dc.contributor.author | Gonera, Cezary | |
dc.contributor.author | Maślanka, Paweł | |
dc.contributor.author | Andrzejewski, Krzysztof | |
dc.contributor.author | Gonera, Joanna | |
dc.contributor.author | Kosinski, Piotr | |
dc.contributor.author | Brihaye, Yves | |
dc.date.accessioned | 2021-09-30T07:35:37Z | |
dc.date.available | 2021-09-30T07:35:37Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Andrzejewski, K., Brihaye, Y., Gonera, C. et al. The covariance of chiral fermions theory. J. High Energ. Phys. 2019, 11 (2019). https://doi.org/10.1007/JHEP08(2019)011 | pl_PL |
dc.identifier.uri | http://hdl.handle.net/11089/39245 | |
dc.description.abstract | The quasiclassical theory of massless chiral fermions is considered. The effective action is derived using time-dependent variational principle which provides a clear interpretation of relevant canonical variables. As a result their transformation properties under the action of Lorentz group are derived from first principles. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Nature | pl_PL |
dc.relation.ispartofseries | Journal of High Energy Physics;11 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Space-Time Symmetries | pl_PL |
dc.subject | Gauge Symmetry | pl_PL |
dc.title | The covariance of chiral fermions theory | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 11 | pl_PL |
dc.contributor.authorAffiliation | Department of Computer Science, Faculty of Physics and Applied Informatics, University of Lodz, Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Computer Science, Faculty of Physics and Applied Informatics, University of Lodz, Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Computer Science, Faculty of Physics and Applied Informatics, University of Lodz, Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Computer Science, Faculty of Physics and Applied Informatics, University of Lodz, Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Computer Science, Faculty of Physics and Applied Informatics, University of Lodz, Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Physique-Mathématique, Université de Mons-Hainaut, Mons, Belgium | pl_PL |
dc.identifier.eissn | 1029-8479 | |
dc.references | D.T. Son and P. Surówka, Hydrodynamics with Triangle Anomalies, Phys. Rev. Lett.103 (2009) 191601 | pl_PL |
dc.references | R. Loganayagam, Anomaly Induced Transport in Arbitrary Dimensions | pl_PL |
dc.references | R. Loganayagam and P. Surowka, Anomaly/Transport in an Ideal Weyl gas, JHEP04 (2012) 097 | pl_PL |
dc.references | S. Dubovsky, L. Hui, A. Nicolis and D.T. Son, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev.D 85 (2012) 085029 | pl_PL |
dc.references | S. Dubovsky, L. Hui and A. Nicolis, Effective field theory for hydrodynamics: Wess-Zumino term and anomalies in two spacetime dimensions, Phys. Rev.D 89 (2014) 045016 | pl_PL |
dc.references | K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev.D 78 (2008) 074033 | pl_PL |
dc.references | K. Fukushima, D.E. Kharzeev and H.J. Warringa, Real-time dynamics of the Chiral Magnetic Effect, Phys. Rev. Lett.104 (2010) 212001 | pl_PL |
dc.references | G. Basar, G.V. Dunne and D.E. Kharzeev, Chiral Magnetic Spiral, Phys. Rev. Lett.104 (2010) 232301 | pl_PL |
dc.references | M.A. Stephanov and Y. Yin, Chiral Kinetic Theory, Phys. Rev. Lett.109 (2012) 162001 | pl_PL |
dc.references | D.T. Son and N. Yamamoto, Berry Curvature, Triangle Anomalies and the Chiral Magnetic Effect in Fermi Liquids, Phys. Rev. Lett.109 (2012) 181602 | pl_PL |
dc.references | D.T. Son and N. Yamamoto, Kinetic theory with Berry curvature from quantum field theories, Phys. Rev.D 87 (2013) 085016 | pl_PL |
dc.references | J.-W. Chen, S. Pu, Q. Wang and X.-N. Wang, Berry Curvature and Four-Dimensional Monopoles in the Relativistic Chiral Kinetic Equation, Phys. Rev. Lett.110 (2013) 262301 | pl_PL |
dc.references | J.-W. Chen, J.-y. Pang, S. Pu and Q. Wang, Kinetic equations for massive Dirac fermions in electromagnetic field with non-Abelian Berry phase, Phys. Rev.D 89 (2014) 094003 | pl_PL |
dc.references | M. Stone and V. Dwivedi, Classical version of the non-Abelian gauge anomaly, Phys. Rev.D 88 (2013) 045012 | pl_PL |
dc.references | V. Dwivedi and M. Stone, Classical chiral kinetic theory and anomalies in even space-time dimensions, J. Phys.A 47 (2014) 025401 | pl_PL |
dc.references | M. Stone, V. Dwivedi and T. Zhou, Berry Phase, Lorentz Covariance and Anomalous Velocity for Dirac and Weyl Particles, Phys. Rev.D 91 (2015) 025004 | pl_PL |
dc.references | M. Stone, V. Dwivedi and T. Zhou, Wigner Translations and the Observer Dependence of the Position of Massless Spinning Particles, Phys. Rev. Lett.114 (2015) 210402 | pl_PL |
dc.references | J.-Y. Chen, D.T. Son, M.A. Stephanov, H.-U. Yee and Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett.113 (2014) 182302 | pl_PL |
dc.references | E. Megias and M. Valle, Second-order partition function of a non-interacting chiral fluid in 3+1 dimensions, JHEP11 (2014) 005 | pl_PL |
dc.references | K.A. Sohrabi, Microscopic Study of Vorticities in Relativistic Chiral Fermions, JHEP 03 (2015) 014 | pl_PL |
dc.references | C. Manuel and J.M. Torres-Rincon, Chiral transport equation from the quantum Dirac Hamiltonian and the on-shell effective field theory, Phys. Rev.D 90 (2014) 076007 | pl_PL |
dc.references | P. Zhang and P.A. Horváthy, Anomalous Hall Effect for semiclassical chiral fermions, Phys. Lett.A 379 (2014) 507 | pl_PL |
dc.references | C. Duval and P.A. Horvathy, Chiral fermions as classical massless spinning particles, Phys. Rev.D 91 (2015) 045013 | pl_PL |
dc.references | C. Duval, M. Elbistan, P.A. Horváthy and P.M. Zhang, Wigner-Souriau translations and Lorentz symmetry of chiral fermions, Phys. Lett.B 742 (2015) 322 | pl_PL |
dc.references | K. Andrzejewski, A. Kijanka-Dec, P. Kosinski and P. Maslanka, Chiral fermions, massless particles and Poincaré covariance, Phys. Lett.B 746 (2015) 417 | pl_PL |
dc.references | J.-M. Souriau, Structure of Dynamical Systems: A Sympletic View of Physics, Birkhäuser, Boston U.S.A. (1997) | pl_PL |
dc.references | B.S. Skagerstam, Localization of massless spinning particles and the Berry phase | pl_PL |
dc.references | T.D. Newton and E.P. Wigner, Localized States for Elementary Systems, Rev. Mod. Phys.21 (1949) 400 | pl_PL |
dc.references | K. Yu. Bliokh and Yu. P. Bliokh, Topological spin transport of photons: The Optical Magnus Effect and Berry Phase, Phys. Lett.A 333 (2004) 181 | pl_PL |
dc.references | M. Onoda, S. Murakami and N. Nagaosa, Hall Effect of Light, Phys. Rev. Lett.93 (2004) 083901 | pl_PL |
dc.references | C. Duval, Z. Horvath and P. Horvathy, Geometrical spinoptics and the optical Hall effect, J. Geom. Phys.57 (2007) 925 | pl_PL |
dc.references | C. Duval, Z. Horvath and P.A. Horvathy, Fermat principle for spinning light, Phys. Rev.D 74 (2006) 021701 | pl_PL |
dc.references | K. Bliokh, A. Niv, V. Kleiner and E. Hasman, Geometrodynamics of Spinning Light, Nature Photon.2 (2008) 748 | pl_PL |
dc.references | K. Bliokh, Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium, J. Opt.A 11 (2009) 094009 | pl_PL |
dc.references | K.Y. Bliokh and F. Nori, Relativistic Hall Effect, Phys. Rev. Lett.108 (2012) 120403 | pl_PL |
dc.references | L. Landau and R. Peierls, Time of the Energy Emission in the Hydrogen Atom and Its Electrodynamical Background, Z. Phys.69 (1931) 56 | pl_PL |
dc.references | V.B. Berestetskii, E.M. Lifshitz and L.P. Pitaevskii, Relativistic Quantum Theory 1, Pergamon Press, Oxford U.K. (1971) | pl_PL |
dc.references | S. Weinberg, Feynman Rules for Any Spin, Phys. Rev.133 (1964) B1318 | pl_PL |
dc.references | S. Weinberg, Feynman Rules for Any Spin. 2. Massless Particles, Phys. Rev.134 (1964) B882 | pl_PL |
dc.references | S. Weinberg, Photons and Gravitons in s Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev.135 (1964) B1049 | pl_PL |
dc.references | S. Weinberg, The Quantum Theory of Fields. Vol.I, Cambridge University Press, Cambridge U.K. (1995) | pl_PL |
dc.references | M.-C. Chang and Q. Niu, Berry phase, hyperorbits and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands, Phys. Rev.B 53 (1996) 7010 | pl_PL |
dc.references | G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev.B 59 (1999) 14915 | pl_PL |
dc.references | D. Culcer, Y. Yao and Q. Niu, Coherent wave-packet evolution in coupled bands, Phys. Rev.B 72 (2005) 085110 | pl_PL |
dc.references | M.-C. Chang and Q. Niu, Berry curvature, orbital moment, and effective quantum theory of electrons in electromagnetic fields, J. Phys. Condens. Matter20 (2008) 193202 | pl_PL |
dc.references | Yu. V. Novozhilov, Introduction to Elementary Particle Theory, Pergamon Press, Oxford U.K. (1975) | pl_PL |
dc.identifier.doi | https://doi.org/10.1007/JHEP08(2019)011 | |
dc.discipline | nauki fizyczne | pl_PL |