dc.contributor.author | Michalska, Maria | |
dc.contributor.author | Walewska, Justyna | |
dc.date.accessioned | 2021-12-16T07:33:02Z | |
dc.date.available | 2021-12-16T07:33:02Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Michalska, M., Walewska, J. Milnor Numbers of Deformations of Semi-Quasi-Homogeneous Plane Curve Singularities. Bull Braz Math Soc, New Series 50, 95–117 (2019). https://doi.org/10.1007/s00574-018-0094-8 | pl_PL |
dc.identifier.issn | 1678-7544 | |
dc.identifier.uri | http://hdl.handle.net/11089/40065 | |
dc.description.abstract | The aim of this paper is to show the possible Milnor numbers of deformations of semi-quasi-homogeneous isolated plane curve singularity f. Assuming that f is irreducible, one can write f=∑qα+pβ ≥ pqcαβ xαyβ where cp0c0q≠0, 2≤p<q and p, q are coprime. We show that as Milnor numbers of deformations of f one can attain all numbers from μ(f) to μ(f)−r(p−r), where q≡r(mod p). Moreover, we provide an algorithm which produces the desired deformations. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Nature | pl_PL |
dc.relation.ispartofseries | Bulletin of the Brazilian Mathematical Society, New Series;50 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Milnor numbers | pl_PL |
dc.subject | Deformations of singularities | pl_PL |
dc.subject | Nondegenerate singularities | pl_PL |
dc.subject | Euclid’s algorithm | pl_PL |
dc.subject | Newton polygon | pl_PL |
dc.title | Milnor Numbers of Deformations of Semi-Quasi-Homogeneous Plane Curve Singularities | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 95-117 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Matematyki i Informatyki, Banacha 22, 90-238 Łódź, Polska | pl_PL |
dc.contributor.authorAffiliation | Universidade de São Paulo, ICMC, Avenida Trabalhador São-carlense, 400 Centro, 13566-590 São Carlos, SP, Brazil | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Matematyki i Informatyki, Banacha 22, 90-238 Łódź, Polska | pl_PL |
dc.identifier.eissn | 1678-7714 | |
dc.references | Arnold, Vladimir, I.: Arnold’s problems. Springer-Verlag, Berlin; PHASIS, Moscow, : Translated and revised edition of the 2000 Russian original, p. 2004. Philippov, A. Yakivchik and M. Peters, With a preface by V (2004) | pl_PL |
dc.references | Brzostowski, Szymon: Krasiński, Tadeusz: The jump of the Milnor number in the X9 singularity class. Cent. Eur. J. Math. 12(3), 429–435 (2014) | pl_PL |
dc.references | Brzostowski, S., Krasiński, T., Walewska, J.: Milnor numbers in deformations of homogeneous singularities. Bull. Sci. Math. (to appear) (2018) | pl_PL |
dc.references | Bodin, Arnaud: Jump of Milnor numbers. Bull. Braz. Math. Soc. (N.S.) 38(3), 389–396 (2007) | pl_PL |
dc.references | Greuel, G.-M., Lossen, C., Shustin, E.: Introduction to singularities and deformations. Springer monographs in mathematics. Springer, Berlin (2007) | pl_PL |
dc.references | Greuel, Gert-Martin: Nguyen, Hong Duc: Some remarks on the planar Kouchnirenko’s theorem. Rev. Mat. Complut. 25(2), 557–579 (2012) | pl_PL |
dc.references | Guseĭn-Zade, S.M.: On singularities that admit splitting off A1. Funktsional. Anal. i Prilozhen. 27(1), 68–71 (1993) | pl_PL |
dc.references | Kouchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32(1), 1–31 (1976) | pl_PL |
dc.references | Lenarcik, Andrzej: On the Jacobian Newton polygon of plane curve singularities. Manuscri. Math. 125(3), 309–324 (2008) | pl_PL |
dc.references | Michalska, M., Walewska, J.: Combinatorial aspects of the sequence of Milnor numbers of deformations. In Algebra, logic and number theory, volume 108 of Banach Center Publ., vol. 108, pp. 191–200. Polish Acad. Sci. Inst. Math., Warsaw (2016a) | pl_PL |
dc.references | Michalska, M., Walewska, J.: Milnor numbers of deformations of semi-quasi-homogeneous plane curve singularities II (2016b). arXiv:1608.03882 | pl_PL |
dc.references | Płoski, Arkadiusz: A bound for the Milnor number of plane curve singularities. Cent. Eur. J. Math. 12(5), 688–693 (2014) | pl_PL |
dc.references | Wall, C.T.C.: Newton polytopes and non-degeneracy. J. Reine Angew. Math. 509, 1–19 (1999) | pl_PL |
dc.references | Walewska, Justyna: The second jump of Milnor numbers. Demonstratio Math. 43(2), 361–374 (2010) | pl_PL |
dc.references | Walewska, Justyna.: Jumps of the Milnor numbers in families of non-degenerate and non-convenient singularities. In Analytic and algebraic geometry, Proceedings of conference on analytic and algebraic geometry. (2013) | pl_PL |
dc.contributor.authorEmail | Maria.Michalska@math.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.1007/s00574-018-0094-8 | |
dc.discipline | matematyka | pl_PL |