Pokaż uproszczony rekord

dc.contributor.authorMichalska, Maria
dc.contributor.authorWalewska, Justyna
dc.date.accessioned2021-12-16T07:33:02Z
dc.date.available2021-12-16T07:33:02Z
dc.date.issued2019
dc.identifier.citationMichalska, M., Walewska, J. Milnor Numbers of Deformations of Semi-Quasi-Homogeneous Plane Curve Singularities. Bull Braz Math Soc, New Series 50, 95–117 (2019). https://doi.org/10.1007/s00574-018-0094-8pl_PL
dc.identifier.issn1678-7544
dc.identifier.urihttp://hdl.handle.net/11089/40065
dc.description.abstractThe aim of this paper is to show the possible Milnor numbers of deformations of semi-quasi-homogeneous isolated plane curve singularity f. Assuming that f is irreducible, one can write f=∑qα+pβ ≥ pqcαβ xαyβ where cp0c0q≠0, 2≤p<q and p, q are coprime. We show that as Milnor numbers of deformations of f one can attain all numbers from μ(f) to μ(f)−r(p−r), where q≡r(mod p). Moreover, we provide an algorithm which produces the desired deformations.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesBulletin of the Brazilian Mathematical Society, New Series;50
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMilnor numberspl_PL
dc.subjectDeformations of singularitiespl_PL
dc.subjectNondegenerate singularitiespl_PL
dc.subjectEuclid’s algorithmpl_PL
dc.subjectNewton polygonpl_PL
dc.titleMilnor Numbers of Deformations of Semi-Quasi-Homogeneous Plane Curve Singularitiespl_PL
dc.typeArticlepl_PL
dc.page.number95-117pl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Wydział Matematyki i Informatyki, Banacha 22, 90-238 Łódź, Polskapl_PL
dc.contributor.authorAffiliationUniversidade de São Paulo, ICMC, Avenida Trabalhador São-carlense, 400 Centro, 13566-590 São Carlos, SP, Brazilpl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Wydział Matematyki i Informatyki, Banacha 22, 90-238 Łódź, Polskapl_PL
dc.identifier.eissn1678-7714
dc.referencesArnold, Vladimir, I.: Arnold’s problems. Springer-Verlag, Berlin; PHASIS, Moscow, : Translated and revised edition of the 2000 Russian original, p. 2004. Philippov, A. Yakivchik and M. Peters, With a preface by V (2004)pl_PL
dc.referencesBrzostowski, Szymon: Krasiński, Tadeusz: The jump of the Milnor number in the X9 singularity class. Cent. Eur. J. Math. 12(3), 429–435 (2014)pl_PL
dc.referencesBrzostowski, S., Krasiński, T., Walewska, J.: Milnor numbers in deformations of homogeneous singularities. Bull. Sci. Math. (to appear) (2018)pl_PL
dc.referencesBodin, Arnaud: Jump of Milnor numbers. Bull. Braz. Math. Soc. (N.S.) 38(3), 389–396 (2007)pl_PL
dc.referencesGreuel, G.-M., Lossen, C., Shustin, E.: Introduction to singularities and deformations. Springer monographs in mathematics. Springer, Berlin (2007)pl_PL
dc.referencesGreuel, Gert-Martin: Nguyen, Hong Duc: Some remarks on the planar Kouchnirenko’s theorem. Rev. Mat. Complut. 25(2), 557–579 (2012)pl_PL
dc.referencesGuseĭn-Zade, S.M.: On singularities that admit splitting off A1. Funktsional. Anal. i Prilozhen. 27(1), 68–71 (1993)pl_PL
dc.referencesKouchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32(1), 1–31 (1976)pl_PL
dc.referencesLenarcik, Andrzej: On the Jacobian Newton polygon of plane curve singularities. Manuscri. Math. 125(3), 309–324 (2008)pl_PL
dc.referencesMichalska, M., Walewska, J.: Combinatorial aspects of the sequence of Milnor numbers of deformations. In Algebra, logic and number theory, volume 108 of Banach Center Publ., vol. 108, pp. 191–200. Polish Acad. Sci. Inst. Math., Warsaw (2016a)pl_PL
dc.referencesMichalska, M., Walewska, J.: Milnor numbers of deformations of semi-quasi-homogeneous plane curve singularities II (2016b). arXiv:1608.03882pl_PL
dc.referencesPłoski, Arkadiusz: A bound for the Milnor number of plane curve singularities. Cent. Eur. J. Math. 12(5), 688–693 (2014)pl_PL
dc.referencesWall, C.T.C.: Newton polytopes and non-degeneracy. J. Reine Angew. Math. 509, 1–19 (1999)pl_PL
dc.referencesWalewska, Justyna: The second jump of Milnor numbers. Demonstratio Math. 43(2), 361–374 (2010)pl_PL
dc.referencesWalewska, Justyna.: Jumps of the Milnor numbers in families of non-degenerate and non-convenient singularities. In Analytic and algebraic geometry, Proceedings of conference on analytic and algebraic geometry. (2013)pl_PL
dc.contributor.authorEmailMaria.Michalska@math.uni.lodz.plpl_PL
dc.identifier.doi10.1007/s00574-018-0094-8
dc.disciplinematematykapl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe