Pokaż uproszczony rekord

dc.contributor.authorŁudzik, Katarzyna
dc.contributor.authorWinnicki, Konrad
dc.contributor.authorŻabka, Aneta
dc.contributor.authorPolit, Justyna
dc.contributor.authorMaszewski, Janusz
dc.contributor.authorZawisza, Anna
dc.date.accessioned2021-08-23T12:04:53Z
dc.date.available2021-08-23T12:04:53Z
dc.date.issued2021
dc.identifier.citationWinnicki, K., Łudzik, K., Żabka, A. et al. Anti-algal activity of the 12-5-12 gemini surfactant results from its impact on the photosynthetic apparatus. Sci Rep 11, 2360 (2021). https://doi.org/10.1038/s41598-021-82165-9pl_PL
dc.identifier.urihttp://hdl.handle.net/11089/38712
dc.description.abstractA rapid amplification of algal population has a negative impact on the environment and the global economy. Thus, control of algal proliferation is an important issue and effective procedures which reduce algal blooms and control algal fouling are highly desired. Gemini surfactants are considered to have a low environmental impact, therefore they seem to be a promising group of detergents which could reduce algal blooms in water systems. Furthermore, due to their emulsifying properties they could replace algaecides added to antifouling paints and decrease algae adhesion to various surfaces. In this study the toxic effect of the 12-5-12 gemini surfactant was investigated on Chlorella cells and close attention was paid to a potential mechanism of its action. At the high cell density (10.05 × 107 cells/mL) a dose-dependent cell death was found and the IC50 value was reached at the concentration of 19.6 µmol/L after 72-h exposure to the surfactant. The decrease in chlorophyll autofluorescence shows that the photosynthetic apparatus seems to be the target of the tested compound. The presented studies indicate that gemini surfactants could effectively reduce algal blooms in water systems, and if added to paints, they could decrease algal growth on external building walls or other water immersed surfaces.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesScientific Reports;11
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectConservation biologypl_PL
dc.subjectEcologypl_PL
dc.subjectFreshwater ecologypl_PL
dc.subjectSecondary metabolismpl_PL
dc.titleAnti‑algal activity of the 12‑5‑12 gemini surfactant results from its impact on the photosynthetic apparatuspl_PL
dc.typeArticlepl_PL
dc.contributor.authorAffiliation2 Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, ul. Pomorska 163/165, 90‑236 Łódź, Polandpl_PL
dc.contributor.authorAffiliation1 Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90‑236 Lódź, Poland.pl_PL
dc.contributor.authorAffiliationDepartment of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236, Lódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236, Lódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236, Lódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, ul. Tamka 12, 91-403, Łódź, Polandpl_PL
dc.identifier.eissn2045-2322
dc.referencesHeisler, J. et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 8, 3–13 (2008).pl_PL
dc.referencesYang, X. E., Wu, X., Hao, H. L. & He, Z. L. Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B 9, 197–209 (2008).pl_PL
dc.referencesGlibert, P. M. et al. Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: Projections based on model analysis. Glob. Chang. Biol. 20, 3845–3858 (2014).pl_PL
dc.referencesAnderson, D. HABs in a changing world: A perspective on harmful algal blooms, their impacts, and research and management in a dynamic era of climactic and environmental change. Harmful Algae 2012, 3–17 (2012).pl_PL
dc.referencesWillis, C., Papathanasopoulou, E., Russel, D. & Artioli, Y. Harmful algal blooms: The impacts on cultural ecosystem services and human well-being in a case study setting, Cornwall, UK. Mar. Policy 97, 232–238 (2018).pl_PL
dc.referencesHilborn, E. D. & Beasley, V. R. One health and cyanobacteria in freshwater systems: Animal illnesses and deaths are sentinel events for human health risks. Toxins (Basel) 7, 1374–1395 (2015).pl_PL
dc.referencesCarpenter, S. R. et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8, 559 (1998).pl_PL
dc.referencesKent, M., Whyte, J. & LaTrace, C. Gill lesions and mortality in seawater pen-reared Atlantic salmon Salmosalar associated with a dense bloom of Skeletonemacostatum and Thalassiosira species. Dis. Aquat. Organ. 22, 77–81 (1995).pl_PL
dc.referencesPeperzak, L. Future increase in harmful algal blooms in the North Sea due to climate change. Water Sci. Technol. 51, 31–36 (2005).pl_PL
dc.referencesBerdalet, E. et al. Marine harmful algal blooms, human health and wellbeing: Challenges and opportunities in the 21st century ELISA. J. Mar. Biol. Assoc. UK 215, 1–62 (2015).pl_PL
dc.referencesPadmavathi, P. & Prasad, M. K. D. Studies on algal bloom disasters in carp culture ponds. Braz. J. Morphol. Sci. 24, 32–43 (2007).pl_PL
dc.referencesHereman, T. C. & Bittencourt-Oliveira, M. C. Bioaccumulation of microcystins in lettuce. J. Phycol. 48, 1535–1537 (2012).pl_PL
dc.referencesCrush, J. R., Briggs, L. R., Sprosen, J. M. & Nichols, S. N. Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass, clover, rape, and lettuce. Environ. Toxicol. 23, 246–252 (2008).pl_PL
dc.referencesCordeiro-Araújo, M. K. et al. Microcystin-LR bioaccumulation and depuration kinetics in lettuce and arugula: Human health risk assessment. Sci. Total Environ. 566–567, 1379–1386 (2016).pl_PL
dc.referencesFlemming, H. C. Biofouling in water systems—cases, causes and countermeasures. Appl. Microbiol. Biotechnol. 59, 629–640 (2002).pl_PL
dc.referencesGamri, S., Soric, A., Tomas, S., Molle, B. & Roche, N. Effects of pipe materials on biofouling under controlled hydrodynamic conditions. J. Water Reuse Desalin. 6, 167–174 (2016).pl_PL
dc.referencesDi Pippo, F., Di Gregorio, L., Congestri, R., Tandoi, V. & Rossetti, S. Biofilm growth and control in cooling water industrial systems. FEMS Microbiol. Ecol. 94, 1–13 (2018).pl_PL
dc.referencesMelo, M., Fernandes, S., Caetano, N. & Borges, M. T. Chlorella vulgaris (SAG 211-12) biofilm formation capacity and proposal of a rotating flat plate photobioreactor for more sustainable biomass production. J. Appl. Phycol. 30, 887–899 (2018).pl_PL
dc.referencesPiontek, M. & Lechów, H. Aerophytic cyanobacteria as a factor in the biodegradation of technical materials on external building walls. Civ. Environ. Eng. Rep. 13, 109–119 (2014).pl_PL
dc.referencesGaylarde, C. C. & Gaylarde, P. M. A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. Int. Biodeterior. Biodegrad. 55, 131–139 (2005).pl_PL
dc.referencesChen, Y. et al. Acute toxicity of the cationic surfactant C12-benzalkonium in different bioassays: How test design affects bioavailability and effect concentrations. Environ. Toxicol. Chem. 33, 606–615 (2014).pl_PL
dc.referencesKaczerewska, O., Martins, R., Figueiredo, J., Loureiro, S. & Tedim, J. Environmental behaviour and ecotoxicity of cationic surfactants towards marine organisms. J. Hazard. Mater. 392, 122299 (2020).pl_PL
dc.referencesCao, S., Wang, J. D., Chen, H. S. & Chen, D. R. Progress of marine biofouling and antifouling technologies. Chin. Sci. Bull. 56, 598–612 (2011).pl_PL
dc.referencesAbiraman, T., Kavitha, G., Rengasamy, R. & Balasubramanian, S. Antifouling behavior of chitosan adorned zinc oxide nanorods. RSC Adv. 6, 69206–69217 (2016).pl_PL
dc.referencesAbiraman, T., Ramanathan, E., Kavitha, G., Rengasamy, R. & Balasubramanian, S. Synthesis of chitosan capped copper oxide nanoleaves using high intensity (30 kHz) ultrasound sonication and their application in antifouling coatings. Ultrason. Sonochem. 34, 781–791 (2017).pl_PL
dc.referencesSubramanian, G., Palanichamy, S. & Veeramani, P. An eco-friendly process for prevention of biofouling. Prog. Org. Coatings 99, 474–479 (2016).pl_PL
dc.referencesMayali, X. & Azam, F. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. 51, 139–144 (2004).pl_PL
dc.referencesMeyer, N., Bigalke, A., Kaulfuß, A. & Pohnert, G. Strategies and ecological roles of algicidal bacteria. FEMS Microbiol. Rev. 41, 880–899 (2017).pl_PL
dc.referencesKim, Y. S., Lee, D. S., Jeong, S. Y., Lee, W. J. & Lee, M. S. Isolation and characterization of a marine algicidal bacterium against the harmful raphidophyceae Chattonellamarina. J. Microbiol. 47, 9–18 (2009).pl_PL
dc.referencesLuo, J. et al. Isolation and identification of algicidal compound from streptomyces and algicidal mechanism to Microcystisaeruginosa. PLoS ONE 8, 1–14 (2013).pl_PL
dc.referencesOtzen, D. E. Biosurfactants and surfactants interacting with membranes and proteins: Same but different?. Biochim. Biophys. Acta Biomembr. 1859, 639–649 (2017).pl_PL
dc.referencesVonlanthen, S., Brown, M. T. & Turner, A. Toxicity of the amphoteric surfactant, cocamidopropyl betaine, to the marine macroalga, Ulva lactuca. Ecotoxicology 20, 202–207 (2011).pl_PL
dc.referencesXu, Y., Ge, F., Wang, N., Zhu, R. & Tao, N. Selective algicidal activity of surfactant and its mechanism. J. Hazard. Toxic Radioact. Waste 15, 21–25 (2011).pl_PL
dc.referencesFatma, N., Panda, M. & Beg, M. Ester-bonded cationic gemini surfactants: Assessment of their cytotoxicity and antimicrobial activity. J. Mol. Liq. 222, 390–394 (2016).pl_PL
dc.referencesAlmeida, A. S., Faneca, H., Carvalho, R. A., Marques, E. F. & Pais, A. A. C. C. Dicationic alkylammonium bromide gemini surfactants. Membrane perturbation and skin irritation. PLoS ONE 6, 1–12 (2011).pl_PL
dc.referencesŁudzik, K. et al. Antimicrobial and cytotoxic properties of bisquaternary ammonium bromides of different spacer length. J. Surfactants Deterg. 21, 91–99 (2018).pl_PL
dc.referencesZhang, S. et al. Antibacterial activity, in vitro cytotoxicity, and cell cycle arrest of gemini quaternary ammonium surfactants. Langmuir 31, 12161–12169 (2015).pl_PL
dc.referencesWu, T. et al. Removal of Chattonellamarina with clay minerals modified with a gemini surfactant. Appl. Clay Sci. 50, 604–607 (2010).pl_PL
dc.referencesGharagozloo, M., Rafiee, A., Chen, D. W. & Foldvari, M. A flow cytometric approach to study the mechanism of gene delivery to cells by gemini-lipid nanoparticles: An implication for cell membrane nanoporation. J. Nanobiotechnology 13, 1–13 (2015).pl_PL
dc.referencesAlmeida, J. A. S., Marques, E. F., Jurado, A. S. & Pais, A. A. C. C. The effect of cationic gemini surfactants upon lipid membranes. An experimental and molecular dynamics simulation study. Phys. Chem. Chem. Phys. 12, 14462–14476 (2010).pl_PL
dc.referencesShukla, D. & Tyagi, V. K. Cationic gemini surfactants: A review. J. Oleo Sci. 55, 381–390 (2006).pl_PL
dc.referencesChavda, S., Kuperkar, K. & Bahadur, P. Formation and growth of gemini surfactant (12-S-12) micelles as a modulate by spacers: A thermodynamic and small-angle neutron scattering (SANS) study. J. Chem. Eng. Data 56, 2647–2654 (2011).pl_PL
dc.referencesSekar, R., Venugopalan, V. P., Satpathy, K. K., Nair, K. V. K. & Rao, V. N. R. Laboratory studies on adhesion of microalgae to hard substrates. Hydrobiologia 512, 109–116 (2004).pl_PL
dc.referencesLiu, H., Sharma, M., Wang, J., Cheng, Y. F. & Liu, H. Microbiologically influenced corrosion of 316L stainless steel in the presence of Chlorellavulgaris. Int. Biodeterior. Biodegrad. 129, 209–216 (2018).pl_PL
dc.referencesSchumann, R., Häubner, N., Klausch, S. & Karsten, U. Chlorophyll extraction methods for the quantification of green microalgae colonizing building facades. Int. Biodeterior. Biodegrad. 55, 213–222 (2005).pl_PL
dc.referencesDrugă, B. et al. The impact of cation concentration on Microcystis (cyanobacteria) scum formation. Sci. Rep. 9, 1–10 (2019).pl_PL
dc.referencesIrving, T. E. & Allen, D. G. Species and material considerations in the formation and development of microalgal biofilms. Appl. Microbiol. Biotechnol. 92, 283–294 (2011).pl_PL
dc.referencesQv, X. Y. & Jiang, J. G. Toxicity evaluation of two typical surfactants to Dunaliellabardawil, an environmentally tolerant alga. Environ. Toxicol. Chem. 32, 426–433 (2013).pl_PL
dc.referencesLai, Y. J. S. et al. Cell disruption by cationic surfactants affects bioproduct recovery from Synechocystis sp. PCC 6803. Algal Res. 34, 250–255 (2018).pl_PL
dc.referencesLiang, Z. et al. Influence of cetyltrimethyl ammonium bromide on nutrient uptake and cell responses of Chlorellavulgaris. Aquat. Toxicol. 138–139, 81–87 (2013).pl_PL
dc.referencesCid, A., Fidalgo, P., Herrero, C. & Abalde, J. Toxic action of copper on the membrane system of a marine diatom measured by flow cytometry. Cytometry 25, 32–36 (1996).pl_PL
dc.referencesStefanutti, E. et al. Cationic liposomes formulated with DMPC and a gemini surfactant traverse the cell membrane without causing a significant bio-damage. Biochim. Biophys. Acta Biomembr. 1838, 2646–2655 (2014).pl_PL
dc.referencesPoniedziałek, B., Falfushynska, H. I. & Rzymski, P. Flow cytometry as a valuable tool to study cyanobacteria: A mini-review. Limnol. Rev. 17, 89–95 (2017).pl_PL
dc.referencesApostolova, E. & Ivanov, A. G. Structural and functional characterization of the effects of detergent treatment on chloroplast membranes. Electromagnetic Fields and Biomembranes 231–234 (Springer, Berlin, 1988). https://doi.org/10.1007/978-1-4615-9507-6.pl_PL
dc.referencesPetrou, K., Belgio, E. & Ruban, A. V. PH sensitivity of chlorophyll fluorescence quenching is determined by the detergent/protein ratio and the state of LHCII aggregation. Biochim. Biophys. Acta Bioenerg. 1837, 1533–1539 (2014).pl_PL
dc.referencesHu, Z. H., Zhou, F. & Yang, C. H. Effect of detergent on aggregation of the light-harvesting chlorophyll a/b complex of photosystem 2 and its impact for carotenoid function and fluorescence quenching. Photosynthetica 44, 615–621 (2006).pl_PL
dc.referencesKirchhoff, H., Hinz, H. J. & Rösgen, J. Aggregation and fluorescence quenching of chlorophyll a of the light-harvesting complex II from spinach in vitro. Biochim. Biophys. Acta Bioenerg. 1606, 105–116 (2003).pl_PL
dc.referencesVan Gestel, R. A., Brouwers, J. F., Ultee, A. & Helms, J. B. Ultrastructure and lipid composition of detergent-resistant membranes derived from mammalian sperm and two types of epithelial cells. Cell Tissue Res. 363, 129–145 (2016).pl_PL
dc.referencesGarner, A. E., Smith, D. A. & Hooper, N. M. Visualization of detergent solubilization of membranes: Implications for the isolation of rafts. Biophys. J. 94, 1326–1340 (2008).pl_PL
dc.referencesAndersson, M. X. & Dörmann, P. Chloroplast membrane lipid biosynthesis and transport. In The Chloroplast: Interactions with the Environment (eds Sandelius, A. S. & Aronsson, H.) 125–158 (Springer, Berlin, 2009).pl_PL
dc.referencesNiu, Y. & Xiang, Y. An overview of biomembrane functions in plant responses to high-temperature stress. Front. Plant Sci. 9, 1–18 (2018).pl_PL
dc.referencesPoincelot, R. P. Lipid and fatty acid composition of chloroplast envelope membranes from species with differing net photosynthesis. Plant Physiol. 58, 595–598 (1976).pl_PL
dc.referencesMalnoë, A. Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH. Environ. Exp. Bot. 154, 123–133 (2018).pl_PL
dc.referencesLambrev, P. H., Miloslavina, Y., Jahns, P. & Holzwarth, A. R. On the relationship between non-photochemical quenching and photoprotection of Photosystem II. BBA Bioenerg. 1817, 760–769 (2012).pl_PL
dc.referencesRuban, A. V. Nonphotochemical chlorophyll fluorescence quenching: Mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 170, 1903–1916 (2016).pl_PL
dc.referencesDerks, A., Schaven, K. & Bruce, D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. Biochim. Biophys. Acta Bioenerg. 1847, 468–485 (2015).pl_PL
dc.referencesSkillman, J. B. Quantum yield variation across the three pathways of photosynthesis: Not yet out of the dark. J. Exp. Bot. 59, 1647–1661 (2008).pl_PL
dc.referencesGustafsson, S., Hultberg, M., Figueroa, R. I. & Rengefors, K. On the control of HAB species using low biosurfactant concentrations. Harmful Algae 8, 857–863 (2009).pl_PL
dc.referencesShibata, S., Arimura, S. I., Ishikawa, T. & Awai, K. Alterations of membrane lipid content correlated with chloroplast and mitochondria development in Euglenagracilis. Front. Plant Sci. 9, 1309–1314 (2018).pl_PL
dc.referencesHyka, P., Lickova, S., Přibyl, P., Melzoch, K. & Kovar, K. Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol. Adv. 31, 2–16 (2013).pl_PL
dc.referencesRoth, M. S. et al. Regulation of oxygenic photosynthesis during trophic transitions in the green alga Chromochloris zofingiensis. Plant Cell 31, 579–601 (2019).pl_PL
dc.referencesChioccioli, M., Hankamer, B. & Ross, I. L. Flow cytometry pulse width data enables rapid and sensitive estimation of biomass dry weight in the microalgae Chlamydomonasreinhardtii and Chlorellavulgaris. PLoS ONE 9, 1–12 (2014).pl_PL
dc.referencesYamamoto, M., Fujishita, M., Hirata, A. & Kawano, S. Regeneration and maturation of daughter cell walls in the autospore-forming green alga Chlorellavulgaris (Chlorophyta, Trebouxiophyceae). J. Plant Res. 117, 257–264 (2004).pl_PL
dc.referencesYamamoto, M., Kurihara, I. & Kawano, S. Late type of daughter cell wall synthesis in one of the Chlorellaceae, Parachlorella kessleri (Chlorophyta, Trebouxiophyceae). Planta 221, 766–775 (2005).pl_PL
dc.referencesSchwertner, H. A. & Biale, J. B. Lipid composition of plant mitochondria and of chloroplasts. J. Lipid Res. 14, 235–242 (1973).pl_PL
dc.referencesJaipargas, E., Barton, K. A., Mathur, N. & Mathur, J. Mitochondrial pleomorphy in plant cells is driven by contiguous ER dynamics. Front. Plant Sci. 6, 1–14 (2015).pl_PL
dc.referencesWestermann, B. Bioenergetic role of mitochondrial fusion and fission. Biochim. Biophys. Acta Bioenerg. 1817, 1833–1838 (2012).pl_PL
dc.referencesYoule, R. J. & Van Der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science 337, 1062–1065 (2012).pl_PL
dc.referencesPospíšil, P. Production of reactive oxygen species by photosystem II. Biochim. Biophys. Acta Bioenerg. 1787, 1151–1160 (2009)pl_PL
dc.referencesŁudzik, K., Kustrzepa, K., Piekarski, H. & Jóźwiak, M. Application of Conductance study to analyze micellization behavior of cationic gemini surfactants in water and water-ethanol solvent mixed media. J. Chem. Eng. Data 61, 1047–1053 (2016).pl_PL
dc.identifier.doi10.1038/s41598-021-82165-9
dc.relation.volume2360pl_PL
dc.disciplinenauki biologicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe