Show simple item record

dc.contributor.authorKomisarski, Andrzej
dc.contributor.authorRajba, Teresa
dc.date.accessioned2021-11-19T09:24:18Z
dc.date.available2021-11-19T09:24:18Z
dc.date.issued2021
dc.identifier.citationKomisarski, A., Rajba, T. On the Raşa Inequality for Higher Order Convex Functions. Results Math 76, 103 (2021). https://doi.org/10.1007/s00025-021-01417-2pl_PL
dc.identifier.issn1422-6383
dc.identifier.urihttp://hdl.handle.net/11089/39806
dc.description.abstractWe study the following (q−1)th convex ordering relation for qth convolution power of the difference of probability distributions μ and ν (ν−μ)∗q≥(q−1)cx0,q≥2, and we obtain the theorem providing a useful sufficient condition for its verification. We apply this theorem for various families of probability distributions and we obtain several inequalities related to the classical interpolation operators. In particular, taking binomial distributions, we obtain a new, very short proof of the inequality given recently by Abel and Leviatan (2020).pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesResults in Mathematics;76: 103
dc.rightsUznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectInequalities related to stochastic convex orderingspl_PL
dc.subjecthigher order stochastic convex orderingspl_PL
dc.subjectfunctional inequalities related to convexitypl_PL
dc.titleOn the Raşa Inequality for Higher Order Convex Functionspl_PL
dc.typeArticlepl_PL
dc.page.number12pl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science University of Łódź ul. Banacha 22 90-238 Łódź Polandpl_PL
dc.contributor.authorAffiliationDepartment of Mathematics University of Bielsko-Biała ul. Willowa 2 43-309 Bielsko-Biała Polandpl_PL
dc.identifier.eissn1420-9012
dc.referencesAbel, U.: An inequality involving Bernstein polynomials and convex functions. J. Approx. Theory 222, 1–7 (2017)pl_PL
dc.referencesAbel, U., Leviatan, D.: An extension of Raşa’s conjecture to q-monotone functions. Results Math. 75(4), 181–193 (2020)pl_PL
dc.referencesAbel, U., Raşa, I.: A sharpening problem on Bernstein polynomials and convex functions. Math. Inequal. Appl. 21(3), 773–777 (2018)pl_PL
dc.referencesGavrea, B.: On a convexity problem in connection with some linear operators. J. Math. Anal. Appl. 461, 319–332 (2018)pl_PL
dc.referencesHopf, E.: Uber die Zusammen hange zwischen gewissen hoheren Differenzen-qoutienten reelen Funktionen einer reelen Variablen und deren Differenzierbarkeitseigenschaften. Thesis Univ. of Berlin, Berlin (1926)pl_PL
dc.referencesKomisarski, A., Rajba, T.: Muirhead inequality for convex orders and a problem of I. Raşa on Bernstein polynomials. J. Math. Anal. Appl. 458, 821–830 (2018)pl_PL
dc.referencesKomisarski, A., Rajba, T.: A sharpening of a problem on Bernstein polynomials and convex functions and related results. Math. Inequal. Appl. 21(4), 1125–1133 (2018)pl_PL
dc.referencesKomisarski, A., Rajba, T.: Convex order for convolution polynomials of Borel measures. J. Math. Anal. Appl. 478, 182–194 (2019)pl_PL
dc.referencesKuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Prace Naukowe Uniwersytetu Śla̧skiego w Katowicach, vol. 489. Państwowe Wydawnictwo Naukowe – Uniwersytet Śla̧ski, Warszawa, Kraków, Katowice (1985)pl_PL
dc.referencesLorentz, G.G.: Bernstein polynomials. Mathematical Expositions. No. 8., University of Toronto Press, Toronto (1953)pl_PL
dc.referencesMrowiec, J., Rajba, T., Wa̧sowicz, S.: A solution to the problem of Raşa connected with Bernstein polynomials. J. Math. Anal. Appl. 446, 864–878 (2017)pl_PL
dc.referencesPopoviciu, T.: Sur quelques proprietes des fonctions d’une ou de deux variables reelles. Mathematica 8, 1–85 (1934)pl_PL
dc.referencesPopoviciu, T.: Les Fonctions Convexes. Hermann, Paris (1944)pl_PL
dc.referencesRaşa, I.: 2. Problem, p. 164. In: Report of Meeting Conference on Ulam’s Type Stability, Rytro, Poland, June 2–6, 2014, Ann. Univ. Paedagog. Crac. Stud. Math. 13, 139–169 (2014). https://doi.org/10.2478/aupcsm-2014-0011pl_PL
dc.referencesRaşa, I.: Bernstein polynomials and convexity: recent probabilistic and analytic proofs. The Workshop “Numerical Analysis, Approximation and Modeling”, T. Popoviciu Institute of Numerical Analysis, Cluj-Napoca, June 14, (2017). http://ictp.acad.ro/zileleacademice-clujene-2017/pl_PL
dc.referencesShaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, Berlin (2007)pl_PL
dc.contributor.authorEmailandkom@math.uni.lodz.plpl_PL
dc.contributor.authorEmailtrajba@ath.bielsko.plpl_PL
dc.identifier.doi10.1007/s00025-021-01417-2
dc.disciplinematematykapl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe