Pokaż uproszczony rekord

dc.contributor.authorMatuszewska, Dominika
dc.contributor.authorKiedrzyńska, Edyta
dc.contributor.authorHarnisz, Monika
dc.contributor.authorKiedrzyński, Marcin
dc.date.accessioned2025-10-09T07:52:53Z
dc.date.available2025-10-09T07:52:53Z
dc.date.issued2025
dc.identifier.urihttp://hdl.handle.net/11089/56446
dc.description.abstractHeavy metal pollution is one of the main problems of the Baltic Sea, caused by the inflow of large loads with river waters. Heavy metals can enter rivers i.a. from point sources such as wastewater treatment plants and industrial plants with inadequately-treated wastewater. The present article examines (i) the impact of WWTPs and industrial facilities on the pollution of the Pilica River, (ii) heavy metal loads along its continuum, and (iii) the identification of common pollution patterns in wastewater and river water, and the effect of their physicochemical properties. Among WWTPs, the highest heavy metal concentrations are generated by the smallest plants, and the highest loads by the largest ones, which is related to the size of their flow. In addition, industrial plants are significant sources of point pollution of rivers, with arsenic, tin, zinc, cobalt, copper, molybdenum, nickel, lead, chromium, mercury and barium being detected in wastewater. The most common heavy metal in the Pilica was found to be Barium, with the highest loads observed in winter (66.29-216.98 kg/day). In addition to Ba, depending on the season, arsenic, copper and nickel were also detected. The article takes an innovative approach employing two data calculation variants, which allowed for a comprehensive analysis that captured both typical and less predictable scenarios of river pollution. It also presents an example of modification of the sedimentation-filtration system as a sustainable solution for removing heavy metals from treated wastewater.pl_PL
dc.description.sponsorshipThe research was conducted as part of the Farmikro Project, funded entirely by the National Science Centre, Poland, Opus 22 (Project No. 2021/43/B/ST10/01076).pl_PL
dc.language.isoenpl_PL
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectheavy metalspl_PL
dc.subjectwastewaterpl_PL
dc.subjectwastewater treatment plantspl_PL
dc.subjectindustrial plantspl_PL
dc.subjectriver catchmentpl_PL
dc.subjectecohydrologypl_PL
dc.titleWastewater as a Driver of Heavy Metal Pollution in River Catchments – a study of possible scenariospl_PL
dc.typePreprintpl_PL
dc.page.number49pl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Doctoral School of Exact and Natural Sciences, Jana Matejki 21/23, 90-237 Lodz, Polandpl_PL
dc.contributor.authorAffiliationEuropean Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Polandpl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Polandpl_PL
dc.contributor.authorAffiliationUniversity of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Water Protection Engineering and Environmental Microbiology, Prawocheńskiego 1 Str., 10-720 Olsztyn, Polandpl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Faculty of Biology and Environmental Protection, Department of Biogeography, Paleoecology and Nature Conservation, Banacha 1/3, 90-237 Lodz, Polandpl_PL
dc.references1. Abd Elnabi, M. K., Elkaliny, N. E., Elyazied, M. M., Azab, S. H., Elkhalifa, S. A., Elmasry, S., ... & Mahmoud, Y. A. G. (2023). Toxicity of heavy metals and recent advances in their removal: a review. Toxics, 11(7), 580. DOI: 10.3390/toxics11070580pl_PL
dc.references2. Adefemi, S. O., & Awokunmi, E. E. (2010). Determination of physico-chemical parameters and heavy metals in water samples from Itaogbolu area of Ondo-State, Nigeria. African Journal of Environmental Science and Technology, 4(3). DOI:10.5897/AJEST09.133pl_PL
dc.references3. Ahmad, M. K., Islam, S., Rahman, S., Haque, M., & Islam, M. M. (2010). Heavy metals in water, sediment and some fishes of Buriganga River, Bangladesh. International Journal of Environmental Research 4(2):321-332pl_PL
dc.references4. Al-Naemi, H. S. (2018). Residual distribution of lead, chromium and cobalt in dairy products and their by-products manufactured from milk spiked with these metals. Basrah Journal of Veterinary Research, 17(1).pl_PL
dc.references5. Ali, M. M., Ali, M. L., Islam, M. S., & Rahman, M. Z. (2016). Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environmental nanotechnology, monitoring & management, 5, 27-35. https://doi.org/10.1016/j.enmm.2016.01.002pl_PL
dc.references6. Ayob, S., Othman, N., & Altowayti, W. A. H. (2022). Concentrations of Zn, Mn and Al in wood chips from wood-based manufacturing industries. In IOP Conference Series: Earth and Environmental Science Vol. 1022, No. 1, p. 012065. IOP Publishing. DOI 10.1088/1755-1315/1022/1/012065pl_PL
dc.references7. Aziz, H. A., Ghazali, M. F., Hung, Y. T., & Wang, L. K. (2017). Toxicity, source, and control of barium in the environment. In Handbook of Advanced Industrial and Hazardous Wastes Management (pp. 463-482). CRC Presspl_PL
dc.references8. Álvarez, A. M., Guerrón, D. B., & Calderón, C. M. (2021). Natural zeolite as a chromium VI removal agent in tannery effluents. Heliyon, 7(9). doi: 10.1016/j.heliyon.2021.e07974pl_PL
dc.references9. Baldermann, A., Fleischhacker, Y., Schmidthaler, S., Wester, K., Nachtnebel, M., & Eichinger, S. (2020). Removal of barium from solution by natural and iron (III) oxide-modified allophane, beidellite and zeolite adsorbents. Materials, 13(11), 2582. https://doi.org/10.3390/ma13112582pl_PL
dc.references10. Becker, K., Schulz, C., Kaus, S., Seiwert, M., & Seifert, B. (2003). German Environmental Survey 1998 (GerES III): environmental pollutants in the urine of the German population. International journal of hygiene and environmental health, 206(1), 15-24. https://doi.org/10.1078/1438-4639-00188pl_PL
dc.references11. Caesar L., Sakschewski B., Andersen L.S., Beringer T., Braun J., Dennis D., Gerten D., Heilemann A., Kaiser J., Kitzmann N.H., Loriani S., Lucht W., Ludescher J., Martin M., Mathesius S., Paolucci A., Wierik S. te, Rockström J. 2024. Planetary Health Check Report 2024. Potsdam Institute for Climate Impact Research. Potsdam. Germany.pl_PL
dc.references12. Cantoni, B., Compagni, R. D., Turolla, A., Epifani, I., & Antonelli, M. (2020). A statistical assessment of micropollutants occurrence, time trend, fate and human health risk using left-censored water quality data. Chemosphere, 257, 127095. DOI: 10.1016/j.chemosphere.2020.127095pl_PL
dc.references13. Chung, S. Y., Venkatramanan, S., Park, N., Ramkumar, T., Sujitha, S. B., & Jonathan, M. P. (2016). Evaluation of physico-chemical parameters in water and total heavy metals in sediments at Nakdong River Basin, Korea. Environmental Earth Sciences, 75, 1-12. DOI:10.1007/s12665-015-4836-2pl_PL
dc.references14. Coffey, M., Dehairs, F., Collette, O., Luther, G., Church, T., & Jickells, T. (1997). The behaviour of dissolved barium in estuaries. Estuarine, Coastal and Shelf Science, 45(1), 113-121.pl_PL
dc.references15. Demirak, A., Yilmaz, F., Tuna, A. L., & Ozdemir, N. (2006). Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere, 63(9), 1451-1458. DOI: 10.1016/j.chemosphere.2005.09.033pl_PL
dc.references16. Dhir, B., & Srivastava, S. (2011). Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecological Engineering, 37(6), 893-896. DOI:10.1016/j.ecoleng.2011.01.007pl_PL
dc.references17. Dong, D., Li, Y., Zhang, J., & Hua, X. (2003). Comparison of the adsorption of lead, cadmium, copper, zinc and barium to freshwater surface coatings. Chemosphere,51(5),369-373.DOI: 10.1016/S0045-6535(02)00835-4pl_PL
dc.references18. Duan, B., Liu, F., Zhang, W., Zheng, H., Zhang, Q., Li, X., & Bu, Y. (2015). Evaluation and source apportionment of heavy metals (HMs) in Sewage sludge of municipal wastewater treatment plants (WWTPs) in Shanxi, China. International journal of environmental research and public health, 12(12), 15807-15818. https://doi.org/10.3390/ijerph121215022pl_PL
dc.references19. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Scientific Opinion on the use of cobalt compounds as additives in animal nutrition. EFSA Journal 2009;7(12):1383. [45 pp.]. doi:10.2903/j.efsa.2009.1383. Available online: www.efsa.europa.eupl_PL
dc.references20. Elder, J. F. (1988). Metal biogeochemistry in surface-water systems: A review of principles and concepts. U.S. Geological Survey.pl_PL
dc.references21. Eliku, T., & Leta, S. (2018). Spatial and seasonal variation in physicochemical parameters and heavy metals in Awash River, Ethiopia. Applied Water Science, 8, 1-13. https://doi.org/10.1007/s13201-018-0803-xpl_PL
dc.references22. European Union. 2009. Commission Directive 2009/90/EC of 31 July 2009 laying down, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, technical specifications for chemical analysis and monitoring of water status. Official Journal of the European Union, L 201, 36–38.pl_PL
dc.references23. European Union. 2019. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003.pl_PL
dc.references24. European Union, 2023. Commission Implementing Regulation (EU) 2023/1455 of 13 July 2023 on the urgent provisional authorisation of cobalt(II) acetate tetrahydrate, cobalt(II) carbonate, cobalt(II) carbonate hydroxide (2:3) monohydrate and cobalt(II) sulphate heptahydrate as feed additives for ruminants with a functional rumen, equidae and lagomorphspl_PL
dc.references25. Fang, B., & Zhu, X. (2014). High content of five heavy metals in four fruits: evidence from a case study of Pujiang County, Zhejiang Province, China. Food control, 39, 62-67. https://doi.org/10.1016/j.foodcont.2013.10.039pl_PL
dc.references26. Filatova, E. G., & Pozhidaev, Y. N. (2021, March). Removal of Zinc (II) Ions from Wastewater Using Natural Zeolites. In IOP Conference Series: Earth and Environmental Science (Vol. 666, No. 4, p. 042034). IOP Publishing. DOI:10.1088/1755-1315/666/4/042034pl_PL
dc.references27. González-Mariño, I., Quintana, J. B., Rodriguez, I., Gonzalez-Diez, M., & Cela, R. (2012). Screening and selective quantification of illicit drugs in wastewater by mixed-mode solid-phase extraction and quadrupole-time-of-flight liquid chromatography–mass spectrometry. Analytical Chemistry, 84(3), 1708-1717. DOI: 10.1021/ac202989epl_PL
dc.references28. Gruszecka-Kosowska, A. (2019). Human health risk assessment and potentially harmful element contents in the fruits cultivated in the southern Poland. International Journal of Environmental Research and Public Health, 16(24), 5096. https://doi.org/10.3390/ijerph16245096pl_PL
dc.references29. Guo, S.-N., Zheng, J.-L., Yuan, S.-S., & Zhu, Q.-L. (2018). Effects of heat and cadmium exposure on stress-related responses in the liver of female zebrafish: Heat increases cadmium toxicity. The Science of the Total Environment, 618, 1363–1370. https://doi.org/10.1016/j.scitotenv.2017.09.264pl_PL
dc.references30. Guzman, M., Arribasplata, M. B. R., Obispo, M. I. F., & Thais, S. C. B. (2022). Removal of heavy metals using a wetland batch system with carrizo (phragmites australis (cav.) trin. ex steud.): A laboratory assessment. Acta Ecologica Sinica, 42(1), 102-109. DOI: 10.1016/j.chnaes.2021.08.001pl_PL
dc.references31. Hanor, J. S., & Chan, L. H. (1977). Non-conservative behavior of barium during mixing of Mississippi River and Gulf of Mexico waters. Earth and Planetary Science Letters, 37(2), 242-250. https://doi.org/10.1016/0012-821X(77)90169-8pl_PL
dc.references32. Harnisz, M., Kiedrzyńska, E., Kiedrzyński, M., Korzeniewska, E., Czatzkowska, M., Koniuszewska, I., Jóźwik, A., Szklarek, S., Niestępski, S., & Zalewski, M. (2020). The impact of WWTP size and sampling season on the prevalence of antibiotic resistance genes in wastewater and the river system. Science of the Total Environment, 741, 140466. DOI: 10.1016/j.scitotenv.2020.140466pl_PL
dc.references33. HELCOM. (2021). Inputs of hazardous substances to the Baltic Sea. Baltic Sea Environment Proceedings No. 179pl_PL
dc.references34. HELCOM. (2024). Inputs of hazardous substances to the Baltic Sea (PLC-8). Baltic Sea Environment Proceedings n°196.pl_PL
dc.references35. Hua, T., Haynes, R. J., & Zhou, Y. F. (2019). Removal of Al, Ga, As, V and Mo from alkaline wastewater using pilot-scale constructed wetlands. Environmental Science and Pollution Research, 26(34), 35121-35130. DOI: 10.1007/s11356-019-06490-3pl_PL
dc.references36. Hubeny, J., Harnisz, M., Korzeniewska, E., Buta, M., Zieliński, W., Rolbiecki, D., Giebułtowicz, J., Nałęcz-Jawecki G., & Płaza, G. (2021). Industrialization as a source of heavy metals and antibiotics which can enhance the antibiotic resistance in wastewater, sewage sludge and river water. PloS one, 16(6), e0252691. DOI: 10.1371/journal.pone.0252691pl_PL
dc.references37. Ivanets, A. I., Shashkova, I. L., Kitikova, N. V., & Morozov, Y. (2016). The kinetic studies of the cobalt ion removal from aqueous solutions by dolomite-based sorbent. International Journal of Environmental Science and Technology, 13, 2561-2568. DOI:10.1007/s13762-016-1089-xpl_PL
dc.references38. Izydorczyk, K., Piniewski, M., Krauze, K., Courseau, L., Czyż, P., Giełczewski, M., Kardel, I., Marcinkowski, P., Szuwart, M., Zalewski, M. & Frątczak, W. (2019). The ecohydrological approach, SWAT modelling, and multi-stakeholder engagement–A system solution to diffuse pollution in the Pilica basin, Poland. Journal of Environmental Management, 248, 109329. DOI: 10.1016/j.jenvman.2019.109329pl_PL
dc.references39. Jarosiewicz, P., Font-Najera, A., Mankiewicz-Boczek, J., Chamerska, A., Amalfitano, S., Fazi, S., & Jurczak, T. (2024). Stormwater treatment in constrained urban spaces through a hybrid Sequential Sedimentation Biofiltration System. Chemosphere, 367, 143696. DOI:10.1016/j.chemosphere.2024.143696pl_PL
dc.references40. Jomova, K., Alomar, S. Y., Nepovimova, E., Kuca, K., & Valko, M. (2025). Heavy metals: toxicity and human health effects. Archives of toxicology, 99(1), 153-209. DOI: 10.1007/s00204-024-03903-2pl_PL
dc.references41. Katsube, T., Echols, R., Arjona Ferreira, J. C., Krenz, H. K., Berg, J. K., & Galloway, C. (2017). Cefiderocol, a siderophore cephalosporin for gram‐negative bacterial infections: pharmacokinetics and safety in subjects with renal impairment. The Journal of Clinical Pharmacology, 57(5), 584-591. • DOI: 10.1002/jcph.841pl_PL
dc.references42. Kiedrzyńska, E., Kiedrzyński, M., Urbaniak, M., Magnuszewski, A., Skłodowski, M., Wyrwicka, A., & Zalewski, M. (2014). Point sources of nutrient pollution in the lowland river catchment in the context of the Baltic Sea eutrophication. Ecological engineering. 70. 337-348. DOI:10.1016/j.ecoleng.2014.06.010pl_PL
dc.references43. Kiedrzyńska, E., Urbaniak, M., Kiedrzyński, M., Jóźwik, A., Bednarek, A., Gągała, I., & Zalewski, M. (2017). The use of a hybrid Sequential Biofiltration System for the improvement of nutrient removal and PCB control in municipal wastewater. Scientific reports, 7(1), 5477. DOI: 10.1038/s41598-017-05555-ypl_PL
dc.references44. Kravchenko, J., Darrah, T. H., Miller, R. K., Lyerly, H. K., & Vengosh, A. (2014). A review of the health impacts of barium from natural and anthropogenic exposure. Environmental geochemistry and health, 36, 797-814. DOI: 10.1007/s10653-014-9622-7pl_PL
dc.references45. Kumari, M., & Tripathi, B. D. (2015). Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicology and environmental safety, 112, 80-86. DOI: 10.1016/j.ecoenv.2014.10.034pl_PL
dc.references46. Li, S., & Zhang, Q. (2010). Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China. Journal of hazardous materials, 181(1-3), 1051-1058. DOI: 10.1016/j.jhazmat.2010.05.120pl_PL
dc.references47. Li, H., Shi, A., Li, M., & Zhang, X. (2013). Effect of pH, temperature, dissolved oxygen, and flow rate of overlying water on heavy metals release from storm sewer sediments. Journal of Chemistry, 2013, 1–11. https://doi.org/10.1155/2013/434012pl_PL
dc.references48. Marrugo-Negrete, J., Enamorado-Montes, G., Durango-Hernández, J., Pinedo-Hernández, J., & Díez, S. (2017). Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands. Chemosphere, 167, 188–192. https://doi.org/10.1016/j.chemosphere.2016.09.130pl_PL
dc.references49. Morin-Crini, N., Lichtfouse, E., Liu, G., Balaram, V., Ribeiro, A. R. L., Lu, Z., Stock, F., Carmona, E., Ribau Teixeira M., Picos-Corrales, L.A., Moreno-Piraján, J.C., Giraldo, L., Li, C., Pandey, A., Hocquet, D., Torri, G., & Crini, G. (2022). Worldwide cases of water pollution by emerging contaminants: a review. Environmental Chemistry Letters. 20(4). 2311-2338. DOI:10.1007/s10311-022-01447-4pl_PL
dc.references50. Mukherjee, A. G., Wanjari, U. R., Renu, K., Vellingiri, B., & Gopalakrishnan, A. V. (2022). Heavy metal and metalloid-induced reproductive toxicity. Environmental Toxicology and Pharmacology, 92, 103859. DOI: 10.1016/j.etap.2022.103859pl_PL
dc.references51. Olejnik, D. (2024). Evaluation of the heavy metals content in sewage sludge from selected rural and urban wastewater treatment plants in Poland in terms of its suitability for agricultural use. Sustainability, 16(12), 5198. https://doi.org/10.3390/su16125198pl_PL
dc.references52. Pan, C. G., Xiao, S. K., Yu, K. F., Wu, Q., & Wang, Y. H. (2021). Legacy and alternative per-and polyfluoroalkyl substances in a subtropical marine food web from the Beibu Gulf, South China: Fate, trophic transfer and health risk assessment. Journal of Hazardous Materials, 403, 123618. DOI: 10.1016/j.jhazmat.2020.123618pl_PL
dc.references53. Pandey, G., & Madhuri, S. (2014). Heavy metals causing toxicity in animals and fishes. Research Journal of Animal, Veterinary and Fishery Sciences, 2(2), 17-23.pl_PL
dc.references54. Piwowarska, D., Kiedrzyńska, E., & Jaszczyszyn, K. (2024). A global perspective on the nature and fate of heavy metals polluting water ecosystems, and their impact and remediation. Critical Reviews in Environmental Science and Technology, 54(19), 1436-1458. https://doi.org/10.1080/10643389.2024.2317112pl_PL
dc.references55. Piwowarska, D., & Kiedrzyńska, E. (2022). Xenobiotics as a contemporary threat to surface waters. Ecohydrology & Hydrobiology, vol.2, Issue 2, p.337-354 https://doi.org/10.1016/j.ecohyd.2021.09.003pl_PL
dc.references56. Popenda, A. (2014). Effect of redox potential on heavy metals and As behavior in dredged sediments. Desalina Water Treat 52: 3918–3927. https://doi.org/10.1080/19443994.2014.887449pl_PL
dc.references57. Procházková, T., Sychrová, E., Vecerkova, J., Javurkova, B., Otoupalíková, A., Pernica, M., Simek, Z., Smutna, M., Lepsova-Skacelova, O. & Hilscherová, K. (2018). Estrogenic activity and contributing compounds in stagnant water bodies with massive occurrence of phytoplankton. Water Research, 136, 12-21. https://doi.org/10.1016/j.watres.2018.02.040pl_PL
dc.references58. Protano, C., Zinnà, L., Giampaoli, S., Spica, V. R., Chiavarini, S., & Vitali, M. (2014). Heavy metal pollution and potential ecological risks in rivers: a case study from southern Italy. Bulletin of environmental contamination and toxicology, 92, 75-80. DOI: 10.1007/s00128-013-1150-0pl_PL
dc.references59. Renuka, N., Sood, A., Prasanna, R., & Ahluwalia, A. S. (2014). Influence of seasonal variation in water quality on the microalgal diversity of sewage wastewater. South African Journal of Botany, 90, 137-145. https://doi.org/10.1016/j.sajb.2013.10.017pl_PL
dc.references60. Rodríguez Martín, J. A., De Arana, C., Ramos-Miras, J. J., Gil, C., & Boluda, R. (2015). Impact of 70 years urban growth associated with heavy metal pollution. Environmental Pollution (Barking, Essex: 1987), 196, 156–163. https://doi.org/10.1016/j.envpol.2014.10.014pl_PL
dc.references61. Saadati, N., Abdullah, M. P., Zakaria, Z., Sany, S. B. T., Rezayi, M., & Hassonizadeh, H. (2013). Limit of detection and limit of quantification development procedures for organochlorine pesticides analysis in water and sediment matrices. Chemistry Central Journal, 7, 1-10. DOI: 10.1186/1752-153X-7-63pl_PL
dc.references62. Sadiq, S. T., Yaşa, İ., Ali, S. F., Eren, A. E., & Turky, A. N. (2019). Occurrence, seasonal changes and removal efficiency assessment of heavy metals in urban wastewater treatment plant. Journal of Asian Scientific Research, 9(6), 48-55. DOI:10.18488/journal.2.2019.96.48.55pl_PL
dc.references63. Sakson, G., Brzezinska, A., & Zawilski, M. (2018). Emission of heavy metals from an urban catchment into receiving water and possibility of its limitation on the example of Lodz city. Environmental Monitoring and Assessment, 190, 1-15. https://doi.org/10.1007/s10661-018-6648-9pl_PL
dc.references64. Sandeep, G., Vijayalatha, K. R., & Anitha, T. 2019. Heavy metals and its impact in vegetable crops. Int J Chem Stud, 7(1), 1612-21.pl_PL
dc.references65. Sarich, T. C., Schützer, K. M., Dorani, H., Wall, U., Kalies, I., Ohlsson, L., & Eriksson, U. G. (2004). No pharmacokinetic or pharmacodynamic interaction between atorvastatin and the oral direct thrombin inhibitor ximelagatran. The Journal of Clinical Pharmacology, 44(8), 928-934. DOI: 10.1177/0091270004268047pl_PL
dc.references66. Shah, K. H., Ayub, M., Fahad, M., Bilal, M., Amin, B. A. Z., & Hussain, Z. (2019). Natural dolomite as a low-cost adsorbent for efficient removal of As (III) from aqueous solutions. Materials Research Express, 6(8), 085535. DOI:10.1088/2053-1591/ab24f8pl_PL
dc.references67. Shanbehzadeh, S., Vahid Dastjerdi, M., Hassanzadeh, A., & Kiyanizadeh, T. (2014). Heavy metals in water and ediment: a case study of Tembi River. Journal of environmental and public health, 2014(1), 858720. DOI: 10.1155/2014/858720pl_PL
dc.references68. Sierra-Marquez, L., Espinosa-Araujo, J., Atencio-Garcia, V., & Olivero-Verbel, J. (2019). Effects of cadmium exposure on sperm and larvae of the neotropical fish Prochilodus magdalenae. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 225, 108577. https://doi.org/10.1016/j.cbpc.2019.108577pl_PL
dc.references69. Sočo, E., Domoń, A., Papciak, D., Michel, M. M., Pająk, D., Cieniek, B., & Azizi, M. (2023). Characteristics of adsorption/desorption process on dolomite adsorbent in the copper (II) removal from aqueous solutions. Materials, 16(13), 4648. https://doi.org/10.3390/ma16134648pl_PL
dc.references70. Sojka, M., Siepak, M., Jaskuła, J., & Wicher-Dysarz, J. (2018). Heavy Metal Transport in a River-Reservoir System: a Case Study from Central Poland. Polish Journal of Environmental Studies, 27(4). DOI: https://doi.org/10.15244/pjoes/76916pl_PL
dc.references71. Soto-Ríos, P. C., León-Romero, M. A., Sukhbaatar, O., & Nishimura, O. (2018). Biosorption of mercury by Reed (Phragmites australis) as a potential clean water technology. Water, Air, & Soil Pollution, 229, 1-11 DOI:10.1007/s11270-018-3978-8pl_PL
dc.references72. Sörme, L., & Lagerkvist, R. (2002). Sources of heavy metals in urban wastewater in Stockholm. Science of the total environment, 298(1-3), 131-145. DOI: 10.1016/s0048-9697(02)00197-3pl_PL
dc.references73. Spanos, T., Ene, A., Patronidou, C. S., & Xatzixristou, C. (2016). Temporal variability of sewage sludge heavy metal content from Greek wastewater treatment plants. Ecological Chemistry and Engineering, 23(2), 271. DOI:10.1515/eces-2016-0019pl_PL
dc.references74. Syukor, A. A., Sulaiman, S., Siddique, M. N. I., Zularisam, A. W., & Said, M. I. M. (2016). Integration of phytogreen for heavy metal removal from wastewater. Journal of Cleaner Production, 112, 3124-3131. DOI:10.1016/j.jclepro.2015.10.103pl_PL
dc.references75. Szklarek, S., Kiedrzyńska, E., Kiedrzyński, M., Mankiewicz-Boczek, J., Mitsch, W. J., & Zalewski, M. (2021). Comparing ecotoxicological and physicochemical indicators of municipal wastewater effluent and river water quality in a Baltic Sea catchment in Poland. Ecological Indicators. 126. 107611. https://doi.org/10.1016/j.ecolind.2021.107611pl_PL
dc.references76. The United Nations Human Settlements Programme (UN-Habitat) and the World Health Organization (WHO), 2024. Progress on the proportion of domestic and industrial wastewater flows safely treated – Mid-term status of SDG Indicator 6.3.1 and acceleration needs, with a special focus on climate change, wastewater reuse and health. United Nations Human Settlements Programme (UN-Habitat) and World Health Organization (WHO), 2024. Licence: CC BY-NC-SA 3.0 IGO.pl_PL
dc.references77. Tytła, M. (2019). Assessment of heavy metal pollution and potential ecological risk in sewage sludge from municipal wastewater treatment plant located in the most industrialized region in Poland—case study. International journal of environmental research and public health, 16(13), 2430. https://doi.org/10.3390/ijerph16132430pl_PL
dc.references78. Urbaniak, M., Kiedrzynska, E., Kiedrzynski, M., Mendra, M., & Grochowalski, A. (2014). The impact of point sources of pollution on the transport of micropollutants along the river continuum. Hydrology Research. 45(3). 391-410. https://doi.org/10.2166/nh.2013.242pl_PL
dc.references79. Verbruggen, E. M. J., Smit, C. E., & Van Vlaardingen, P. L. A. (2020). Environmental quality standards for barium in surface water: Proposal for an update according to the methodology of the Water Framework Directive DOI 10.21945/RIVM-2020-0024pl_PL
dc.references80. Walker. D. B.. Baumgartner. D. J.. Gerba. C. P.. & Fitzsimmons. K. (2019). Surface water pollution. In Environmental and pollution science (pp. 261-292). Academic Press. http://doi.org/10.1016/B978-0-12-814719-1.00016-1pl_PL
dc.references81. Wang, L., Wang, Y., Xu, C., An, Z., & Wang, S. (2011). Analysis and evaluation of the source of heavy metals in water of the River Changjiang. Environmental monitoring and assessment, 173(1), 301-313. DOI: 10.1007/s10661-010-1388-5pl_PL
dc.references82. Wei, H., Yu, H., Zhang, G., Pan, H., Lv, C., & Meng, F. (2018). Revealing the correlations between heavy metals and water quality, with insight into the potential factors and variations through canonical correlation analysis in an upstream tributary. Ecological Indicators, 90, 485-493. DOI:10.1016/j.ecolind.2018.03.037pl_PL
dc.references83. Wei, B., Yu, J., Cao, Z., Meng, M., Yang, L., & Chen, Q. 2020. The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application. International Journal of Environmental Research and Public Health, 17(15), 5359. https://doi.org/10.3390/ijerph17155359pl_PL
dc.references84. Yaghi, B., & Abdul-Wahab, S. A. (2003). Assessment of lead, zinc, copper, nickel and chromium in total suspended particulate matter from the workplace in Al-Rusayl Industrial Estate, Oman. Journal of Environmental Monitoring, 5(6), 950-952. DOI:10.1039/b306029mpl_PL
dc.references85. Yao, Z., Zhou, L., Bao, Z., Gao, P., & Sun, X. (2009). High efficiency of heavy metal removal in mine water by limestone. Chinese Journal of Geochemistry, 28, 293-298. DOI:10.1007/s11631-009-0293-5pl_PL
dc.references86. Yu, K. C., Tsai, L. J., Chen, S. H., & Ho, S. T. (2001). Correlation analyses on binding behavior of heavy metals with sediment matrices. Water Research, 35(10), 2417-2428. DOI: 10.1016/s0043-1354(00)00518-2pl_PL
dc.references87. Yuan, N., Zhang, J., Lu, J., Liu, H., & Sun, P. (2014). Analysis of inhalable dust produced in manufacturing of wooden furniture. BioResources, 9(4), 7257-7266. https://doi.org/10.15376/biores.9.4.7257-7266pl_PL
dc.references88. Zhao, S., Zhao, Y., Cui, Z., Zhang, H., & Zhang, J. (2024). Effect of pH, temperature, and salinity levels on heavy metal fraction in lake sediments. Toxics, 12(7), 494. https://doi.org/10.3390/toxics12070494pl_PL
dc.references89. Zwolak, A., Sarzyńska, M., Szpyrka, E., & Stawarczyk, K. (2019). Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water, air, & soil pollution, 230, 1-9. DOI:10.1007/s11270-019-4221-ypl_PL
dc.contributor.authorEmaild.matuszewska@erce.unesco.lodz.plpl_PL
dc.contributor.authorEmaile.kiedrzynska@erce.unesco.lodz.plpl_PL
dc.disciplinenauki biologicznepl_PL
dc.disciplinenauki o Ziemi i środowiskupl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe