| dc.contributor.author | Indrzejczak, Andrzej | |
| dc.contributor.editor | Maciaszek, Janusz | |
| dc.date.accessioned | 2020-12-29T10:05:05Z | |
| dc.date.available | 2020-12-29T10:05:05Z | |
| dc.date.issued | 2020 | |
| dc.identifier.citation | Indrzejczak A., O rozumieniu analityczności w teorii dowodu, [w:] Analiza, racjonalność, filozofia religii. Księga jubileuszowa dedykowana Profesorowi Ryszardowi Kleszczowi, Maciaszek J. (red.), Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2020, s. 13-35, doi: 10.18778/8220-034-8.02 | pl_PL |
| dc.identifier.isbn | 978-83-8220-034-8 | |
| dc.identifier.uri | http://hdl.handle.net/11089/32985 | |
| dc.description | W pracy rozważane są różne pojęcia dowodu analitycznego. Po krótkim przypomnieniu historycznie ważnych podejść do tego pojęcia praca koncentruje się na współczesnym rozumieniu terminu. W szczególności przebadane są relacje pomiędzy eliminacją cięcia, własnością podformuł i analitycznością dowodu w rachunku sekwentów. | pl_PL |
| dc.language.iso | pl | pl_PL |
| dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
| dc.relation.ispartof | Maciaszek J. (red.), Analiza, racjonalność, filozofia religii. Księga jubileuszowa dedykowana Profesorowi Ryszardowi Kleszczowi, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2020; | |
| dc.relation.ispartofseries | Bibliotheca Philosophica;6 | |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | dowód analityczny | pl_PL |
| dc.subject | rachunek sekwentów | pl_PL |
| dc.subject | własność podformuł | pl_PL |
| dc.title | O rozumieniu analityczności w teorii dowodu | pl_PL |
| dc.type | Book chapter | pl_PL |
| dc.page.number | 13-35 | pl_PL |
| dc.contributor.authorAffiliation | Uniwersytet Łódzki | pl_PL |
| dc.identifier.eisbn | 978-83-8220-035-5 | |
| dc.references | D’Agostino M. (1999), Tableau Methods for Classical Propositional Logic, [w:] M. D’Agostino, D. Gabbay, R. Hähnle, J. Possega (red.) (1999), Handbookof Tableau Methods, s. 45–123, Kluwer Academic Publishers, Dordrecht. | pl_PL |
| dc.references | D’Agostino M., Gabbay D., Hähnle R., Possega J. (red.) (1999), Handbook of Tableau Methods, Kluwer Academic Publishers, Dordrecht. | pl_PL |
| dc.references | Avron A. (1993), Gentzen-type systems, Resolution and Tableaux, „Journal of Automated Reasoning” 10/2, s. 265–281. | pl_PL |
| dc.references | Belnap N.D. (1982), Display Logic, „Journal of Philosophical Logic” 11, s. 375–417. | pl_PL |
| dc.references | Beth E. (1955), Semantic Entailment and Formal Derivability, Noord Hollandsche Uitgevers Maatschappij, Amsterdam. | pl_PL |
| dc.references | Boolos G. (1984), Don’t Eliminate Cut, „Logic Journal of Philosophical Logic” 7, s. 373–378. | pl_PL |
| dc.references | Chang C.L., Lee R.C.T. (1973), Symbolic Logic and Mechanical Theorem Proving, Academic Press, Orlando. | pl_PL |
| dc.references | Davis M., Putnam H. (1960), A Computing Procedure for Quantification Theory, „Journal of the Association for Computing Machinery” 7, s. 201–215. | pl_PL |
| dc.references | Dos˘en K. (1989), Logical Constants as Punctuation Marks, „Notre Dame Journalof Formal Logic” 30, s. 362–381. | pl_PL |
| dc.references | Fariñas del Cerro L., Herzig A. (1995), Modal Deduction with Applications in Epistemic and Temporal Logics, [w:] D. Gabbay (red.), Handbook of Logic in Artificial Intelligence and Logic Programming, vol. IV, s. 499–594, Clarendon Press, Oxford. | pl_PL |
| dc.references | Fitting M. (1983), Proof Methods for Modal and Intuitionistic Logics, Reidel, Dordrecht. | pl_PL |
| dc.references | Fitting M. (1996), First-Order Logic and Automated Theorem Proving, Springer, Berlin, Dordrecht. | pl_PL |
| dc.references | Gallier J.H. (1986), Logic for Computer Science, Harper and Row, New York. | pl_PL |
| dc.references | Gentzen G. (1934), Untersuchungen über das Logische Schliessen, „Mathematische Zeitschrift” 39, s. 176–210; 405–431. | pl_PL |
| dc.references | Gentzen G. (1936), Die Widerspruchsfreiheit der reinen Zahlentheorie, „Mathematische Annalen” 112, s. 493–565. | pl_PL |
| dc.references | Goré R. (1999), Tableau Methods for Modal and Temporal Logics, [w:] M. D’Agostino, D. Gabbay, R. Hähnle, J. Possega (red.) (1999), Handbook of Tableau Methods, s. 297–396, Kluwer Academic Publishers, Dordrecht. | pl_PL |
| dc.references | Gratzl N., Orlandelli E. (2019), Logicality, Double-line Rules, and Modalities, „Studia Logica” 107/1, s. 85–108. | pl_PL |
| dc.references | Hintikka J. (1955), Form and Content in Quantification Theory, „Acta Philosophica Fennica” 8, s. 8–55. | pl_PL |
| dc.references | Indrzejczak A. (2010), Natural Deduction, Hybrid Systems and Modal Logics, Springer, Dordrecht. | pl_PL |
| dc.references | Indrzejczak A., Zawiddzki M., (2013), Decision Procedures for Some Strong Hybrid Logics, „Logic and Logical Philosophy” 22, s. 389–409. | pl_PL |
| dc.references | Jaśkowski S. (1934), On the Rules of Suppositions in Formal Logic, „Studia Logica” 1, s. 5–32. | pl_PL |
| dc.references | Loveland D.W. (1978), Automated Theorem Proving: a Logical Basis, North Holland, Amsterdam. | pl_PL |
| dc.references | Mints G. (1970), Cut-free calculi of the S5 type, „Studies in Constructive Mathematics and Mathematical Logic” 2, s. 79–82. | pl_PL |
| dc.references | De Nivelle H.R., Schmidt A., Hustadt U. (2000), Resolution-based Methods for Modal Logics, „Logic Journal of the IGPL” 8/3, s. 265–292. | pl_PL |
| dc.references | Orłowska E., Golińska-Pilarek J. (2011), Dual Tableaux: Foundations, Methodology. Case Studies, Springer, Dordrecht. | pl_PL |
| dc.references | Poggiolesi F. (2011), Gentzen Calculi for Modal Propositional Logic, Springer, Dordrecht. | pl_PL |
| dc.references | Popper K. (1947a), Logic without Assumptions, „Proceedings of the Aristotelian Society” 47, s. 251–292. | pl_PL |
| dc.references | Popper K. (1947b), New Foundations for Logic, „Mind” 56, 223, s. 193–235. | pl_PL |
| dc.references | Prawitz D. (1965), Natural Deduction, Almqvist and Wiksell, Stockholm. | pl_PL |
| dc.references | Prawitz D. (2019), The Fundamental Problem of General Proof Theory, „Studia Logica” 107/1, s. 11–30 | pl_PL |
| dc.references | Prawitz H., Prawitz D., Voghera N. (1960), A Mechanical Proof Procedure and its Realization in an Electronic Computer, „Journal of the Association for Computing Machinery” 7, s. 102–128. | pl_PL |
| dc.references | Priest G. (2001), An Introduction to Non-classical Logic, Cambridge University Press, Cambridge. | pl_PL |
| dc.references | Rasiowa H., Sikorski R. (1963), The Mathematics of Metamathematics, PWN, Warszawa. | pl_PL |
| dc.references | Robinson J.A. (1965), A Machine Oriented Logic based on the Resolution Principle, „Journal of the Association for Computing Machinery” 12, s. 23–41. | pl_PL |
| dc.references | Schroeder-Heister P. (1984), Popper’s Theory of Deductive Inference and the Concept of a Logical Constant, „History and Philosophy of Logic” 5, s. 79–110. | pl_PL |
| dc.references | Schütte K. (1977), Proof Theory, Springer, Berlin. | pl_PL |
| dc.references | Smullyan R. (1965), Analytic Natural Deduction, „The Journal of Symbolic Logic” 30/2, s. 123–139. | pl_PL |
| dc.references | Smullyan R. (1968), First-Order Logic, Springer, Berlin. | pl_PL |
| dc.references | Takano M. (1992), Subformula Property as a substitute for Cut-Elimination in Modal Propositional Logics, „Mathematica Japonica” 37, 6, s. 1129–1145. | pl_PL |
| dc.references | Tzouvaras A. (1996), Aspects of Analytic Deduction, „Journal of Philosophical Logic” 25, s. 581–596. | pl_PL |
| dc.references | Wang H. (1960), Toward Mechanical Mathematics, „IBM Journal of Research and Development” 4, s. 2–22. | pl_PL |
| dc.references | Wansing H. (1999), Displaying Modal Logics, Kluwer Academic Publishers, Dordrecht. | pl_PL |
| dc.references | Woleński J. (1993), Metamatematyka a epistemologia, PWN, Warszawa. | pl_PL |
| dc.identifier.doi | 10.18778/8220-034-8.02 | |