dc.contributor.author | Walczak, Zbigniew | |
dc.contributor.author | Bauer, Jarosław | |
dc.date.accessioned | 2021-09-09T10:36:18Z | |
dc.date.available | 2021-09-09T10:36:18Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Walczak, Z., Bauer, J.H. Measurement-induced geometric measures of correlations based on the trace distance for two-qubit X states. Quantum Inf Process 19, 190 (2020). https://doi.org/10.1007/s11128-020-02680-y | pl_PL |
dc.identifier.uri | http://hdl.handle.net/11089/39014 | |
dc.description.abstract | We apply the modified Brodutch and Modi method of constructing geometric measures of correlations to obtain analytical expressions for measurement-induced geometric classical and quantum correlations based on the trace distance for two-qubit X states. Moreover, we study continuity of the classical and quantum correlations for these states. In particular, we show that these correlations may not be continuous. | pl_PL |
dc.description.sponsorship | This work was supported by University of Lodz. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Nature | pl_PL |
dc.relation.ispartofseries | Quantum Information Processing;19 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Geometric measures of correlations | pl_PL |
dc.subject | Classical and quantum correlations | pl_PL |
dc.subject | Trace distance | pl_PL |
dc.subject | Continuity of measures of correlations | pl_PL |
dc.subject | X states | pl_PL |
dc.title | Measurement-induced geometric measures of correlations based on the trace distance for two-qubit X states | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 17 | pl_PL |
dc.contributor.authorAffiliation | Department of Theoretical Physics, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, 90-236, Lodz, Poland | pl_PL |
dc.identifier.eissn | 1573-1332 | |
dc.references | Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009) | pl_PL |
dc.references | Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012) | pl_PL |
dc.references | Roga, W., Spehner, D., Illuminati, F.: Geometric measures of quantum correlations: characterization, quantification, and comparison by distances and operations. J. Phys. A 49, 235301 (2016) | pl_PL |
dc.references | Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A 49, 473001 (2016) | pl_PL |
dc.references | Bera, A., Das, T., Sadhukhan, D., Roy, S.S., Sen(De), A., Sen, U.: Quantum discord and its allies: a review of recent progress. Rep. Prog. Phys. 81, 024001 (2018) | pl_PL |
dc.references | Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989) | pl_PL |
dc.references | Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998) | pl_PL |
dc.references | Braunstein, S.L., Caves, C.M., Jozsa, R., Linden, N., Popescu, S., Schack, R.: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054 (1999) | pl_PL |
dc.references | Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999) | pl_PL |
dc.references | Lloyd, S.: Quantum search without entanglement. Phys. Rev. A 61, 010301 (1999) | pl_PL |
dc.references | Meyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85, 2014 (2000) | pl_PL |
dc.references | Biham, E., Brassard, G., Kenigsberg, D., Mor, T.: Quantum computing without entanglement. Theor. Comput. Sci. 320, 15 (2004) | pl_PL |
dc.references | Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005) | pl_PL |
dc.references | Datta, A., Vidal, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75, 042310 (2007) | pl_PL |
dc.references | Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001) | pl_PL |
dc.references | Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001) | pl_PL |
dc.references | Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008) | pl_PL |
dc.references | Hu, M.L., Hu, X., Wang, J., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1 (2018) | pl_PL |
dc.references | Qiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames. Phys. Rev. A 98, 022320 (2018) | pl_PL |
dc.references | Qiang, W.C., Dong, Q., Mercado Sanchez, M.A., Sun, G.H., Dong, S.H.: Entanglement property of the Werner state in accelerated frames. Quantum Inf. Process. 18, 314 (2019) | pl_PL |
dc.references | Torres-Arenas, A.J., Dong, Q., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of W-state in noninertial frames. Phys. Lett. B 789, 93 (2019) | pl_PL |
dc.references | Liao, X.P., Wen, W., Rong, M.S., Fang, M.F.: Effect of partial-collapse measurement on quantum entanglement in noninertial frames. Quantum Inf. Process. 19, 106 (2020) | pl_PL |
dc.references | Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010) | pl_PL |
dc.references | Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010) | pl_PL |
dc.references | Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012) | pl_PL |
dc.references | Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013) | pl_PL |
dc.references | Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012) | pl_PL |
dc.references | Brodutch, A., Modi, K.: Criteria for measures of quantum correlations. Quantum Inf. Comput. 12, 0721 (2012) | pl_PL |
dc.references | Walczak, Z., Wintrowicz, I.: On the Brodutch and Modi method of constructing geometric measures of classical and quantum correlations. Quantum Inf. Process. 16, 83 (2017) | pl_PL |
dc.references | Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013) | pl_PL |
dc.references | Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459 (2007) | pl_PL |
dc.references | Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011) | pl_PL |
dc.references | Huang, Y.: Quantum discord for two-qubit X states: analytical formula with very small worst-case error. Phys. Rev. A 88, 014302 (2013) | pl_PL |
dc.references | Horodecki, R., Horodecki, M.: Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A 54, 1838 (1996) | pl_PL |
dc.references | Batle, J., Casas, M.: Nonlocality and entanglement in qubit systems. J. Phys. A 44, 445304 (2011) | pl_PL |
dc.references | Ishizaka, S., Hiroshima, T.: Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A 62, 022310 (2000) | pl_PL |
dc.references | Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014) | pl_PL |
dc.references | Nakano, T., Piani, M., Adesso, G.: Negativity of quantumness and its interpretations. Phys. Rev. A 88, 012117 (2013) | pl_PL |
dc.references | Ługiewicz, P., Frydryszak, A., Jakóbczyk, L.: Measurement-induced qudit geometric discord. J. Phys. A 50, 245301 (2017) | pl_PL |
dc.references | Walczak, Z.: Measurement-induced geometric measures of correlations based on the Hellinger distance and their local decoherence. Quantum Inf. Process. 18, 321 (2019) | pl_PL |
dc.identifier.doi | 10.1007/s11128-020-02680-y | |
dc.relation.volume | 190 | pl_PL |
dc.discipline | nauki fizyczne | pl_PL |