dc.contributor.author | Płoski, Arkadiusz | |
dc.contributor.editor | Krasiński, Tadeusz | |
dc.contributor.editor | Spodzieja, Stanisław | |
dc.date.accessioned | 2017-12-13T11:16:15Z | |
dc.date.available | 2017-12-13T11:16:15Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Płoski A., Introduction to the local theory of plane algebraic curves, [in:] Krasiński T., Spodzieja S. (eds.), Analytic and Algebraic Geometry, Łódź University Press, Łódź 2013, s. 115-134, doi: 10.18778/7969-017-6.09 | pl_PL |
dc.identifier.isbn | 978-83-7969-017-6 | |
dc.identifier.uri | http://hdl.handle.net/11089/23614 | |
dc.description.abstract | We consider the algebroid plane curves de ned by formal power
series of two variables with coe cients in an algebraically closed eld. Using
quadratic transformations we prove the local normalization theorem. Then we
study the intersection multiplicity of algebroid curves and give an introduction
to the Newton diagrams. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartof | Krasiński T., Spodzieja S. (eds.), Analytic and Algebraic Geometry, Łódź University Press, Łódź 2013; | |
dc.rights | Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/pl/ | * |
dc.title | Introduction to the local theory of plane algebraic curves | pl_PL |
dc.type | Book chapter | pl_PL |
dc.rights.holder | © Copyright by University of Łódź, Łódź 2013 | pl_PL |
dc.page.number | 115-134 | pl_PL |
dc.contributor.authorAffiliation | Department of Mathematics, Kielce University of Technology Al. 1000 L PP7, 25-314 Kielce | pl_PL |
dc.references | S. S. Abhyankar, Local Analytic Geometry, Academic Press 1964C | pl_PL |
dc.references | A. Campillo, Algebroid curves in positive characteristic, Lecture Notes in Math. 813, Springer Verlag 1980 | pl_PL |
dc.references | Pi. Cassou-Noguès, A. Płoski, Invariants of Plane Curve Singularities and Newton Diasgrams, Uni. Iagel. Acta Math., 49 (2011), 9-34 | pl_PL |
dc.references | W. Fulton, Algebraic Curves. An Introduction to Algebraic Geometry, W. A. Benjamin, INC. 1969, New York980 | pl_PL |
dc.references | A. Hefez, Irreducible plane curve singularities, Real and complex singularities, 1-120, Lec- ture Notes in Pure and Appl. Math., 232, Dekker, New York, 2003 | pl_PL |
dc.references | T. Kałużnyny, S. Spodzieja, On axiomatic de nition of multiplicity, Bull. Soc. Sci Lett. L od z 1994, 111-116 | pl_PL |
dc.references | A. Płoski, A proof of Palamodov's theorem, Univ. Iag. Acta Math. Fasc 47, 2009, pp. 309-316�ԕ | pl_PL |
dc.references | A. Seidenberg, Elements of the Theory of Algebraic Curves, Addison-Wesley 1968 | pl_PL |
dc.references | B. Teissier, The hunting of invariants in the geometry of discriminants, Nordic Summer School, NAVF Symposium in Mathematics, Oslo, August 5-25, 1976, | pl_PL |
dc.references | B. Teissier, Complex curve singularities: a biased introduction, Singularities in geometry and topology, 825-887, World Sci. Publ., Hackensack, NJ, 2007 | pl_PL |
dc.contributor.authorEmail | matap@tu.kielce.pl | pl_PL |
dc.identifier.doi | 10.18778/7969-017-6.09 | |