dc.contributor.author | Komisarski, Andrzej | |
dc.contributor.author | Rajba, Teresa | |
dc.date.accessioned | 2021-11-19T09:24:18Z | |
dc.date.available | 2021-11-19T09:24:18Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Komisarski, A., Rajba, T. On the Raşa Inequality for Higher Order Convex Functions. Results Math 76, 103 (2021). https://doi.org/10.1007/s00025-021-01417-2 | pl_PL |
dc.identifier.issn | 1422-6383 | |
dc.identifier.uri | http://hdl.handle.net/11089/39806 | |
dc.description.abstract | We study the following (q−1)th convex ordering relation for qth convolution power of the difference of probability distributions μ and ν
(ν−μ)∗q≥(q−1)cx0,q≥2,
and we obtain the theorem providing a useful sufficient condition for its verification. We apply this theorem for various families of probability distributions and we obtain several inequalities related to the classical interpolation operators. In particular, taking binomial distributions, we obtain a new, very short proof of the inequality given recently by Abel and Leviatan (2020). | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Nature | pl_PL |
dc.relation.ispartofseries | Results in Mathematics;76: 103 | |
dc.rights | Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.subject | Inequalities related to stochastic convex orderings | pl_PL |
dc.subject | higher order stochastic convex orderings | pl_PL |
dc.subject | functional inequalities related to convexity | pl_PL |
dc.title | On the Raşa Inequality for Higher Order Convex Functions | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 12 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Computer Science University of Łódź ul. Banacha 22 90-238 Łódź Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Mathematics University of Bielsko-Biała ul. Willowa 2 43-309 Bielsko-Biała Poland | pl_PL |
dc.identifier.eissn | 1420-9012 | |
dc.references | Abel, U.: An inequality involving Bernstein polynomials and convex functions. J. Approx. Theory 222, 1–7 (2017) | pl_PL |
dc.references | Abel, U., Leviatan, D.: An extension of Raşa’s conjecture to q-monotone functions. Results Math. 75(4), 181–193 (2020) | pl_PL |
dc.references | Abel, U., Raşa, I.: A sharpening problem on Bernstein polynomials and convex functions. Math. Inequal. Appl. 21(3), 773–777 (2018) | pl_PL |
dc.references | Gavrea, B.: On a convexity problem in connection with some linear operators. J. Math. Anal. Appl. 461, 319–332 (2018) | pl_PL |
dc.references | Hopf, E.: Uber die Zusammen hange zwischen gewissen hoheren Differenzen-qoutienten reelen Funktionen einer reelen Variablen und deren Differenzierbarkeitseigenschaften. Thesis Univ. of Berlin, Berlin (1926) | pl_PL |
dc.references | Komisarski, A., Rajba, T.: Muirhead inequality for convex orders and a problem of I. Raşa on Bernstein polynomials. J. Math. Anal. Appl. 458, 821–830 (2018) | pl_PL |
dc.references | Komisarski, A., Rajba, T.: A sharpening of a problem on Bernstein polynomials and convex functions and related results. Math. Inequal. Appl. 21(4), 1125–1133 (2018) | pl_PL |
dc.references | Komisarski, A., Rajba, T.: Convex order for convolution polynomials of Borel measures. J. Math. Anal. Appl. 478, 182–194 (2019) | pl_PL |
dc.references | Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Prace Naukowe Uniwersytetu Śla̧skiego w Katowicach, vol. 489. Państwowe Wydawnictwo Naukowe – Uniwersytet Śla̧ski, Warszawa, Kraków, Katowice (1985) | pl_PL |
dc.references | Lorentz, G.G.: Bernstein polynomials. Mathematical Expositions. No. 8., University of Toronto Press, Toronto (1953) | pl_PL |
dc.references | Mrowiec, J., Rajba, T., Wa̧sowicz, S.: A solution to the problem of Raşa connected with Bernstein polynomials. J. Math. Anal. Appl. 446, 864–878 (2017) | pl_PL |
dc.references | Popoviciu, T.: Sur quelques proprietes des fonctions d’une ou de deux variables reelles. Mathematica 8, 1–85 (1934) | pl_PL |
dc.references | Popoviciu, T.: Les Fonctions Convexes. Hermann, Paris (1944) | pl_PL |
dc.references | Raşa, I.: 2. Problem, p. 164. In: Report of Meeting Conference on Ulam’s Type Stability, Rytro, Poland, June 2–6, 2014, Ann. Univ. Paedagog. Crac. Stud. Math. 13, 139–169 (2014). https://doi.org/10.2478/aupcsm-2014-0011 | pl_PL |
dc.references | Raşa, I.: Bernstein polynomials and convexity: recent probabilistic and analytic proofs. The Workshop “Numerical Analysis, Approximation and Modeling”, T. Popoviciu Institute of Numerical Analysis, Cluj-Napoca, June 14, (2017). http://ictp.acad.ro/zileleacademice-clujene-2017/ | pl_PL |
dc.references | Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, Berlin (2007) | pl_PL |
dc.contributor.authorEmail | andkom@math.uni.lodz.pl | pl_PL |
dc.contributor.authorEmail | trajba@ath.bielsko.pl | pl_PL |
dc.identifier.doi | 10.1007/s00025-021-01417-2 | |
dc.discipline | matematyka | pl_PL |