindley and J.-P. Lepoittevin, J. Carbohydr. Chem., 1999, 18, 51–56pl_PL
dc.referencesM. Appell, G. Strati, J. L. Willett and F. A. Momany, Carbohydr. Res., 2004, 339, 537–551pl_PL
dc.referencesA. Hocquet and M. Langgård, J. Mol. Model., 1998, 4, 94–112pl_PL
dc.referencesW. Schepens, PhD thesis, Ghent University, Belgium, 2000pl_PL
dc.referencesA. F. C. Alcântara, D. Piló-Veloso, W. B. De Almeida, C. R. A. Maltha and L. C. A. Barbosa, J. Mol. Struct., 2006, 791, 180–185pl_PL
dc.referencesA. M. Belostotskii, J. Org. Chem., 2008, 73, 5723–5731pl_PL
dc.referencesG. P. Souza, C. Konzen, T. R. G. Simões, B. L. Rodrigues, A. F. C. Alcântara and H. O. Stumpf, J. Mol. Struct., 2012, 1016, 13–21pl_PL
dc.referencesL. A. Nafie and T. B. Feedman, Biological and Pharmaceutical Applications of Vibrational Optical Activity, in Infrared and Raman Spectroscopy of Biological Materials, ed. H.-U. Gremlich and B. Yan, Marcel Dekker, Inc., New York, 2001, pp. 15–54pl_PL
dc.referencesY. He, B. Wang, R. K. Dukor and L. A. Nafie, Appl. Spectrosc., 2011, 65, 699–723pl_PL
dc.referencesL. Piela, J. Kostrowicki and H. A. Scheraga, J. Phys. Chem., 1989, 93, 3339–3346pl_PL
dc.referencesJ. Kostrowicki, L. Piela, B. J. Cherayil and H. A. Scheraga, J. Phys. Chem., 1991, 95, 4113–4119pl_PL
dc.referencesS. I. Sukharev, W. J. Sigurdson, C. Kung and F. Sachs, J. Gen. Physiol., 1999, 113, 525–53pl_PL
dc.referencesZ. Xiang, C. S. Soto and B. Honig, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 7432–7437pl_PL
dc.referencesY. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215–241pl_PL
dc.referencesY. Zhao and D. G. Truhlar, J. Phys. Chem. C, 2008, 112, 4061–4067pl_PL
dc.referencesJ.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615–6620pl_PL
dc.referencesJ. W. Ochterski, Thermochemistry in Gaussian; http://www.gaussian.com/g_whitepap/thermo/thermo.pdf; accessed August 10, 2015pl_PL
dc.referencesJ. Echeverría, G. Aullón, D. Danovich, S. Shaik and S. Alvarez, Nat. Chem., 2011, 3, 323–330pl_PL
dc.referencesD. Danovich, S. Shaik, F. Neese, J. Echeverría, G. Aullón and S. Alvarez, J. Chem. Theory Comput., 2013, 9, 1977–1991pl_PL
dc.referencesW. C. McKee and P. v. R. Schleyer, J. Am. Chem. Soc., 2013, 135, 13008–13014pl_PL
dc.referencesD. Ŕeha, H. Valdés, J. Vondrášek, P. Hobza, A. Abu-Riziq, B. Crews and M. S. de Vries, Chem. – Eur. J., 2005, 11, 6803–6817pl_PL
dc.referencesL. F. Holroyd and T. van Mourik, Chem. Phys. Lett., 2007, 442, 42–46pl_PL
dc.referencesH. Valdes, K. Pluháčková, M. Pitonák, J. Řezáč and P. Hobza, Phys. Chem. Chem. Phys., 2008, 10, 2747–2757pl_PL
dc.referencesH. Valdes, V. Spivok, J. Řezáč, D. Reha, A. Abu-Riziq, M. S. de Vries and P. Hobza, Chem. – Eur. J., 2008, 14, 4886–4898pl_PL
dc.referencesL. Ding, N. Ishida, M. Murakami and K. Morokuma, J. Am. Chem. Soc., 2014, 136, 169–178pl_PL
dc.referencesY. Li and D.-C. Fang, Phys. Chem. Chem. Phys., 2014, 16, 15224–15230pl_PL
dc.referencesW.-H. Mu, G. A. Chass and D.-C. Fang, Int. J. Quantum Chem., 2008, 108, 1422–1434pl_PL
dc.referencesJ.-Y. Tao, W.-H. Mu, G. A. Chass, T.-H. Tang and D.-C. Fang, Int. J. Quantum Chem., 2013, 113, 975–984pl_PL
dc.referencesD.-C. Fang, IDSCRF-RADII, Beijing Normal University, Beijing, Chinapl_PL
dc.referencesY.-M. Xing, L. Zhang and D.-C. Fang, Organometallics, 2015, 34, 770–777pl_PL
dc.referencesL. Zhao and D.-C. Fang, Eur. J. Org. Chem., 2015, 4772–4781pl_PL
dc.referencesW.-H. Mu, S.-Y. Xia, Y. Li, D.-C. Fang, G. Wei and G. A. Chass, J. Org. Chem., 2015, 80, 9108–9117pl_PL
dc.referencesP. Tähtinen, A. Bagno, K. D. Klika and K. Pihlaja, J. Am. Chem. Soc., 2003, 125, 4609–4618pl_PL
dc.referencesJ. N. Woodford and G. S. Harbison, J. Chem. Theory Comput., 2006, 2, 1464–1475pl_PL
dc.referencesZ. Zhang, Q.-s. Li, Y. Xie, R. B. King and H. F. Schaefer III, New J. Chem., 2010, 34, 92–102pl_PL
dc.referencesA. Buczek, T. Kupka and M. A. Broda, J. Mol. Model., 2011, 17, 2029–2040pl_PL
dc.referencesM. A. Broda, A. Buczek and T. Kupka, Vib. Spectrosc., 2012, 63, 432–439pl_PL
dc.referencesT. Kupka, M. Stachów, E. Chełmecka, K. Pasterny, M. Stobińska, L. Stobiński and J. Kaminský, J. Chem. Theor. Comput., 2013, 9, 4275–4286pl_PL
dc.referencesD. C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems, John Wiley & Sons, New York, 2001, p. 94pl_PL
dc.referencesF. Neese, ORCA – An ab initio, DFT and semiempirical SCF-MO package. Version 2.8.0.1, University of Bonn, Bonn, Germany, 2010; http://www.thch.uni-bonn.de/tc/orcapl_PL
dc.referencesF. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2, 73–78pl_PL
dc.referencesS. Sofue, T. Yamasaki, H. Morita and Y. Kitahama, Polym. J., 1998, 30, 891–896pl_PL
dc.referencesC. Møller and M. S. Plesset, Phys. Rev., 1934, 46, 618–622pl_PL
dc.referencesM. Goldey, A. Dutoi and M. Head-Gordon, Phys. Chem. Chem. Phys., 2013, 15, 15869–15875pl_PL
dc.referencesY. K. Kang and H. S. Park, Chem. Phys. Lett., 2014, 600, 112–117pl_PL
dc.referencesP. Schreiner, P. v. R. Schleyer and H. F. Schaefer III, J. Org. Chem., 1997, 62, 4216–4228pl_PL
dc.referencesK. B. Wiberg, J. Comput. Chem., 1999, 20, 1299–1303pl_PL
dc.referencesE. Kolehmainen, K. Laihia, M. Heinänen, K. Rissanen, R. Fröhlich, J. Korvola, P. Mänttäri and R. Kauppinen, J. Chem. Soc., Perkin Trans. 2, 1993, 641–648pl_PL
dc.referencesM. H. Chisholm, N. W. Eilerts, J. C. Huffman, S. S. Iyer, M. Pacold and K. Phomphrai, J. Am. Chem. Soc., 2000, 122, 11845–11854pl_PL
dc.referencesM. Saunders, J. Am. Chem. Soc., 1987, 109, 3150–3152pl_PL
dc.referencesM. Saunders, J. Comput. Chem., 1989, 10, 203–208pl_PL
dc.referencesM. Saunders, K. N. Houk, Y.-D. Wu, W. C. Still, M. Lipton, G. Chang and W. C. Guida, J. Am. Chem. Soc., 1990, 112, 1419–1427pl_PL
dc.referencesK. S. Steliou, BAKMDL, based on the original program by W. C. Still, 1989pl_PL
dc.referencesY. Murakami, J.-i. Kikuchi, T. Ohno, T. Hirayama, Y. Hisaeda, H. Nishimura, J. P. Snyder and K. Steliou, J. Am. Chem. Soc., 1991, 113, 8229–8242pl_PL
dc.referencesM. M. Midland, G. Asirwatham, J. C. Cheng, J. A. Miller and L. A. Morell, J. Org. Chem., 1994, 59, 4438–4442pl_PL
dc.referencesD. M. Ferguson and D. J. Raber, J. Am. Chem. Soc., 1989, 111, 4379–4386pl_PL
dc.referencesS. R. Wilson, W. Cui, J. W. Moskowitz and K. E. Schmidt, Tetrahedron Lett., 1988, 29, 4373–4376pl_PL
dc.referencesG. Chang, W. C. Guida and W. C. Still, J. Am. Chem. Soc., 1989, 111, 4371–4378pl_PL
dc.referencesJ. J. Gajewski, K. E. Gillbert and J. McKelvey, MMX: An enhanced version of MM2 in Advances in Molecular Modeling, ed. D. Liotta, JAI Press, Inc., London, 1990, vol. 2, pp. 65–92pl_PL
dc.referencesD. Jiao, M. Barfield and V. J. Hruby, J. Am. Chem. Soc., 1993, 115, 10883–10887pl_PL
dc.referencesW. Migda and B. Rys, Magn. Reson. Chem., 2004, 42, 459–466pl_PL
dc.referencesJ. Gräfenstein and D. Cremer, J. Chem. Phys., 2007, 127, 164113pl_PL
dc.referencesChemCraft, Version 1.7 (built 375); http://www.chemcraftprog.compl_PL
dc.references) K. W. Wiitala, T. R. Hoye and C. J. Cramer, J. Chem. Theory Comput., 2006, 2, 1085–1092pl_PL
dc.referencesK. Dybiec and A. Gryff-Keller, Magn. Reson. Chem., 2009, 47, 63–66pl_PL
dc.referencesR. F. Ribeiro, A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2011, 115, 14556–14562pl_PL
dc.referencesJ. B. Foresman and Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., Pittsburgh, PA 15106, USA, 2nd edn, 1996pl_PL
dc.referencesR. Jain, T. Bally and P. R. Rablen, J. Org. Chem., 2009, 74, 4017–4023pl_PL
dc.referencesL. Zhang and D.-C. Fang, Org. Biomol. Chem., 2015, 13, 7950–7960pl_PL
dc.referencesH. Dodziuk, M. Jaszuński and W. Schilf, Magn. Reson. Chem., 2005, 43, 639–646pl_PL
dc.referencesS. Leśniak, A. Chrostowska, D. Kuc, M. Maciejczyk, S. Khayar, R. B. Nazarski and Ł. Urbaniak, Tetrahedron, 2009, 65, 10581–10589pl_PL
dc.referencesR. B. Nazarski and W. Makulski, Phys. Chem. Chem. Phys., 2014, 16, 15699–15708pl_PL
dc.referencesS. Huzinaga, J. Chem. Phys., 1965, 42, 1293–1302pl_PL
dc.referencesS. Huzinaga, Approximate Atomic Functions. Technical Report, University of Alberta, Edmonton, Canada, 1971pl_PL
dc.referencesM. Schindler and W. Kutzelnigg, J. Chem. Phys., 1982, 76, 1919–1933pl_PL
dc.referencesW. Kutzelnigg, U. Fleischer and M. Schindler, The IGLO-Method: Ab initio Calculation and Interpretation of NMR Chemical Shifts and Magnetic Susceptibilities in NMR – Basic Principles and Progress (Deuterium and Shift Calculation), ed. P. Diehl, E. Fluck, H. Günther, R. Kosfeld and J. Seelig, Springer-Verlag, Berlin, 1991, vol. 23, pp. 165–262pl_PL
dc.referencesD. Feller, J. Comput. Chem., 1996, 17, 1571–1586pl_PL
dc.referencesK. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li and T. L. Windus, J. Chem. Inf. Model., 2007, 47, 1045–1052pl_PL
dc.referencesS. M. Koskowich, W. C. Johnson, R. S. Paley and P. R. Rablen, J. Org. Chem., 2008, 73, 3492–3496pl_PL
dc.referencesT. Chai and R. R. Draxler, Geosci. Model Dev., 2014, 7, 1247–1250pl_PL
dc.referencesS. G. Smith and J. M. Goodman, J. Org. Chem., 2009, 74, 4597–4607pl_PL
dc.contributor.authorEmailnazarski@uni.lodz.plpl_PL
dc.identifier.doi10.1039/c5ob01865j


Pliki tej pozycji

Thumbnail
Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa-Użycie niekomercyjne 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa-Użycie niekomercyjne 3.0 Polska