Pokaż uproszczony rekord

dc.contributor.authorRudnicki, Konrad
dc.contributor.authorSkrzypek, Slawomira
dc.contributor.authorPółtorak, Łukasz
dc.contributor.authorSudhölter, Ernst J. R.
dc.date.accessioned2021-11-08T14:06:56Z
dc.date.available2021-11-08T14:06:56Z
dc.date.issued2018
dc.identifier.citationKonrad Rudnicki, Lukasz Poltorak, Sławomira Skrzypek, and Ernst J. R. Sudhölter Analytical Chemistry 2018 90 (12), 7112-7116 DOI: 10.1021/acs.analchem.8b01351pl_PL
dc.identifier.issn0003-2700
dc.identifier.urihttp://hdl.handle.net/11089/39709
dc.description.abstractShort pieces of fused silica capillary tubing were used to support an electrified liquid–liquid interface. A methyl deactivated silica capillary having a diameter of 25 μm was filled with 1,2-dichloroethane solution and served as the organic part of the liquid–liquid interface. A nondeactivated fused silica capillary having a diameter of 5, 10, or 25 μm was filled with an aqueous HCl solution and served as the aqueous part of the electrochemical cell. For the latter, silanization of the capillary interior with chlorotrimethylsilane allowed for a successful phase reversal. All capillaries were characterized by ion transfer voltammetry using tetramethylammonium cation as a model ion. This simple, fast, and low-cost miniaturization technique was successfully applied for detection of the antibiotic ofloxacin.pl_PL
dc.description.sponsorshipK.R. is grateful for the funding obtained from the Erasmus+ program.pl_PL
dc.language.isoenpl_PL
dc.publisherAmerican Chemical Societypl_PL
dc.relation.ispartofseriesAnalytical Chemistry;90
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectInterfacespl_PL
dc.subjectDiffusionpl_PL
dc.subjectSilicapl_PL
dc.subjectIonspl_PL
dc.subjectAlkylspl_PL
dc.titleFused Silica Microcapillaries Used for a Simple Miniaturization of the Electrified Liquid−Liquid Interfacepl_PL
dc.typeArticlepl_PL
dc.page.number7112–7116pl_PL
dc.contributor.authorAffiliationDepartment of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDelft University of Technology, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ Delft, The Netherlandspl_PL
dc.contributor.authorAffiliationDelft University of Technology, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ Delft, The Netherlandspl_PL
dc.identifier.eissn1520-6882
dc.referencesAmemiya, S.; Kim, J.; Izadyar, A.; Kabagambe, B.; Shen, M.; Ishimatsu, R. Electrochemical Sensing and Imaging Based on Ion Transfer at Liquid/liquid Interfaces. Electrochim. Acta 2013, 110, 836– 845, DOI: 10.1016/j.electacta.2013.03.098pl_PL
dc.referencesKivlehan, F.; Mace, W. J.; Moynihan, H. a.; Arrigan, D. W. M. M. Study of Electrochemical Phosphate Sensing Systems: Spectrometric, Potentiometric and Voltammetric Evaluation. Electrochim. Acta 2009, 54 (7), 1919– 1924, DOI: 10.1016/j.electacta.2008.06.046pl_PL
dc.referencesXie, L.; Huang, X.; Su, B. Portable Sensor for the Detection of Choline and Its Derivatives Based on Silica Isoporous Membrane and Gellified Nanointerfaces. ACS Sensors 2017, 2, 803, DOI: 10.1021/acssensors.7b00166pl_PL
dc.referencesIwai, N. T.; Kramaric, M.; Crabbe, D.; Wei, Y.; Chen, R.; Shen, M. GABA Detection with Nano-ITIES Pipet Electrode: A New Mechanism, Water/DCE–Octanoic Acid Interface. Anal. Chem. 2018, 90, 3067, DOI: 10.1021/acs.analchem.7b03099pl_PL
dc.referencesPoltorak, L.; Gamero-Quijano, A.; Herzog, G.; Walcarius, A. Decorating Soft Electrified Interfaces: From Molecular Assemblies to Nano-Objects. Appl. Mater. Today 2017, 9, 533– 550, DOI: 10.1016/j.apmt.2017.10.001pl_PL
dc.referencesStewart, a. a.; Taylor, G.; Girault, H. H.; McAleer, J. Voltammetry at microITIES Supported at the Tip of a Micropipette. Part I. Linear Sweep Voltammetry. J. Electroanal. Chem. Interfacial Electrochem. 1990, 296, 491– 515, DOI: 10.1016/0022-0728(90)87268-Opl_PL
dc.referencesTaylor, G.; Girault, H. H. Ion Transfer Reactions across a Liquid - Liquid Interface Supported on a Micropipette Tip. J. Electroanal. Chem. Interfacial Electrochem. 1986, 208, 179– 183, DOI: 10.1016/0022-0728(86)90307-4pl_PL
dc.referencesLiu, Y.; Sairi, M.; Neusser, G.; Kranz, C.; Arrigan, D. W. M. Achievement of Diffusional Independence at Nanoscale Liquid–Liquid Interfaces within Arrays. Anal. Chem. 2015, 87 (11), 5486– 5490, DOI: 10.1021/acs.analchem.5b01162pl_PL
dc.referencesScanlon, M. D.; Strutwolf, J.; Blake, A.; Iacopino, D.; Quinn, A. J.; Arrigan, D. W. M. Ion-Transfer Electrochemistry at Arrays of Nanointerfaces between Immiscible Electrolyte Solutions Confined within Silicon Nitride Nanopore Membranes. Anal. Chem. 2010, 82 (14), 6115– 6123, DOI: 10.1021/ac1008282pl_PL
dc.referencesLiu, Y.; Holzinger, A.; Knittel, P.; Poltorak, L.; Gamero-Quijano, A.; Rickard, W. D. a; Walcarius, A.; Herzog, G. G.; Kranz, C.; Arrigan, D. W. M. Visualization of Diffusion within Nanoarrays. Anal. Chem. 2016, 88 (13), 6689– 6695, DOI: 10.1021/acs.analchem.6b00513pl_PL
dc.referencesSairi, M.; Arrigan, D. W. M. Electrochemical Detection of Ractopamine at Arrays of Micro-Liquid | Liquid Interfaces. Talanta 2015, 132, 205– 214, DOI: 10.1016/j.talanta.2014.08.060pl_PL
dc.referencesBerduque, A.; Zazpe, R.; Arrigan, D. W. M. Electrochemical Detection of Dopamine Using Arrays of Liquid-Liquid Micro-Interfaces Created within Micromachined Silicon Membranes. Anal. Chim. Acta 2008, 611 (2), 156– 162, DOI: 10.1016/j.aca.2008.01.077pl_PL
dc.referencesXie, L.; Huang, X.; Lin, X.; Su, B. Nanoscopic Liquid/liquid Interface Arrays Supported by Silica Isoporous Membranes: Trans-Membrane Resistance and Ion Transfer Reactions. J. Electroanal. Chem. 2017, 784, 62– 68, DOI: 10.1016/j.jelechem.2016.12.007pl_PL
dc.referencesPoltorak, L.; Herzog, G.; Walcarius, A. Electrochemically Assisted Generation of Silica Deposits Using a Surfactant Template at Liquid/liquid Microinterfaces. Langmuir 2014, 30 (38), 11453– 11463, DOI: 10.1021/la501938gpl_PL
dc.referencesLi, Q.; Xie, S.; Liang, Z.; Meng, X.; Liu, S.; Girault, H. H.; Shao, Y. Fast Ion-Transfer Processes at Nanoscopic Liquid/liquid Interfaces. Angew. Chem., Int. Ed. 2009, 48 (43), 8010– 8013, DOI: 10.1002/anie.200903143pl_PL
dc.referencesCai, C.; Tong, Y.; Mirkin, M. V. Probing Rapid Ion Transfer across a Nanoscopic Liquid-Liquid Interface. J. Phys. Chem. B 2004, 108 (46), 17872– 17878, DOI: 10.1021/jp046304fpl_PL
dc.referencesShao, Y.; Mirkin, M. V. Voltammetry at Micropipet Electrodes. Anal. Chem. 1998, 70 (15), 3155– 3161, DOI: 10.1021/ac980244qpl_PL
dc.referencesHu, H.; Xie, S.; Meng, X.; Jing, P.; Zhang, M.; Shen, L.; Zhu, Z.; Li, M.; Zhuang, Q.; Shao, Y. Fabrication and Characterization of Submicrometer- and Nanometer-Sized Double-Barrel Pipets. Anal. Chem. 2006, 78 (19), 7034– 7039, DOI: 10.1021/ac060773rpl_PL
dc.referencesWilke, S.; Zerihun, T. Diffusion Effects at Microhole Supported Liquid/liquid Interfaces. Electrochim. Acta 1998, 44, 15, DOI: 10.1016/S0013-4686(98)00147-9pl_PL
dc.referencesAlvarez De Eulate, E.; Strutwolf, J.; Liu, Y.; O’Donnell, K.; Arrigan, D. W. M. An Electrochemical Sensing Platform Based on Liquid-Liquid Microinterface Arrays Formed in Laser-Ablated Glass Membranes. Anal. Chem. 2016, 88 (5), 2596– 2604, DOI: 10.1021/acs.analchem.5b03091pl_PL
dc.referencesLee, H. J.; Lagger, G.; Pereira, C. M.; Silva, A. F.; Girault, H. H. Amperometric Tape Ion Sensors for cadmium(II) Ion Analysis. Talanta 2009, 78 (1), 66– 70, DOI: 10.1016/j.talanta.2008.10.059pl_PL
dc.referencesStockmann, T. J.; Zhang, J.; Wren, J. C.; Ding, Z. Hydrophobic Alkylphosphonium Ionic Liquid for Electrochemistry at Ultramicroelectrodes and Micro Liquid|liquid Interfaces. Electrochim. Acta 2012, 62, 8– 18, DOI: 10.1016/j.electacta.2011.10.087pl_PL
dc.referencesStockmann, T. J.; Montgomery, A.-M.; Ding, Z. Determination of Alkali Metal Ion Transfers at Liquid|liquid Interfaces Stabilized by a Micropipette. J. Electroanal. Chem. 2012, 684, 6– 12, DOI: 10.1016/j.jelechem.2012.08.013pl_PL
dc.referencesStockmann, T. J.; Ding, Z. Tetraoctylphosphonium Tetrakis(penta Fl Uorophenyl)borate Room Temperature Ionic Liquid toward Enhanced Physicochemical Properties for Electrochemistry. J. Phys. Chem. B 2012, 116, 12826– 12834, DOI: 10.1021/jp3081832pl_PL
dc.referencesStockmann, T. J.; Angelé, L.; Brasiliense, V.; Combellas, C.; Kanoufi, F. Platinum Nanoparticle Impacts at a Liquid|Liquid Interface. Angew. Chem., Int. Ed. 2017, 56 (43), 13493– 13497, DOI: 10.1002/anie.201707589pl_PL
dc.referencesLanyon, Y. H.; De Marzi, G.; Watson, Y. E.; Quinn, A. J.; Gleeson, J. P.; Redmond, G.; Arrigan, D. W. M. Fabrication of Nanopore Array Electrodes by Focused Ion Beam Milling. Anal. Chem. 2007, 79 (8), 3048– 3055, DOI: 10.1021/ac061878xpl_PL
dc.referencesSaito, Y. A Theoretical Study on the Diffusion Current at the Stationary Electrodes of Circular and Narrow Band Types. Rev. Polarogr. 1968, 15 (6), 177– 187, DOI: 10.5189/revpolarography.15.177pl_PL
dc.referencesHinoue, T.; Ikeda, E.; Watariguchi, S.; Kibune, Y. Thermal Modulation Voltammetry with Laser Heating at an Aqueous|nitrobenzene Solution Microinterface: Determination of the Standard Entropy Changes of Transfer for Tetraalkylammonium Ions. Anal. Chem. 2007, 79 (1), 291– 298, DOI: 10.1021/ac061315lpl_PL
dc.referencesStrutwolf, J.; Scanlon, M. D.; Arrigan, D. W. M. Electrochemical Ion Transfer across Liquid/liquid Interfaces Confined within Solid-State Micropore Arrays – Simulations and Experiments. Analyst 2009, 134 (1), 148– 158, DOI: 10.1039/B815256Jpl_PL
dc.referencesMohamed, A. R.; Sapuan, S. M.; Shahjahan, M.; Khalina, A. Characterization of Pineapple Leaf Fibers from Selected Malaysian Cultivars. J. Food, Agric. Environ. 2009, 7 (1), 235– 240pl_PL
dc.contributor.authorEmaill.poltorak@tudelft.nlpl_PL
dc.identifier.doi10.1021/acs.analchem.8b01351
dc.relation.volume12pl_PL
dc.disciplinenauki chemicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe